; RUN: llc -march=amdgcn -mcpu=verde -verify-machineinstrs < %s | FileCheck -check-prefix=SI -check-prefix=FUNC %s
; RUN: llc -march=amdgcn -mcpu=tonga -verify-machineinstrs < %s | FileCheck -check-prefix=SI -check-prefix=FUNC %s
; RUN: llc -march=r600 -mcpu=redwood < %s | FileCheck -check-prefix=EG -check-prefix=FUNC %s
; RUN: llc -march=r600 -mcpu=cayman < %s | FileCheck -check-prefix=CM -check-prefix=FUNC %s

;===------------------------------------------------------------------------===;
; Global Address Space
;===------------------------------------------------------------------------===;
; FUNC-LABEL: {{^}}store_i1:
; EG: MEM_RAT MSKOR
; SI: buffer_store_byte
define void @store_i1(i1 addrspace(1)* %out) {
entry:
  store i1 true, i1 addrspace(1)* %out
  ret void
}

; i8 store
; FUNC-LABEL: {{^}}store_i8:
; EG: MEM_RAT MSKOR T[[RW_GPR:[0-9]]].XW, T{{[0-9]}}.X

; IG 0: Get the byte index and truncate the value
; EG: AND_INT * T{{[0-9]}}.[[BI_CHAN:[XYZW]]], KC0[2].Y, literal.x
; EG: LSHL T{{[0-9]}}.[[SHIFT_CHAN:[XYZW]]], PV.[[BI_CHAN]], literal.x
; EG: AND_INT * T{{[0-9]}}.[[TRUNC_CHAN:[XYZW]]], KC0[2].Z, literal.y
; EG-NEXT: 3(4.203895e-45), 255(3.573311e-43)


; IG 1: Truncate the calculated the shift amount for the mask

; IG 2: Shift the value and the mask
; EG: LSHL T[[RW_GPR]].X, PS, PV.[[SHIFT_CHAN]]
; EG: LSHL * T[[RW_GPR]].W, literal.x, PV.[[SHIFT_CHAN]]
; EG-NEXT: 255
; IG 3: Initialize the Y and Z channels to zero
;       XXX: An optimal scheduler should merge this into one of the prevous IGs.
; EG: MOV T[[RW_GPR]].Y, 0.0
; EG: MOV * T[[RW_GPR]].Z, 0.0

; SI: buffer_store_byte

define void @store_i8(i8 addrspace(1)* %out, i8 %in) {
entry:
  store i8 %in, i8 addrspace(1)* %out
  ret void
}

; i16 store
; FUNC-LABEL: {{^}}store_i16:
; EG: MEM_RAT MSKOR T[[RW_GPR:[0-9]]].XW, T{{[0-9]}}.X

; IG 0: Get the byte index and truncate the value


; EG: AND_INT * T{{[0-9]}}.[[BI_CHAN:[XYZW]]], KC0[2].Y, literal.x
; EG-NEXT: 3(4.203895e-45),

; EG: LSHL T{{[0-9]}}.[[SHIFT_CHAN:[XYZW]]], PV.[[BI_CHAN]], literal.x
; EG: AND_INT * T{{[0-9]}}.[[TRUNC_CHAN:[XYZW]]], KC0[2].Z, literal.y

; EG-NEXT: 3(4.203895e-45), 65535(9.183409e-41)
; IG 1: Truncate the calculated the shift amount for the mask

; IG 2: Shift the value and the mask
; EG: LSHL T[[RW_GPR]].X, PS, PV.[[SHIFT_CHAN]]
; EG: LSHL * T[[RW_GPR]].W, literal.x, PV.[[SHIFT_CHAN]]
; EG-NEXT: 65535
; IG 3: Initialize the Y and Z channels to zero
;       XXX: An optimal scheduler should merge this into one of the prevous IGs.
; EG: MOV T[[RW_GPR]].Y, 0.0
; EG: MOV * T[[RW_GPR]].Z, 0.0

; SI: buffer_store_short
define void @store_i16(i16 addrspace(1)* %out, i16 %in) {
entry:
  store i16 %in, i16 addrspace(1)* %out
  ret void
}

; FUNC-LABEL: {{^}}store_v2i8:
; EG: MEM_RAT MSKOR
; EG-NOT: MEM_RAT MSKOR

; SI: buffer_store_byte
; SI: buffer_store_byte
define void @store_v2i8(<2 x i8> addrspace(1)* %out, <2 x i32> %in) {
entry:
  %0 = trunc <2 x i32> %in to <2 x i8>
  store <2 x i8> %0, <2 x i8> addrspace(1)* %out
  ret void
}


; FUNC-LABEL: {{^}}store_v2i16:
; EG: MEM_RAT_CACHELESS STORE_RAW

; CM: MEM_RAT_CACHELESS STORE_DWORD

; SI: buffer_store_short
; SI: buffer_store_short
define void @store_v2i16(<2 x i16> addrspace(1)* %out, <2 x i32> %in) {
entry:
  %0 = trunc <2 x i32> %in to <2 x i16>
  store <2 x i16> %0, <2 x i16> addrspace(1)* %out
  ret void
}

