//===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass implements a simple loop reroller. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AliasSetTracker.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/LoopUtils.h" using namespace llvm; #define DEBUG_TYPE "loop-reroll" STATISTIC(NumRerolledLoops, "Number of rerolled loops"); static cl::opt<unsigned> MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden, cl::desc("The maximum increment for loop rerolling")); static cl::opt<unsigned> NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400), cl::Hidden, cl::desc("The maximum number of failures to tolerate" " during fuzzy matching. (default: 400)")); // This loop re-rolling transformation aims to transform loops like this: // // int foo(int a); // void bar(int *x) { // for (int i = 0; i < 500; i += 3) { // foo(i); // foo(i+1); // foo(i+2); // } // } // // into a loop like this: // // void bar(int *x) { // for (int i = 0; i < 500; ++i) // foo(i); // } // // It does this by looking for loops that, besides the latch code, are composed // of isomorphic DAGs of instructions, with each DAG rooted at some increment // to the induction variable, and where each DAG is isomorphic to the DAG // rooted at the induction variable (excepting the sub-DAGs which root the // other induction-variable increments). In other words, we're looking for loop // bodies of the form: // // %iv = phi [ (preheader, ...), (body, %iv.next) ] // f(%iv) // %iv.1 = add %iv, 1 <-- a root increment // f(%iv.1) // %iv.2 = add %iv, 2 <-- a root increment // f(%iv.2) // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment // f(%iv.scale_m_1) // ... // %iv.next = add %iv, scale // %cmp = icmp(%iv, ...) // br %cmp, header, exit // // where each f(i) is a set of instructions that, collectively, are a function // only of i (and other loop-invariant values). // // As a special case, we can also reroll loops like this: // // int foo(int); // void bar(int *x) { // for (int i = 0; i < 500; ++i) { // x[3*i] = foo(0); // x[3*i+1] = foo(0); // x[3*i+2] = foo(0); // } // } // // into this: // // void bar(int *x) { // for (int i = 0; i < 1500; ++i) // x[i] = foo(0); // } // // in which case, we're looking for inputs like this: // // %iv = phi [ (preheader, ...), (body, %iv.next) ] // %scaled.iv = mul %iv, scale // f(%scaled.iv) // %scaled.iv.1 = add %scaled.iv, 1 // f(%scaled.iv.1) // %scaled.iv.2 = add %scaled.iv, 2 // f(%scaled.iv.2) // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1 // f(%scaled.iv.scale_m_1) // ... // %iv.next = add %iv, 1 // %cmp = icmp(%iv, ...) // br %cmp, header, exit namespace { enum IterationLimits { /// The maximum number of iterations that we'll try and reroll. This /// has to be less than 25 in order to fit into a SmallBitVector. IL_MaxRerollIterations = 16, /// The bitvector index used by loop induction variables and other /// instructions that belong to all iterations. IL_All, IL_End }; class LoopReroll : public LoopPass { public: static char ID; // Pass ID, replacement for typeid LoopReroll() : LoopPass(ID) { initializeLoopRerollPass(*PassRegistry::getPassRegistry()); } bool runOnLoop(Loop *L, LPPassManager &LPM) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired<AliasAnalysis>(); AU.addRequired<LoopInfoWrapperPass>(); AU.addPreserved<LoopInfoWrapperPass>(); AU.addRequired<DominatorTreeWrapperPass>(); AU.addPreserved<DominatorTreeWrapperPass>(); AU.addRequired<ScalarEvolution>(); AU.addRequired<TargetLibraryInfoWrapperPass>(); } protected: AliasAnalysis *AA; LoopInfo *LI; ScalarEvolution *SE; TargetLibraryInfo *TLI; DominatorTree *DT; typedef SmallVector<Instruction *, 16> SmallInstructionVector; typedef SmallSet<Instruction *, 16> SmallInstructionSet; // A chain of isomorphic instructions, indentified by a single-use PHI, // representing a reduction. Only the last value may be used outside the // loop. struct SimpleLoopReduction { SimpleLoopReduction(Instruction *P, Loop *L) : Valid(false), Instructions(1, P) { assert(isa<PHINode>(P) && "First reduction instruction must be a PHI"); add(L); } bool valid() const { return Valid; } Instruction *getPHI() const { assert(Valid && "Using invalid reduction"); return Instructions.front(); } Instruction *getReducedValue() const { assert(Valid && "Using invalid reduction"); return Instructions.back(); } Instruction *get(size_t i) const { assert(Valid && "Using invalid reduction"); return Instructions[i+1]; } Instruction *operator [] (size_t i) const { return get(i); } // The size, ignoring the initial PHI. size_t size() const { assert(Valid && "Using invalid reduction"); return Instructions.size()-1; } typedef SmallInstructionVector::iterator iterator; typedef SmallInstructionVector::const_iterator const_iterator; iterator begin() { assert(Valid && "Using invalid reduction"); return std::next(Instructions.begin()); } const_iterator begin() const { assert(Valid && "Using invalid reduction"); return std::next(Instructions.begin()); } iterator end() { return Instructions.end(); } const_iterator end() const { return Instructions.end(); } protected: bool Valid; SmallInstructionVector Instructions; void add(Loop *L); }; // The set of all reductions, and state tracking of possible reductions // during loop instruction processing. struct ReductionTracker { typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector; // Add a new possible