//===-- X86InstrFMA.td - FMA Instruction Set ---------------*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes FMA (Fused Multiply-Add) instructions. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // FMA3 - Intel 3 operand Fused Multiply-Add instructions //===----------------------------------------------------------------------===// let Constraints = "$src1 = $dst" in { multiclass fma3p_rm<bits<8> opc, string OpcodeStr, PatFrag MemFrag128, PatFrag MemFrag256, ValueType OpVT128, ValueType OpVT256, bit IsRVariantCommutable = 0, bit IsMVariantCommutable = 0, SDPatternOperator Op = null_frag> { let usesCustomInserter = 1, isCommutable = IsRVariantCommutable in def r : FMA3<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, VR128:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), [(set VR128:$dst, (OpVT128 (Op VR128:$src2, VR128:$src1, VR128:$src3)))]>; let mayLoad = 1, isCommutable = IsMVariantCommutable in def m : FMA3<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, f128mem:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), [(set VR128:$dst, (OpVT128 (Op VR128:$src2, VR128:$src1, (MemFrag128 addr:$src3))))]>; let usesCustomInserter = 1, isCommutable = IsRVariantCommutable in def rY : FMA3<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src1, VR256:$src2, VR256:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), [(set VR256:$dst, (OpVT256 (Op VR256:$src2, VR256:$src1, VR256:$src3)))]>, VEX_L; let mayLoad = 1, isCommutable = IsMVariantCommutable in def mY : FMA3<opc, MRMSrcMem, (outs VR256:$dst), (ins VR256:$src1, VR256:$src2, f256mem:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), [(set VR256:$dst, (OpVT256 (Op VR256:$src2, VR256:$src1, (MemFrag256 addr:$src3))))]>, VEX_L; } } // Constraints = "$src1 = $dst" multiclass fma3p_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231, string OpcodeStr, string PackTy, PatFrag MemFrag128, PatFrag MemFrag256, SDNode Op, ValueType OpTy128, ValueType OpTy256> { // For 213, both the register and memory variant are commutable. // Indeed, the commutable operands are 1 and 2 and both live in registers // for both variants. defm r213 : fma3p_rm<opc213, !strconcat(OpcodeStr, "213", PackTy), MemFrag128, MemFrag256, OpTy128, OpTy256, /* IsRVariantCommutable */ 1, /* IsMVariantCommutable */ 1, Op>; let hasSideEffects = 0 in { defm r132 : fma3p_rm<opc132, !strconcat(OpcodeStr, "132", PackTy), MemFrag128, MemFrag256, OpTy128, OpTy256>; // For 231, only the register variant is commutable. // For the memory variant the folded operand must be in 3. Thus, // in that case, it cannot be swapped with 2. defm r231 : fma3p_rm<opc231, !strconcat(OpcodeStr, "231", PackTy), MemFrag128, MemFrag256, OpTy128, OpTy256, /* IsRVariantCommutable */ 1, /* IsMVariantCommutable */ 0>; } // hasSideEffects = 0 } // Fused Multiply-Add let ExeDomain = SSEPackedSingle in { defm VFMADDPS : fma3p_forms<0x98, 0xA8, 0xB8, "vfmadd", "ps", loadv4f32, loadv8f32, X86Fmadd, v4f32, v8f32>; defm VFMSUBPS : fma3p_forms<0x9A, 0xAA, 0xBA, "vfmsub", "ps", loadv4f32, loadv8f32, X86Fmsub, v4f32, v8f32>; defm VFMADDSUBPS : fma3p_forms<0x96, 0xA6, 0xB6, "vfmaddsub", "ps", loadv4f32, loadv8f32, X86Fmaddsub, v4f32, v8f32>; defm VFMSUBADDPS : fma3p_forms<0x97, 0xA7, 0xB7, "vfmsubadd", "ps", loadv4f32, loadv8f32, X86Fmsubadd, v4f32, v8f32>; } let ExeDomain = SSEPackedDouble in { defm VFMADDPD : fma3p_forms<0x98, 0xA8, 0xB8, "vfmadd", "pd", loadv2f64, loadv4f64, X86Fmadd, v2f64, v4f64>, VEX_W; defm VFMSUBPD : fma3p_forms<0x9A, 0xAA, 0xBA, "vfmsub", "pd", loadv2f64, loadv4f64, X86Fmsub, v2f64, v4f64>, VEX_W; defm VFMADDSUBPD : fma3p_forms<0x96, 0xA6, 0xB6, "vfmaddsub", "pd", loadv2f64, loadv4f64, X86Fmaddsub, v2f64, v4f64>, VEX_W; defm VFMSUBADDPD : fma3p_forms<0x97, 0xA7, 0xB7, "vfmsubadd", "pd", loadv2f64, loadv4f64, X86Fmsubadd, v2f64, v4f64>, VEX_W; } // Fused Negative Multiply-Add let ExeDomain = SSEPackedSingle in { defm VFNMADDPS : fma3p_forms<0x9C, 0xAC, 0xBC, "vfnmadd", "ps", loadv4f32, loadv8f32, X86Fnmadd, v4f32, v8f32>; defm VFNMSUBPS : fma3p_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "ps", loadv4f32, loadv8f32, X86Fnmsub, v4f32, v8f32>; } let ExeDomain = SSEPackedDouble in { defm VFNMADDPD : fma3p_forms<0x9C, 0xAC, 0xBC, "vfnmadd", "pd", loadv2f64, loadv4f64, X86Fnmadd, v2f64, v4f64>, VEX_W; defm VFNMSUBPD : fma3p_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "pd", loadv2f64, loadv4f64, X86Fnmsub, v2f64, v4f64>, VEX_W; } let Constraints = "$src1 = $dst" in { multiclass fma3s_rm<bits<8> opc, string OpcodeStr, X86MemOperand x86memop, RegisterClass RC, ValueType OpVT, PatFrag mem_frag, bit IsRVariantCommutable = 0, bit IsMVariantCommutable = 0, SDPatternOperator OpNode = null_frag> { let usesCustomInserter = 1, isCommutable = IsRVariantCommutable in def r : FMA3<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, RC:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), [(set RC:$dst, (OpVT (OpNode RC:$src2, RC:$src1, RC:$src3)))]>; let mayLoad = 1, isCommutable = IsMVariantCommutable in def m : FMA3<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, RC:$src2, x86memop:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), [(set RC:$dst, (OpVT (OpNode RC:$src2, RC:$src1, (mem_frag addr:$src3))))]>; } } // Constraints = "$src1 = $dst" multiclass fma3s_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231, string OpStr, string PackTy, string PT2, Intrinsic Int, SDNode OpNode, RegisterClass RC, ValueType OpVT, X86MemOperand x86memop, Operand memop, PatFrag mem_frag, ComplexPattern mem_cpat> { let hasSideEffects = 0 in { defm r132 : fma3s_rm<opc132, !strconcat(OpStr, "132", PackTy), x86memop, RC, OpVT, mem_frag>; // See the other defm of r231 for the explanation regarding the // commutable flags. defm r231 : fma3s_rm<opc231, !strconcat(OpStr, "231", PackTy), x86memop, RC, OpVT, mem_frag, /* IsRVariantCommutable */ 1, /* IsMVariantCommutable */ 0>; } // See the other defm of r213 for the explanation regarding the // commutable flags. defm r213 : fma3s_rm<opc213, !strconcat(OpStr, "213", PackTy), x86memop, RC, OpVT, mem_frag, /* IsRVariantCommutable */ 1, /* IsMVariantCommutable */ 1, OpNode>; } multiclass fma3s<bits<8> opc132, bits<8> opc213, bits<8> opc231, string OpStr, Intrinsic IntF32, Intrinsic IntF64, SDNode OpNode> { defm SS : fma3s_forms<opc132, opc213, opc231, OpStr, "ss", "SS", IntF32, OpNode, FR32, f32, f32mem, ssmem, loadf32, sse_load_f32>; defm SD : fma3s_forms<opc132, opc213, opc231, OpStr, "sd", "PD", IntF64, OpNode, FR64, f64, f64mem, sdmem, loadf64, sse_load_f64>, VEX_W; def : Pat<(IntF32 VR128:$src1, VR128:$src2, VR128:$src3), (COPY_TO_REGCLASS (!cast<Instruction>(NAME#"SSr213r") (COPY_TO_REGCLASS $src2, FR32), (COPY_TO_REGCLASS $src1, FR32), (COPY_TO_REGCLASS $src3, FR32)), VR128)>; def : Pat<(IntF64 VR128:$src1, VR128:$src2, VR128:$src3), (COPY_TO_REGCLASS (!cast<Instruction>(NAME#"SDr213r") (COPY_TO_REGCLASS $src2, FR64), (COPY_TO_REGCLASS $src1, FR64), (COPY_TO_REGCLASS $src3, FR64)), VR128)>; } defm VFMADD : fma3s<0x99, 0xA9, 0xB9, "vfmadd", int_x86_fma_vfmadd_ss, int_x86_fma_vfmadd_sd, X86Fmadd>, VEX_LIG; defm VFMSUB : fma3s<0x9B, 0xAB, 0xBB, "vfmsub", int_x86_fma_vfmsub_ss, int_x86_fma_vfmsub_sd, X86Fmsub>, VEX_LIG; defm VFNMADD : fma3s<0x9D, 0xAD, 0xBD, "vfnmadd", int_x86_fma_vfnmadd_ss, int_x86_fma_vfnmadd_sd, X86Fnmadd>, VEX_LIG; defm VFNMSUB : fma3s<0x9F, 0xAF, 0xBF, "vfnmsub", int_x86_fma_vfnmsub_ss, int_x86_fma_vfnmsub_sd, X86Fnmsub>, VEX_LIG; //===----------------------------------------------------------------------===// // FMA4 - AMD 4 operand Fused Multiply-Add instructions //===----------------------------------------------------------------------===// multiclass fma4s<bits<8> opc, string OpcodeStr, RegisterClass RC, X86MemOperand x86memop, ValueType OpVT, SDNode OpNode, PatFrag mem_frag> { let isCommutable = 1 in def rr : FMA4<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, RC:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2, RC:$src3)))]>, VEX_W, VEX_LIG, MemOp4; def rm : FMA4<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, RC:$src2, x86memop:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set RC:$dst, (OpNode RC:$src1, RC:$src2, (mem_frag addr:$src3)))]>, VEX_W, VEX_LIG, MemOp4; def mr : FMA4<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2, RC:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set RC:$dst, (OpNode RC:$src1, (mem_frag addr:$src2), RC:$src3))]>, VEX_LIG; // For disassembler let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in def rr_REV : FMA4<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, RC:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>, VEX_LIG; } multiclass fma4s_int<bits<8> opc, string OpcodeStr, Operand memop, ComplexPattern mem_cpat, Intrinsic Int> { let isCodeGenOnly = 1 in { let isCommutable = 1 in def rr_Int : FMA4<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, VR128:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR128:$dst, (Int VR128:$src1, VR128:$src2, VR128:$src3))]>, VEX_W, VEX_LIG, MemOp4; def rm_Int : FMA4<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, memop:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR128:$dst, (Int VR128:$src1, VR128:$src2, mem_cpat:$src3))]>, VEX_W, VEX_LIG, MemOp4; def mr_Int : FMA4<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, memop:$src2, VR128:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR128:$dst, (Int VR128:$src1, mem_cpat:$src2, VR128:$src3))]>, VEX_LIG; } // isCodeGenOnly = 1 } multiclass fma4p<bits<8> opc, string OpcodeStr, SDNode OpNode, ValueType OpVT128, ValueType OpVT256, PatFrag ld_frag128, PatFrag ld_frag256> { let isCommutable = 1 in def