//===- BugDriver.cpp - Top-Level BugPoint class implementation ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This class contains all of the shared state and information that is used by // the BugPoint tool to track down errors in optimizations. This class is the // main driver class that invokes all sub-functionality. // //===----------------------------------------------------------------------===// #include "BugDriver.h" #include "ToolRunner.h" #include "llvm/IR/Module.h" #include "llvm/IR/Verifier.h" #include "llvm/IRReader/IRReader.h" #include "llvm/Linker/Linker.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/FileUtilities.h" #include "llvm/Support/Host.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/raw_ostream.h" #include <memory> using namespace llvm; namespace llvm { Triple TargetTriple; } // Anonymous namespace to define command line options for debugging. // namespace { // Output - The user can specify a file containing the expected output of the // program. If this filename is set, it is used as the reference diff source, // otherwise the raw input run through an interpreter is used as the reference // source. // cl::opt<std::string> OutputFile("output", cl::desc("Specify a reference program output " "(for miscompilation detection)")); } /// setNewProgram - If we reduce or update the program somehow, call this method /// to update bugdriver with it. This deletes the old module and sets the /// specified one as the current program. void BugDriver::setNewProgram(Module *M) { delete Program; Program = M; } /// getPassesString - Turn a list of passes into a string which indicates the /// command line options that must be passed to add the passes. /// std::string llvm::getPassesString(const std::vector<std::string> &Passes) { std::string Result; for (unsigned i = 0, e = Passes.size(); i != e; ++i) { if (i) Result += " "; Result += "-"; Result += Passes[i]; } return Result; } BugDriver::BugDriver(const char *toolname, bool find_bugs, unsigned timeout, unsigned memlimit, bool use_valgrind, LLVMContext& ctxt) : Context(ctxt), ToolName(toolname), ReferenceOutputFile(OutputFile), Program(nullptr), Interpreter(nullptr), SafeInterpreter(nullptr), gcc(nullptr), run_find_bugs(find_bugs), Timeout(timeout), MemoryLimit(memlimit), UseValgrind(use_valgrind) {} BugDriver::~BugDriver() { delete Program; if (Interpreter != SafeInterpreter) delete Interpreter; delete SafeInterpreter; delete gcc; } std::unique_ptr<Module> llvm::parseInputFile(StringRef Filename, LLVMContext &Ctxt) { SMDiagnostic Err; std::unique_ptr<Module> Result = parseIRFile(Filename, Err, Ctxt); if (!Result) { Err.print("bugpoint", errs()); return Result; } if (verifyModule(*Result, &errs())) { errs() << "bugpoint: " << Filename << ": error: input module is broken!\n"; return std::unique_ptr<Module>(); } // If we don't have an override triple, use the first one to configure // bugpoint, or use the host triple if none provided. if (TargetTriple.getTriple().empty()) { Triple TheTriple(Result->getTargetTriple()); if (TheTriple.getTriple().empty()) TheTriple.setTriple(sys::getDefaultTargetTriple()); TargetTriple.setTriple(TheTriple.getTriple()); } Result->setTargetTriple(TargetTriple.getTriple()); // override the triple return Result; } // This method takes the specified list of LLVM input files, attempts to load // them, either as assembly or bitcode, then link them together. It returns // true on failure (if, for example, an input bitcode file could not be // parsed), and false on success. // bool BugDriver::addSources(const std::vector<std::string> &Filenames) { assert(!Program && "Cannot call addSources multiple times!"); assert(!Filenames.empty() && "Must specify at least on input filename!"); // Load the first input file. Program = parseInputFile(Filenames[0], Context).release(); if (!Program) return true; outs() << "Read input file : '" << Filenames[0] << "'\n"; for (unsigned i = 1, e = Filenames.size(); i != e; ++i) { std::unique_ptr<Module> M = parseInputFile(Filenames[i], Context); if (!M.get()) return true; outs() << "Linking in input file: '" << Filenames[i] << "'\n"; if (Linker::LinkModules(Program, M.get())) return true; } outs() << "*** All input ok\n"; // All input files read successfully! return false; } /// run - The top level method that is invoked after all of the instance /// variables are set up from command line arguments. /// bool BugDriver::run(std::string &ErrMsg) { if (run_find_bugs) { // Rearrange the passes and apply them to the program. Repeat this process // until the user kills the program or we find a bug. return runManyPasses(PassesToRun, ErrMsg); } // If we're not running as a child, the first thing that we must do is // determine what the problem is. Does the optimization series crash the // compiler, or does it produce illegal code? We make the top-level // decision by trying to run all of the passes on the input program, // which should generate a bitcode file. If it does generate a bitcode // file, then we know the compiler didn't crash, so try to diagnose a // miscompilation. if (!PassesToRun.empty()) { outs() << "Running selected passes on program to test for crash: "; if (runPasses(Program, PassesToRun)) return debugOptimizerCrash(); } // Set up the execution environment, selecting a method to run LLVM bitcode. if (initializeExecutionEnvironment()) return true; // Test to see if we have a code generator crash. outs() << "Running the code generator to test for a crash: "; std::string Error; compileProgram(Program, &Error); if (!Error.empty()) { outs() << Error; return debugCodeGeneratorCrash(ErrMsg); } outs() << '\n'; // Run the raw input to see where we are coming from. If a reference output // was specified, make sure that the raw output matches it. If not, it's a // problem in the front-end or the code generator. // bool CreatedOutput = false; if (ReferenceOutputFile.empty()) { outs() << "Generating reference output from raw program: "; if (!createReferenceFile(Program)) { return debugCodeGeneratorCrash(ErrMsg); } CreatedOutput = true; } // Make sure the reference output file gets deleted on exit from this // function, if appropriate. std::string ROF(ReferenceOutputFile); FileRemover RemoverInstance(ROF, CreatedOutput && !SaveTemps); // Diff the output of the raw program against the reference output. If it // matches, then we assume there is a miscompilation bug and try to // diagnose it. outs() << "*** Checking the code generator...\n"; bool Diff = diffProgram(Program, "", "", false, &Error); if (!Error.empty()) { errs() << Error; return debugCodeGeneratorCrash(ErrMsg); } if (!Diff) { outs() << "\n*** Output matches: Debugging miscompilation!\n"; debugMiscompilation(&Error); if (!Error.empty()) { errs() << Error; return debugCodeGeneratorCrash(ErrMsg); } return false; } outs() << "\n*** Input program does not match reference diff!\n"; outs() << "Debugging code generator problem!\n"; bool Failure = debugCodeGenerator(&Error); if (!Error.empty()) { errs() << Error; return debugCodeGeneratorCrash(ErrMsg); } return Failure; } void llvm::PrintFunctionList(const std::vector<Function*> &Funcs) { unsigned NumPrint = Funcs.size(); if (NumPrint > 10) NumPrint = 10; for (unsigned i = 0; i != NumPrint; ++i) outs() << " " << Funcs[i]->getName(); if (NumPrint < Funcs.size()) outs() << "... <" << Funcs.size() << " total>"; outs().flush(); } void llvm::PrintGlobalVariableList(const std::vector<GlobalVariable*> &GVs) { unsigned NumPrint = GVs.size(); if (NumPrint > 10) NumPrint = 10; for (unsigned i = 0; i != NumPrint; ++i) outs() << " " << GVs[i]->getName(); if (NumPrint < GVs.size()) outs() << "... <" << GVs.size() << " total>"; outs().flush(); }