reduction. void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); } // Setup to track possible reductions corresponding to the provided // rerolling scale. Only reductions with a number of non-PHI instructions // that is divisible by the scale are considered. Three instructions sets // are filled in: // - A set of all possible instructions in eligible reductions. // - A set of all PHIs in eligible reductions // - A set of all reduced values (last instructions) in eligible // reductions. void restrictToScale(uint64_t Scale, SmallInstructionSet &PossibleRedSet, SmallInstructionSet &PossibleRedPHISet, SmallInstructionSet &PossibleRedLastSet) { PossibleRedIdx.clear(); PossibleRedIter.clear(); Reds.clear(); for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i) if (PossibleReds[i].size() % Scale == 0) { PossibleRedLastSet.insert(PossibleReds[i].getReducedValue()); PossibleRedPHISet.insert(PossibleReds[i].getPHI()); PossibleRedSet.insert(PossibleReds[i].getPHI()); PossibleRedIdx[PossibleReds[i].getPHI()] = i; for (Instruction *J : PossibleReds[i]) { PossibleRedSet.insert(J); PossibleRedIdx[J] = i; } } } // The functions below are used while processing the loop instructions. // Are the two instructions both from reductions, and furthermore, from // the same reduction? bool isPairInSame(Instruction *J1, Instruction *J2) { DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1); if (J1I != PossibleRedIdx.end()) { DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2); if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second) return true; } return false; } // The two provided instructions, the first from the base iteration, and // the second from iteration i, form a matched pair. If these are part of // a reduction, record that fact. void recordPair(Instruction *J1, Instruction *J2, unsigned i) { if (PossibleRedIdx.count(J1)) { assert(PossibleRedIdx.count(J2) && "Recording reduction vs. non-reduction instruction?"); PossibleRedIter[J1] = 0; PossibleRedIter[J2] = i; int Idx = PossibleRedIdx[J1]; assert(Idx == PossibleRedIdx[J2] && "Recording pair from different reductions?"); Reds.insert(Idx); } } // The functions below can be called after we've finished processing all // instructions in the loop, and we know which reductions were selected. // Is the provided instruction the PHI of a reduction selected for // rerolling? bool isSelectedPHI(Instruction *J) { if (!isa<PHINode>(J)) return false; for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end(); RI != RIE; ++RI) { int i = *RI; if (cast<Instruction>(J) == PossibleReds[i].getPHI()) return true; } return false; } bool validateSelected(); void replaceSelected(); protected: // The vector of all possible reductions (for any scale). SmallReductionVector PossibleReds; DenseMap<Instruction *, int> PossibleRedIdx; DenseMap<Instruction *, int> PossibleRedIter; DenseSet<int> Reds; }; // A DAGRootSet models an induction variable being used in a rerollable // loop. For example, // // x[i*3+0] = y1 // x[i*3+1] = y2 // x[i*3+2] = y3 // // Base instruction -> i*3 // +---+----+ // / | \ // ST[y1] +1 +2 <-- Roots // | | // ST[y2] ST[y3] // // There may be multiple DAGRoots, for example: // // x[i*2+0] = ... (1) // x[i*2+1] = ... (1) // x[i*2+4] = ... (2) // x[i*2+5] = ... (2) // x[(i+1234)*2+5678] = ... (3) // x[(i+1234)*2+5679] = ... (3) // // The loop will be rerolled by adding a new loop induction variable, // one for the Base instruction in each DAGRootSet. // struct DAGRootSet { Instruction *BaseInst; SmallInstructionVector Roots; // The instructions between IV and BaseInst (but not including BaseInst). SmallInstructionSet SubsumedInsts; }; // The set of all DAG roots, and state tracking of all roots // for a particular induction variable. struct DAGRootTracker { DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV, ScalarEvolution *SE, AliasAnalysis *AA, TargetLibraryInfo *TLI) : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), IV(IV) {} /// Stage 1: Find all the DAG roots for the induction variable. bool findRoots(); /// Stage 2: Validate if the found roots are valid. bool validate(ReductionTracker &Reductions); /// Stage 3: Assuming validate() returned true, perform the /// replacement. /// @param IterCount The maximum iteration count of L. void replace(const SCEV *IterCount); protected: typedef MapVector<Instruction*, SmallBitVector> UsesTy; bool findRootsRecursive(Instruction *IVU, SmallInstructionSet SubsumedInsts); bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts); bool collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots); bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet); void collectInLoopUserSet(const SmallInstructionVector &Roots, const SmallInstructionSet &Exclude, const SmallInstructionSet &Final, DenseSet<Instruction *> &Users); void collectInLoopUserSet(Instruction *Root, const SmallInstructionSet &Exclude, const SmallInstructionSet &Final, DenseSet<Instruction *> &Users); UsesTy::iterator nextInstr(int Val, UsesTy &In, const SmallInstructionSet &Exclude, UsesTy::iterator *StartI=nullptr); bool isBaseInst(Instruction *I); bool isRootInst(Instruction *I); bool instrDependsOn(Instruction *I, UsesTy::iterator Start, UsesTy::iterator End); LoopReroll *Parent; // Members of Parent, replicated here for brevity. Loop *L; ScalarEvolution *SE; AliasAnalysis *AA; TargetLibraryInfo *TLI; // The loop induction variable. Instruction *IV; // Loop step amount. uint64_t