; FUNC-LABEL: {{^}}store_v4i8:
; EG: MEM_RAT_CACHELESS STORE_RAW

; CM: MEM_RAT_CACHELESS STORE_DWORD

; SI: buffer_store_byte
; SI: buffer_store_byte
; SI: buffer_store_byte
; SI: buffer_store_byte
define void @store_v4i8(<4 x i8> addrspace(1)* %out, <4 x i32> %in) {
entry:
  %0 = trunc <4 x i32> %in to <4 x i8>
  store <4 x i8> %0, <4 x i8> addrspace(1)* %out
  ret void
}

; floating-point store
; FUNC-LABEL: {{^}}store_f32:
; EG: MEM_RAT_CACHELESS STORE_RAW T{{[0-9]+\.X, T[0-9]+\.X}}, 1

; CM: MEM_RAT_CACHELESS STORE_DWORD T{{[0-9]+\.X, T[0-9]+\.X}}

; SI: buffer_store_dword

define void @store_f32(float addrspace(1)* %out, float %in) {
  store float %in, float addrspace(1)* %out
  ret void
}

; FUNC-LABEL: {{^}}store_v4i16:
; EG: MEM_RAT MSKOR
; EG: MEM_RAT MSKOR
; EG: MEM_RAT MSKOR
; EG: MEM_RAT MSKOR
; EG-NOT: MEM_RAT MSKOR

; SI: buffer_store_short
; SI: buffer_store_short
; SI: buffer_store_short
; SI: buffer_store_short
; SI-NOT: buffer_store_byte
define void @store_v4i16(<4 x i16> addrspace(1)* %out, <4 x i32> %in) {
entry:
  %0 = trunc <4 x i32> %in to <4 x i16>
  store <4 x i16> %0, <4 x i16> addrspace(1)* %out
  ret void
}

; vec2 floating-point stores
; FUNC-LABEL: {{^}}store_v2f32:
; EG: MEM_RAT_CACHELESS STORE_RAW

; CM: MEM_RAT_CACHELESS STORE_DWORD

; SI: buffer_store_dwordx2

define void @store_v2f32(<2 x float> addrspace(1)* %out, float %a, float %b) {
entry:
  %0 = insertelement <2 x float> <float 0.0, float 0.0>, float %a, i32 0
  %1 = insertelement <2 x float> %0, float %b, i32 1
  store <2 x float> %1, <2 x float> addrspace(1)* %out
  ret void
}

; FUNC-LABEL: {{^}}store_v4i32:
; EG: MEM_RAT_CACHELESS STORE_RAW
; EG-NOT: MEM_RAT_CACHELESS STORE_RAW

; CM: MEM_RAT_CACHELESS STORE_DWORD
; CM-NOT: MEM_RAT_CACHELESS STORE_DWORD

; SI: buffer_store_dwordx4
define void @store_v4i32(<4 x i32> addrspace(1)* %out, <4 x i32> %in) {
entry:
  store <4 x i32> %in, <4 x i32> addrspace(1)* %out
  ret void
}

; FUNC-LABEL: {{^}}store_i64_i8:
; EG: MEM_RAT MSKOR
; SI: buffer_store_byte
define void @store_i64_i8(i8 addrspace(1)* %out, i64 %in) {
entry:
  %0 = trunc i64 %in to i8
  store i8 %0, i8 addrspace(1)* %out
  ret void
}

; FUNC-LABEL: {{^}}store_i64_i16:
; EG: MEM_RAT MSKOR
; SI: buffer_store_short
define void @store_i64_i16(i16 addrspace(1)* %out, i64 %in) {
entry:
  %0 = trunc i64 %in to i16
  store i16 %0, i16 addrspace(1)* %out
  ret void
}

;===------------------------------------------------------------------------===;
; Local Address Space
;===------------------------------------------------------------------------===;

; FUNC-LABEL: {{^}}store_local_i1:
; EG: LDS_BYTE_WRITE
; SI: ds_write_b8
define void @store_local_i1(i1 addrspace(3)* %out) {
entry:
  store i1 true, i1 addrspace(3)* %out
  ret void
}

; FUNC-LABEL: {{^}}store_local_i8:
; EG: LDS_BYTE_WRITE

; SI: ds_write_b8
define void @store_local_i8(i8 addrspace(3)* %out, i8 %in) {
  store i8 %in, i8 addrspace(3)* %out
  ret void
}

; FUNC-LABEL: {{^}}store_local_i16:
; EG: LDS_SHORT_WRITE

; SI: ds_write_b16
define void @store_local_i16(i16 addrspace(3)* %out, i16 %in) {
  store i16 %in, i16 addrspace(3)* %out
  ret void
}

