//===- DemoteRegToStack.cpp - Move a virtual register to the stack --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/ADT/DenseMap.h" #include "llvm/Analysis/CFG.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Type.h" #include "llvm/Transforms/Utils/Local.h" using namespace llvm; /// DemoteRegToStack - This function takes a virtual register computed by an /// Instruction and replaces it with a slot in the stack frame, allocated via /// alloca. This allows the CFG to be changed around without fear of /// invalidating the SSA information for the value. It returns the pointer to /// the alloca inserted to create a stack slot for I. AllocaInst *llvm::DemoteRegToStack(Instruction &I, bool VolatileLoads, Instruction *AllocaPoint) { if (I.use_empty()) { I.eraseFromParent(); return nullptr; } // Create a stack slot to hold the value. AllocaInst *Slot; if (AllocaPoint) { Slot = new AllocaInst(I.getType(), nullptr, I.getName()+".reg2mem", AllocaPoint); } else { Function *F = I.getParent()->getParent(); Slot = new AllocaInst(I.getType(), nullptr, I.getName()+".reg2mem", F->getEntryBlock().begin()); } // We cannot demote invoke instructions to the stack if their normal edge // is critical. Therefore, split the critical edge and create a basic block // into which the store can be inserted. if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) { if (!II->getNormalDest()->getSinglePredecessor()) { unsigned SuccNum = GetSuccessorNumber(II->getParent(), II->getNormalDest()); assert(isCriticalEdge(II, SuccNum) && "Expected a critical edge!"); BasicBlock *BB = SplitCriticalEdge(II, SuccNum); assert(BB && "Unable to split critical edge."); (void)BB; } } // Change all of the users of the instruction to read from the stack slot. while (!I.use_empty()) { Instruction *U = cast<Instruction>(I.user_back()); if (PHINode *PN = dyn_cast<PHINode>(U)) { // If this is a PHI node, we can't insert a load of the value before the // use. Instead insert the load in the predecessor block corresponding // to the incoming value. // // Note that if there are multiple edges from a basic block to this PHI // node that we cannot have multiple loads. The problem is that the // resulting PHI node will have multiple values (from each load) coming in // from the same block, which is illegal SSA form. For this reason, we // keep track of and reuse loads we insert. DenseMap<BasicBlock*, Value*> Loads; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) == &I) { Value *&V = Loads[PN->getIncomingBlock(i)]; if (!V) { // Insert the load into the predecessor block V = new LoadInst(Slot, I.getName()+".reload", VolatileLoads, PN->getIncomingBlock(i)->getTerminator()); } PN->setIncomingValue(i, V); } } else { // If this is a normal instruction, just insert a load. Value *V = new LoadInst(Slot, I.getName()+".reload", VolatileLoads, U); U->replaceUsesOfWith(&I, V); } } // Insert stores of the computed value into the stack slot. We have to be // careful if I is an invoke instruction, because we can't insert the store // AFTER the terminator instruction. BasicBlock::iterator InsertPt; if (!isa<TerminatorInst>(I)) { InsertPt = &I; ++InsertPt; for (; isa<PHINode>(InsertPt) || isa<LandingPadInst>(InsertPt); ++InsertPt) /* empty */; // Don't insert before PHI nodes or landingpad instrs. } else { InvokeInst &II = cast<InvokeInst>(I); InsertPt = II.getNormalDest()->getFirstInsertionPt(); } new StoreInst(&I, Slot, InsertPt); return Slot; } /// DemotePHIToStack - This function takes a virtual register computed by a PHI /// node and replaces it with a slot in the stack frame allocated via alloca. /// The PHI node is deleted. It returns the pointer to the alloca inserted. AllocaInst *llvm::DemotePHIToStack(PHINode *P, Instruction *AllocaPoint) { if (P->use_empty()) { P->eraseFromParent(); return nullptr; } // Create a stack slot to hold the value. AllocaInst *Slot; if (AllocaPoint) { Slot = new AllocaInst(P->getType(), nullptr, P->getName()+".reg2mem", AllocaPoint); } else { Function *F = P->getParent()->getParent(); Slot = new AllocaInst(P->getType(), nullptr, P->getName()+".reg2mem", F->getEntryBlock().begin()); } // Iterate over each operand inserting a store in each predecessor. for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) { if (InvokeInst *II = dyn_cast<InvokeInst>(P->getIncomingValue(i))) { assert(II->getParent() != P->getIncomingBlock(i) && "Invoke edge not supported yet"); (void)II; } new StoreInst(P->getIncomingValue(i), Slot, P->getIncomingBlock(i)->getTerminator()); } // Insert a load in place of the PHI and replace all uses. BasicBlock::iterator InsertPt = P; for (; isa<PHINode>(InsertPt) || isa<LandingPadInst>(InsertPt); ++InsertPt) /* empty */; // Don't insert before PHI nodes or landingpad instrs. Value *V = new LoadInst(Slot, P->getName()+".reload", InsertPt); P->replaceAllUsesWith(V); // Delete PHI. P->eraseFromParent(); return Slot; }