Inc; // Loop reroll count; if Inc == 1, this records the scaling applied // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ; // If Inc is not 1, Scale = Inc. uint64_t Scale; // The roots themselves. SmallVector<DAGRootSet,16> RootSets; // All increment instructions for IV. SmallInstructionVector LoopIncs; // Map of all instructions in the loop (in order) to the iterations // they are used in (or specially, IL_All for instructions // used in the loop increment mechanism). UsesTy Uses; }; void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs); void collectPossibleReductions(Loop *L, ReductionTracker &Reductions); bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount, ReductionTracker &Reductions); }; } char LoopReroll::ID = 0; INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false) Pass *llvm::createLoopRerollPass() { return new LoopReroll; } // Returns true if the provided instruction is used outside the given loop. // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in // non-loop blocks to be outside the loop. static bool hasUsesOutsideLoop(Instruction *I, Loop *L) { for (User *U : I->users()) { if (!L->contains(cast<Instruction>(U))) return true; } return false; } // Collect the list of loop induction variables with respect to which it might // be possible to reroll the loop. void LoopReroll::collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs) { BasicBlock *Header = L->getHeader(); for (BasicBlock::iterator I = Header->begin(), IE = Header->getFirstInsertionPt(); I != IE; ++I) { if (!isa<PHINode>(I)) continue; if (!I->getType()->isIntegerTy()) continue; if (const SCEVAddRecExpr *PHISCEV = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(I))) { if (PHISCEV->getLoop() != L) continue; if (!PHISCEV->isAffine()) continue; if (const SCEVConstant *IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE))) { if (!IncSCEV->getValue()->getValue().isStrictlyPositive()) continue; if (IncSCEV->getValue()->uge(MaxInc)) continue; DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV << "\n"); PossibleIVs.push_back(I); } } } } // Add the remainder of the reduction-variable chain to the instruction vector // (the initial PHINode has already been added). If successful, the object is // marked as valid. void LoopReroll::SimpleLoopReduction::add(Loop *L) { assert(!Valid && "Cannot add to an already-valid chain"); // The reduction variable must be a chain of single-use instructions // (including the PHI), except for the last value (which is used by the PHI // and also outside the loop). Instruction *C = Instructions.front(); if (C->user_empty()) return; do { C = cast<Instruction>(*C->user_begin()); if (C->hasOneUse()) { if (!C->isBinaryOp()) return; if (!(isa<PHINode>(Instructions.back()) || C->isSameOperationAs(Instructions.back()))) return; Instructions.push_back(C); } } while (C->hasOneUse()); if (Instructions.size() < 2 || !C->isSameOperationAs(Instructions.back()) || C->use_empty()) return; // C is now the (potential) last instruction in the reduction chain. for (User *U : C->users()) { // The only in-loop user can be the initial PHI. if (L->contains(cast<Instruction>(U))) if (cast<Instruction>(U) != Instructions.front()) return; } Instructions.push_back(C); Valid = true; } // Collect the vector of possible reduction variables. void LoopReroll::collectPossibleReductions(Loop *L, ReductionTracker &Reductions) { BasicBlock *Header = L->getHeader(); for (BasicBlock::iterator I = Header->begin(), IE = Header->getFirstInsertionPt(); I != IE; ++I) { if (!isa<PHINode>(I)) continue; if (!I->getType()->isSingleValueType()) continue; SimpleLoopReduction SLR(I, L); if (!SLR.valid()) continue; DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " << SLR.size() << " chained instructions)\n"); Reductions.addSLR(SLR); } } // Collect the set of all users of the provided root instruction. This set of // users contains not only the direct users of the root instruction, but also // all users of those users, and so on. There are two exceptions: // // 1. Instructions in the set of excluded instructions are never added to the // use set (even if they are users). This is used, for example, to exclude // including root increments in the use set of the primary IV. // // 2. Instructions in the set of final instructions are added to the use set // if they are users, but their users are not added. This is used, for // example, to prevent a reduction update from forcing all later reduction // updates into the use set. void LoopReroll::DAGRootTracker::collectInLoopUserSet( Instruction *Root, const SmallInstructionSet &Exclude, const SmallInstructionSet &Final, DenseSet<Instruction *> &Users) { SmallInstructionVector Queue(1, Root); while (!Queue.empty()) { Instruction *I = Queue.pop_back_val(); if (!Users.insert(I).second) continue; if (!Final.count(I)) for (Use &U : I->uses()) { Instruction *User = cast<Instruction>(U.getUser()); if (PHINode *PN = dyn_cast<PHINode>(User)) { // Ignore "wrap-around" uses to PHIs of this loop's header. if (PN->getIncomingBlock(U) == L->getHeader()) continue; } if (L->contains(User) && !Exclude.count(User)) { Queue.push_back(User); } } // We also want to collect single-user "feeder" values. for (User::op_iterator OI = I->op_begin(), OIE = I->op_end(); OI != OIE; ++OI) { if (Instruction *Op = dyn_cast<Instruction>(*OI)) if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) && !Final.count(Op)) Queue.push_back(Op); } } } // Collect