; FUNC-LABEL: {{^}}store_local_v2i16:
; EG: LDS_WRITE

; CM: LDS_WRITE

; SI: ds_write_b16
; SI: ds_write_b16
define void @store_local_v2i16(<2 x i16> addrspace(3)* %out, <2 x i16> %in) {
entry:
  store <2 x i16> %in, <2 x i16> addrspace(3)* %out
  ret void
}

; FUNC-LABEL: {{^}}store_local_v4i8:
; EG: LDS_WRITE

; CM: LDS_WRITE

; SI: ds_write_b8
; SI: ds_write_b8
; SI: ds_write_b8
; SI: ds_write_b8
define void @store_local_v4i8(<4 x i8> addrspace(3)* %out, <4 x i8> %in) {
entry:
  store <4 x i8> %in, <4 x i8> addrspace(3)* %out
  ret void
}

; FUNC-LABEL: {{^}}store_local_v2i32:
; EG: LDS_WRITE
; EG: LDS_WRITE

; CM: LDS_WRITE
; CM: LDS_WRITE

; SI: ds_write_b64
define void @store_local_v2i32(<2 x i32> addrspace(3)* %out, <2 x i32> %in) {
entry:
  store <2 x i32> %in, <2 x i32> addrspace(3)* %out
  ret void
}

; FUNC-LABEL: {{^}}store_local_v4i32:
; EG: LDS_WRITE
; EG: LDS_WRITE
; EG: LDS_WRITE
; EG: LDS_WRITE

; CM: LDS_WRITE
; CM: LDS_WRITE
; CM: LDS_WRITE
; CM: LDS_WRITE

; SI: ds_write_b32
; SI: ds_write_b32
; SI: ds_write_b32
; SI: ds_write_b32
define void @store_local_v4i32(<4 x i32> addrspace(3)* %out, <4 x i32> %in) {
entry:
  store <4 x i32> %in, <4 x i32> addrspace(3)* %out
  ret void
}

; FUNC-LABEL: {{^}}store_local_i64_i8:
; EG: LDS_BYTE_WRITE
; SI: ds_write_b8
define void @store_local_i64_i8(i8 addrspace(3)* %out, i64 %in) {
entry:
  %0 = trunc i64 %in to i8
  store i8 %0, i8 addrspace(3)* %out
  ret void
}

; FUNC-LABEL: {{^}}store_local_i64_i16:
; EG: LDS_SHORT_WRITE
; SI: ds_write_b16
define void @store_local_i64_i16(i16 addrspace(3)* %out, i64 %in) {
entry:
  %0 = trunc i64 %in to i16
  store i16 %0, i16 addrspace(3)* %out
  ret void
}

; The stores in this function are combined by the optimizer to create a
; 64-bit store with 32-bit alignment.  This is legal for SI and the legalizer
; should not try to split the 64-bit store back into 2 32-bit stores.
;
; Evergreen / Northern Islands don't support 64-bit stores yet, so there should
; be two 32-bit stores.

; FUNC-LABEL: {{^}}vecload2:
; EG: MEM_RAT_CACHELESS STORE_RAW

; CM: MEM_RAT_CACHELESS STORE_DWORD

; SI: buffer_store_dwordx2
define void @vecload2(i32 addrspace(1)* nocapture %out, i32 addrspace(2)* nocapture %mem) #0 {
entry:
  %0 = load i32, i32 addrspace(2)* %mem, align 4
  %arrayidx1.i = getelementptr inbounds i32, i32 addrspace(2)* %mem, i64 1
  %1 = load i32, i32 addrspace(2)* %arrayidx1.i, align 4
  store i32 %0, i32 addrspace(1)* %out, align 4
  %arrayidx1 = getelementptr inbounds i32, i32 addrspace(1)* %out, i64 1
  store i32 %1, i32 addrspace(1)* %arrayidx1, align 4
  ret void
}

attributes #0 = { nounwind "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "unsafe-fp-math"="false" "use-soft-float"="false" }

; When i128 was a legal type this program generated cannot select errors:

; FUNC-LABEL: {{^}}"i128-const-store":
; FIXME: We should be able to to this with one store instruction
; EG: STORE_RAW
; EG: STORE_RAW
; EG: STORE_RAW
; EG: STORE_RAW
; CM: STORE_DWORD
; CM: STORE_DWORD
; CM: STORE_DWORD
; CM: STORE_DWORD
; SI: buffer_store_dwordx2
; SI: buffer_store_dwordx2
define void @i128-const-store(i32 addrspace(1)* %out) {
entry:
  store i32 1, i32 addrspace(1)* %out, align 4
  %arrayidx2 = getelementptr inbounds i32, i32 addrspace(1)* %out, i64 1
  store i32 1, i32 addrspace(1)* %arrayidx2, align 4
  %arrayidx4 = getelementptr inbounds i32, i32 addrspace(1)* %out, i64 2
  store i32 2, i32 addrspace(1)* %arrayidx4, align 4
  %arrayidx6 = getelementptr inbounds i32, i32 addrspace(1)* %out, i64 3
  store i32 2, i32 addrspace(1)* %arrayidx6, align 4
  ret void
}