all of the users of all of the provided root instructions (combined // into a single set). void LoopReroll::DAGRootTracker::collectInLoopUserSet( const SmallInstructionVector &Roots, const SmallInstructionSet &Exclude, const SmallInstructionSet &Final, DenseSet<Instruction *> &Users) { for (SmallInstructionVector::const_iterator I = Roots.begin(), IE = Roots.end(); I != IE; ++I) collectInLoopUserSet(*I, Exclude, Final, Users); } static bool isSimpleLoadStore(Instruction *I) { if (LoadInst *LI = dyn_cast<LoadInst>(I)) return LI->isSimple(); if (StoreInst *SI = dyn_cast<StoreInst>(I)) return SI->isSimple(); if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) return !MI->isVolatile(); return false; } /// Return true if IVU is a "simple" arithmetic operation. /// This is used for narrowing the search space for DAGRoots; only arithmetic /// and GEPs can be part of a DAGRoot. static bool isSimpleArithmeticOp(User *IVU) { if (Instruction *I = dyn_cast<Instruction>(IVU)) { switch (I->getOpcode()) { default: return false; case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::Shl: case Instruction::AShr: case Instruction::LShr: case Instruction::GetElementPtr: case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: return true; } } return false; } static bool isLoopIncrement(User *U, Instruction *IV) { BinaryOperator *BO = dyn_cast<BinaryOperator>(U); if (!BO || BO->getOpcode() != Instruction::Add) return false; for (auto *UU : BO->users()) { PHINode *PN = dyn_cast<PHINode>(UU); if (PN && PN == IV) return true; } return false; } bool LoopReroll::DAGRootTracker:: collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) { SmallInstructionVector BaseUsers; for (auto *I : Base->users()) { ConstantInt *CI = nullptr; if (isLoopIncrement(I, IV)) { LoopIncs.push_back(cast<Instruction>(I)); continue; } // The root nodes must be either GEPs, ORs or ADDs. if (auto *BO = dyn_cast<BinaryOperator>(I)) { if (BO->getOpcode() == Instruction::Add || BO->getOpcode() == Instruction::Or) CI = dyn_cast<ConstantInt>(BO->getOperand(1)); } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1); CI = dyn_cast<ConstantInt>(LastOperand); } if (!CI) { if (Instruction *II = dyn_cast<Instruction>(I)) { BaseUsers.push_back(II); continue; } else { DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I << "\n"); return false; } } int64_t V = CI->getValue().getSExtValue(); if (Roots.find(V) != Roots.end()) // No duplicates, please. return false; // FIXME: Add support for negative values. if (V < 0) { DEBUG(dbgs() << "LRR: Aborting due to negative value: " << V << "\n"); return false; } Roots[V] = cast<Instruction>(I); } if (Roots.empty()) return false; // If we found non-loop-inc, non-root users of Base, assume they are // for the zeroth root index. This is because "add %a, 0" gets optimized // away. if (BaseUsers.size()) { if (Roots.find(0) != Roots.end()) { DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n"); return false; } Roots[0] = Base; } // Calculate the number of users of the base, or lowest indexed, iteration. unsigned NumBaseUses = BaseUsers.size(); if (NumBaseUses == 0) NumBaseUses = Roots.begin()->second->getNumUses(); // Check that every node has the same number of users. for (auto &KV : Roots) { if (KV.first == 0) continue; if (KV.second->getNumUses() != NumBaseUses) { DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: " << "#Base=" << NumBaseUses << ", #Root=" << KV.second->getNumUses() << "\n"); return false; } } return true; } bool LoopReroll::DAGRootTracker:: findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) { // Does the user look like it could be part of a root set? // All its users must be simple arithmetic ops. if (I->getNumUses() > IL_MaxRerollIterations) return false; if ((I->getOpcode() == Instruction::Mul || I->getOpcode() == Instruction::PHI) && I != IV && findRootsBase(I, SubsumedInsts)) return true; SubsumedInsts.insert(I); for (User *V : I->users()) { Instruction *I = dyn_cast<Instruction>(V); if (std::find(LoopIncs.begin(), LoopIncs.end(), I) != LoopIncs.end()) continue; if (!I || !isSimpleArithmeticOp(I) || !findRootsRecursive(I, SubsumedInsts)) return false; } return true; } bool LoopReroll::DAGRootTracker:: findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) { // The base instruction needs to be a multiply so // that we can erase it. if (IVU->getOpcode() != Instruction::Mul && IVU->getOpcode() != Instruction::PHI) return false; std::map<int64_t, Instruction*> V; if (!collectPossibleRoots(IVU, V)) return false; // If we didn't get a root for index zero, then IVU must be // subsumed. if (V.find(0) == V.end()) SubsumedInsts.insert(IVU); // Partition the vector into monotonically increasing indexes. DAGRootSet DRS; DRS.BaseInst = nullptr; for (auto &KV : V) { if (!DRS.BaseInst) { DRS.BaseInst = KV.second; DRS.SubsumedInsts = SubsumedInsts; } else if (DRS.Roots.empty()) { DRS.Roots.push_back(KV.second); } else if (V.find(KV.first - 1) != V.end()) { DRS.Roots.push_back(KV.second); } else { // Linear sequence terminated. RootSets.push_back(DRS); DRS.BaseInst = KV.second; DRS.SubsumedInsts = SubsumedInsts; DRS.Roots.clear(); } } RootSets.push_back(DRS); return true; } bool LoopReroll::DAGRootTracker::findRoots() { const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(IV)); Inc = cast<SCEVConstant>(RealIVSCEV->getOperand(1))-> getValue()->getZExtValue(); assert(RootSets.empty() && "Unclean state!"); if (Inc == 1) { for (auto *IVU : IV->users()) { if (isLoopIncrement(IVU, IV)) LoopIncs.push_back(cast<Instruction>(IVU)); } if (!findRootsRecursive(IV, SmallInstructionSet())) return false; LoopIncs.push_back(IV); } else { if (!findRootsBase(IV, SmallInstructionSet())) return false; } // Ensure all sets have the same size. if (RootSets.empty()) { DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n"); return false; } for (auto &V : RootSets) { if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) { DEBUG(dbgs() << "LRR: Aborting because not all root sets have the same size\n"); return false; } } // And ensure all loop iterations are consecutive. We rely on std::map // providing ordered traversal. for (auto &V : RootSets) { const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(V.BaseInst)); if (!ADR) return false; // Consider a DAGRootSet with N-1 roots (so N different values including // BaseInst). // Define d = Roots[0] - BaseInst, which should be the same as // Roots[I] - Roots[I-1] for all I in [1..N). // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the // loop iteration J. // // Now, For the loop iterations to be consecutive: // D = d * N unsigned N = V.Roots.size() + 1; const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(V.Roots[0]), ADR); const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N); if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV)) { DEBUG(dbgs() << "LRR: Aborting because iterations are not consecutive\n"); return false; } } Scale = RootSets[0].Roots.size() + 1; if (Scale > IL_MaxRerollIterations) { DEBUG(dbgs() << "LRR: Aborting - too many iterations found. " << "#Found=" << Scale << ", #Max=" << IL_MaxRerollIterations << "\n"); return false; } DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale << "\n"); return true; } bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) { // Populate the MapVector with all instructions in the block, in order first, // so we can iterate over the contents later in perfect order. for (auto &I : *L->getHeader()) { Uses[&I].resize(IL_End); } SmallInstructionSet Exclude; for (auto &DRS : RootSets) { Exclude.insert(DRS.Roots.begin(), DRS.Roots.end()); Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end()); Exclude.insert(DRS.BaseInst); } Exclude.insert(LoopIncs.begin(), LoopIncs.end()); for (auto &DRS : RootSets) { DenseSet<Instruction*> VBase; collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase); for (auto *I : VBase) { Uses[I].set(0); } unsigned Idx = 1; for (auto *Root : DRS.Roots) { DenseSet<Instruction*> V; collectInLoopUserSet(Root, Exclude, PossibleRedSet, V); // While we're here, check the use sets are the same size. if (V.size() != VBase.size()) { DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n"); return false; } for (auto *I : V) { Uses[I].set(Idx); } ++Idx; } // Make sure our subsumed instructions are remembered too. for (auto *I : DRS.SubsumedInsts) { Uses[I].set(IL_All); } } // Make sure the loop increments are also accounted for. Exclude.clear(); for (auto &DRS : RootSets) { Exclude.insert(DRS.Roots.begin(), DRS.Roots.end()); Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end()); Exclude.insert(DRS.BaseInst); } DenseSet<Instruction*> V; collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V); for (auto *I : V) { Uses[I].set(IL_All); } return true; } /// Get the next instruction in "In" that is a member of set Val. /// Start searching from StartI, and do not return anything in Exclude. /// If StartI is not given, start from In.begin(). LoopReroll::DAGRootTracker::UsesTy::iterator LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In, const SmallInstructionSet &Exclude, UsesTy::iterator *StartI) { UsesTy::iterator I = StartI ? *StartI : In.begin(); while (I != In.end() && (I->second.test(Val) == 0 || Exclude.count(I->first) != 0)) ++I; return I; } bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) { for (auto &DRS : RootSets) { if (DRS.BaseInst == I) return true; } return false; } bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) { for (auto &DRS : RootSets) { if (std::find(DRS.Roots.begin(), DRS.Roots.end(), I) != DRS.Roots.end()) return true; } return false; } /// Return true if instruction I depends on any instruction between /// Start and End. bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I, UsesTy::iterator Start, UsesTy::iterator End) { for (auto *U : I->users()) { for (auto It = Start; It != End; ++It) if (U == It->first) return true; } return false; } bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) { // We now need to check for equivalence of the use graph of each root with // that of the primary induction variable (excluding the roots). Our goal // here is not to solve the full graph isomorphism problem, but rather to // catch common cases without a lot of work. As a result, we will assume // that the relative order of the instructions in each unrolled iteration // is the same (although we will not make an assumption about how the // different iterations are intermixed). Note that while the order must be // the same, the instructions may not be in the same basic block. // An array of just the possible reductions for this scale factor. When we // collect the set of all users of some root instructions, these reduction // instructions are treated as 'final' (their uses are not considered). // This is important because we don't want the root use set to search down // the reduction chain. SmallInstructionSet PossibleRedSet; SmallInstructionSet PossibleRedLastSet; SmallInstructionSet PossibleRedPHISet; Reductions.restrictToScale(Scale, PossibleRedSet, PossibleRedPHISet, PossibleRedLastSet); // Populate "Uses" with where each instruction is used. if (!collectUsedInstructions(PossibleRedSet)) return false; // Make sure we mark the reduction PHIs as used in all iterations. for (auto *I : PossibleRedPHISet) { Uses[I].set(IL_All); } // Make sure all instructions in the loop are in one and only one // set. for (auto &KV : Uses) { if (KV.second.count() != 1) { DEBUG(dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: " << *KV.first << " (#uses=" << KV.second.count() << ")\n"); return false; } } DEBUG( for (auto &KV : Uses) { dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n"; } ); for (unsigned Iter = 1; Iter < Scale; ++Iter) { // In addition to regular aliasing information, we need to look for // instructions from later (future) iterations that have side effects // preventing us from reordering them past other instructions with side // effects. bool FutureSideEffects = false; AliasSetTracker AST(*AA); // The map between instructions in f(%iv.(i+1)) and f(%iv). DenseMap<Value *, Value *> BaseMap; // Compare iteration Iter to the base. SmallInstructionSet Visited; auto BaseIt = nextInstr(0, Uses, Visited); auto RootIt = nextInstr(Iter, Uses, Visited); auto LastRootIt = Uses.begin(); while (BaseIt != Uses.end() && RootIt != Uses.end()) { Instruction *BaseInst = BaseIt->first; Instruction *RootInst = RootIt->first; // Skip over the IV or root instructions; only match their users. bool Continue = false; if (isBaseInst(BaseInst)) { Visited.insert(BaseInst); BaseIt = nextInstr(0, Uses, Visited); Continue = true; } if (isRootInst(RootInst)) { LastRootIt = RootIt; Visited.insert(RootInst); RootIt = nextInstr(Iter, Uses, Visited); Continue = true; } if (Continue) continue; if (!BaseInst->isSameOperationAs(RootInst)) { // Last chance saloon. We don't try and solve the full isomorphism // problem, but try and at least catch the case where two instructions // *of different types* are round the wrong way. We won't be able to // efficiently tell, given two ADD instructions, which way around we // should match them, but given an ADD and a SUB, we can at least infer // which one is which. // // This should allow us to deal with a greater subset of the isomorphism // problem. It does however change a linear algorithm into a quadratic // one, so limit the number of probes we do. auto TryIt = RootIt; unsigned N = NumToleratedFailedMatches; while (TryIt != Uses.end() && !BaseInst->isSameOperationAs(TryIt->first) && N--) { ++TryIt; TryIt = nextInstr(Iter, Uses, Visited, &TryIt); } if (TryIt == Uses.end() || TryIt == RootIt || instrDependsOn(TryIt->first, RootIt, TryIt)) { DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << " vs. " << *RootInst << "\n"); return false; } RootIt = TryIt; RootInst = TryIt->first; } // All instructions between the last root and this root // may belong to some other iteration. If they belong to a // future iteration, then they're dangerous to alias with. // // Note that because we allow a limited amount of flexibility in the order // that we visit nodes, LastRootIt might be *before* RootIt, in which // case we've already checked this set of instructions so we shouldn't // do anything. for (; LastRootIt < RootIt; ++LastRootIt) { Instruction *I = LastRootIt->first; if (LastRootIt->second.find_first() < (int)Iter) continue; if (I->mayWriteToMemory()) AST.add(I); // Note: This is specifically guarded by a check on isa<PHINode>, // which while a valid (somewhat arbitrary) micro-optimization, is // needed because otherwise isSafeToSpeculativelyExecute returns // false on PHI nodes. if (!isa<PHINode>(I) && !isSimpleLoadStore(I) && !isSafeToSpeculativelyExecute(I)) // Intervening instructions cause side effects. FutureSideEffects = true; } // Make sure that this instruction, which is in the use set of this // root instruction, does not also belong to the base set or the set of // some other root instruction. if (RootIt->second.count() > 1) { DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << " vs. " << *RootInst << " (prev. case overlap)\n"); return false; } // Make sure that we don't alias with any instruction in the alias set // tracker. If we do, then we depend on a future iteration, and we // can't reroll. if (RootInst->mayReadFromMemory()) for (auto &K : AST) { if (K.aliasesUnknownInst(RootInst, *AA)) { DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << " vs. " << *RootInst << " (depends on future store)\n"); return false; } } // If we've past an instruction from a future iteration that may have // side effects, and this instruction might also, then we can't reorder // them, and this matching fails. As an exception, we allow the alias // set tracker to handle regular (simple) load/store dependencies. if (FutureSideEffects && ((!isSimpleLoadStore(BaseInst) && !isSafeToSpeculativelyExecute(BaseInst)) || (!isSimpleLoadStore(RootInst) && !isSafeToSpeculativelyExecute(RootInst)))) { DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << " vs. " << *RootInst << " (side effects prevent reordering)\n"); return false; } // For instructions that are part of a reduction, if the operation is // associative, then don't bother matching the operands (because we // already know that the instructions are isomorphic, and the order // within the iteration does not matter). For non-associative reductions, // we do need to match the operands, because we need to reject // out-of-order instructions within an iteration! // For example (assume floating-point addition), we need to reject this: // x += a[i]; x += b[i]; // x += a[i+1]; x += b[i+1]; // x += b[i+2]; x += a[i+2]; bool InReduction = Reductions.isPairInSame(BaseInst, RootInst); if (!(InReduction && BaseInst->isAssociative())) { bool Swapped = false, SomeOpMatched = false; for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) { Value *Op2 = RootInst->getOperand(j); // If this is part of a reduction (and the operation is not // associatve), then we match all operands, but not those that are // part of the reduction. if (InReduction) if (Instruction *Op2I = dyn_cast<Instruction>(Op2)) if (Reductions.isPairInSame(RootInst, Op2I)) continue; DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2); if (BMI != BaseMap.end()) { Op2 = BMI->second; } else { for (auto &DRS : RootSets) { if (DRS.Roots[Iter-1] == (Instruction*) Op2) { Op2 = DRS.BaseInst; break; } } } if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) { // If we've not already decided to swap the matched operands, and // we've not already matched our first operand (note that we could // have skipped matching the first operand because it is part of a // reduction above), and the instruction is commutative, then try // the swapped match. if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched && BaseInst->getOperand(!j) == Op2) { Swapped = true; } else { DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << " vs. " << *RootInst << " (operand " << j << ")\n"); return false; } } SomeOpMatched = true; } } if ((!PossibleRedLastSet.count(BaseInst) && hasUsesOutsideLoop(BaseInst, L)) || (!PossibleRedLastSet.count(RootInst) && hasUsesOutsideLoop(RootInst, L))) { DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << " vs. " << *RootInst << " (uses outside loop)\n"); return false; } Reductions.recordPair(BaseInst, RootInst, Iter); BaseMap.insert(std::make_pair(RootInst, BaseInst)); LastRootIt = RootIt; Visited.insert(BaseInst); Visited.insert(RootInst); BaseIt = nextInstr(0, Uses, Visited); RootIt = nextInstr(Iter, Uses, Visited); } assert (BaseIt == Uses.end() && RootIt == Uses.end() && "Mismatched set sizes!"); } DEBUG(dbgs() << "LRR: Matched all iteration increments for " << *IV << "\n"); return true; } void LoopReroll::DAGRootTracker::replace(const SCEV *IterCount) { BasicBlock *Header = L->getHeader(); // Remove instructions associated with non-base iterations. for (BasicBlock::reverse_iterator J = Header->rbegin(); J != Header->rend();) { unsigned I = Uses[&*J].find_first(); if (I > 0 && I < IL_All) { Instruction *D = &*J; DEBUG(dbgs() << "LRR: removing: " << *D << "\n"); D->eraseFromParent(); continue; } ++J; } const DataLayout &DL = Header->getModule()->getDataLayout(); // We need to create a new induction variable for each different BaseInst. for (auto &DRS : RootSets) { // Insert the new induction variable. const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst)); const SCEV *Start = RealIVSCEV->getStart(); const SCEVAddRecExpr *H = cast<SCEVAddRecExpr> (SE->getAddRecExpr(Start, SE->getConstant(RealIVSCEV->getType(), 1), L, SCEV::FlagAnyWrap)); { // Limit the lifetime of SCEVExpander. SCEVExpander Expander(*SE, DL, "reroll"); Value *NewIV = Expander.expandCodeFor(H, IV->getType(), Header->begin()); for (auto &KV : Uses) { if (KV.second.find_first() == 0) KV.first->replaceUsesOfWith(DRS.BaseInst, NewIV); } if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) { // FIXME: Why do we need this check? if (Uses[BI].find_first() == IL_All) { const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE); // Iteration count SCEV minus 1 const SCEV *ICMinus1SCEV = SE->getMinusSCEV(ICSCEV, SE->getConstant(ICSCEV->getType(), 1)); Value *ICMinus1; // Iteration count minus 1 if (isa<SCEVConstant>(ICMinus1SCEV)) { ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(), BI); } else { BasicBlock *Preheader = L->getLoopPreheader(); if (!Preheader) Preheader = InsertPreheaderForLoop(L, Parent); ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(), Preheader->getTerminator()); } Value *Cond = new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinus1, "exitcond"); BI->setCondition(Cond); if (BI->getSuccessor(1) != Header) BI->swapSuccessors(); } } } } SimplifyInstructionsInBlock(Header, TLI); DeleteDeadPHIs(Header, TLI); } // Validate the selected reductions. All iterations must have an isomorphic // part of the reduction chain and, for non-associative reductions, the chain // entries must appear in order. bool LoopReroll::ReductionTracker::validateSelected() { // For a non-associative reduction, the chain entries must appear in order. for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end(); RI != RIE; ++RI) { int i = *RI; int PrevIter = 0, BaseCount = 0, Count = 0; for (Instruction *J : PossibleReds[i]) { // Note that all instructions in the chain must have been found because // all instructions in the function must have been assigned to some // iteration. int Iter = PossibleRedIter[J]; if (Iter != PrevIter && Iter != PrevIter + 1 && !PossibleReds[i].getReducedValue()->isAssociative()) { DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " << J << "\n"); return false; } if (Iter != PrevIter) { if (Count != BaseCount) { DEBUG(dbgs() << "LRR: Iteration " << PrevIter << " reduction use count " << Count << " is not equal to the base use count " << BaseCount << "\n"); return false; } Count = 0; } ++Count; if (Iter == 0) ++BaseCount; PrevIter = Iter; } } return true; } // For all selected reductions, remove all parts except those in the first // iteration (and the PHI). Replace outside uses of the reduced value with uses // of the first-iteration reduced value (in other words, reroll the selected // reductions). void LoopReroll::ReductionTracker::replaceSelected() { // Fixup reductions to refer to the last instruction associated with the // first iteration (not the last). for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end(); RI != RIE; ++RI) { int i = *RI; int j = 0; for (int e = PossibleReds[i].size(); j != e; ++j) if (PossibleRedIter[PossibleReds[i][j]] != 0) { --j; break; } // Replace users with the new end-of-chain value. SmallInstructionVector Users; for (User *U : PossibleReds[i].getReducedValue()->users()) { Users.push_back(cast<Instruction>(U)); } for (SmallInstructionVector::iterator J = Users.begin(), JE = Users.end(); J != JE; ++J) (*J)->replaceUsesOfWith(PossibleReds[i].getReducedValue(), PossibleReds[i][j]); } } // Reroll the provided loop with respect to the provided induction variable. // Generally, we're looking for a loop like this: // // %iv = phi [ (preheader, ...), (body, %iv.next) ] // f(%iv) // %iv.1 = add %iv, 1 <-- a root increment // f(%iv.1) // %iv.2 = add %iv, 2 <-- a root increment // f(%iv.2) // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment // f(%iv.scale_m_1) // ... // %iv.next = add %iv, scale // %cmp = icmp(%iv, ...) // br %cmp, header, exit // // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can // be intermixed with eachother. The restriction imposed by this algorithm is // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1), // etc. be the same. // // First, we collect the use set of %iv, excluding the other increment roots. // This gives us f(%iv). Then we iterate over the loop instructions (scale-1) // times, having collected the use set of f(%iv.(i+1)), during which we: // - Ensure that the next unmatched instruction in f(%iv) is isomorphic to // the next unmatched instruction in f(%iv.(i+1)). // - Ensure that both matched instructions don't have any external users // (with the exception of last-in-chain reduction instructions). // - Track the (aliasing) write set, and other side effects, of all // instructions that belong to future iterations that come before the matched // instructions. If the matched instructions read from that write set, then // f(%iv) or f(%iv.(i+1)) has some dependency on instructions in // f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly, // if any of these future instructions had side effects (could not be // speculatively executed), and so do the matched instructions, when we // cannot reorder those side-effect-producing instructions, and rerolling // fails. // // Finally, we make sure that all loop instructions are either loop increment // roots, belong to simple latch code, parts of validated reductions, part of // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions // have been validated), then we reroll the loop. bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount, ReductionTracker &Reductions) { DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI); if (!DAGRoots.findRoots()) return false; DEBUG(dbgs() << "LRR: Found all root induction increments for: " << *IV << "\n"); if (!DAGRoots.validate(Reductions)) return false; if (!Reductions.validateSelected()) return false; // At this point, we've validated the rerolling, and we're committed to // making changes! Reductions.replaceSelected(); DAGRoots.replace(IterCount); ++NumRerolledLoops; return true; } bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) { if (skipOptnoneFunction(L)) return false; AA = &getAnalysis<AliasAnalysis>(); LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); SE = &getAnalysis<ScalarEvolution>(); TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); BasicBlock *Header = L->getHeader(); DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << "] Loop %" << Header->getName() << " (" << L->getNumBlocks() << " block(s))\n"); bool Changed = false; // For now, we'll handle only single BB loops. if (L->getNumBlocks() > 1) return Changed; if (!SE->hasLoopInvariantBackedgeTakenCount(L)) return Changed; const SCEV *LIBETC = SE->getBackedgeTakenCount(L); const SCEV *IterCount = SE->getAddExpr(LIBETC, SE->getConstant(LIBETC->getType(), 1)); DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n"); // First, we need to find the induction variable with respect to which we can // reroll (there may be several possible options). SmallInstructionVector PossibleIVs; collectPossibleIVs(L, PossibleIVs); if (PossibleIVs.empty()) { DEBUG(dbgs() << "LRR: No possible IVs found\n"); return Changed; } ReductionTracker Reductions; collectPossibleReductions(L, Reductions); // For each possible IV, collect the associated possible set of 'root' nodes // (i+1, i+2, etc.). for (SmallInstructionVector::iterator I = PossibleIVs.begin(), IE = PossibleIVs.end(); I != IE; ++I) if (reroll(*I, L, Header, IterCount, Reductions)) { Changed = true; break; } return Changed; }