rr : FMA4<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, VR128:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR128:$dst, (OpVT128 (OpNode VR128:$src1, VR128:$src2, VR128:$src3)))]>, VEX_W, MemOp4; def rm : FMA4<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, f128mem:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR128:$dst, (OpNode VR128:$src1, VR128:$src2, (ld_frag128 addr:$src3)))]>, VEX_W, MemOp4; def mr : FMA4<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2, VR128:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR128:$dst, (OpNode VR128:$src1, (ld_frag128 addr:$src2), VR128:$src3))]>; let isCommutable = 1 in def rrY : FMA4<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src1, VR256:$src2, VR256:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR256:$dst, (OpVT256 (OpNode VR256:$src1, VR256:$src2, VR256:$src3)))]>, VEX_W, MemOp4, VEX_L; def rmY : FMA4<opc, MRMSrcMem, (outs VR256:$dst), (ins VR256:$src1, VR256:$src2, f256mem:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR256:$dst, (OpNode VR256:$src1, VR256:$src2, (ld_frag256 addr:$src3)))]>, VEX_W, MemOp4, VEX_L; def mrY : FMA4<opc, MRMSrcMem, (outs VR256:$dst), (ins VR256:$src1, f256mem:$src2, VR256:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR256:$dst, (OpNode VR256:$src1, (ld_frag256 addr:$src2), VR256:$src3))]>, VEX_L; // For disassembler let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in { def rr_REV : FMA4<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, VR128:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>; def rrY_REV : FMA4<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src1, VR256:$src2, VR256:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>, VEX_L; } // isCodeGenOnly = 1 } defm VFMADDSS4 : fma4s<0x6A, "vfmaddss", FR32, f32mem, f32, X86Fmadd, loadf32>, fma4s_int<0x6A, "vfmaddss", ssmem, sse_load_f32, int_x86_fma_vfmadd_ss>; defm VFMADDSD4 : fma4s<0x6B, "vfmaddsd", FR64, f64mem, f64, X86Fmadd, loadf64>, fma4s_int<0x6B, "vfmaddsd", sdmem, sse_load_f64, int_x86_fma_vfmadd_sd>; defm VFMSUBSS4 : fma4s<0x6E, "vfmsubss", FR32, f32mem, f32, X86Fmsub, loadf32>, fma4s_int<0x6E, "vfmsubss", ssmem, sse_load_f32, int_x86_fma_vfmsub_ss>; defm VFMSUBSD4 : fma4s<0x6F, "vfmsubsd", FR64, f64mem, f64, X86Fmsub, loadf64>, fma4s_int<0x6F, "vfmsubsd", sdmem, sse_load_f64, int_x86_fma_vfmsub_sd>; defm VFNMADDSS4 : fma4s<0x7A, "vfnmaddss", FR32, f32mem, f32, X86Fnmadd, loadf32>, fma4s_int<0x7A, "vfnmaddss", ssmem, sse_load_f32, int_x86_fma_vfnmadd_ss>; defm VFNMADDSD4 : fma4s<0x7B, "vfnmaddsd", FR64, f64mem, f64, X86Fnmadd, loadf64>, fma4s_int<0x7B, "vfnmaddsd", sdmem, sse_load_f64, int_x86_fma_vfnmadd_sd>; defm VFNMSUBSS4 : fma4s<0x7E, "vfnmsubss", FR32, f32mem, f32, X86Fnmsub, loadf32>, fma4s_int<0x7E, "vfnmsubss", ssmem, sse_load_f32, int_x86_fma_vfnmsub_ss>; defm VFNMSUBSD4 : fma4s<0x7F, "vfnmsubsd", FR64, f64mem, f64, X86Fnmsub, loadf64>, fma4s_int<0x7F, "vfnmsubsd", sdmem, sse_load_f64, int_x86_fma_vfnmsub_sd>; let ExeDomain = SSEPackedSingle in { defm VFMADDPS4 : fma4p<0x68, "vfmaddps", X86Fmadd, v4f32, v8f32, loadv4f32, loadv8f32>; defm VFMSUBPS4 : fma4p<0x6C, "vfmsubps", X86Fmsub, v4f32, v8f32, loadv4f32, loadv8f32>; defm VFNMADDPS4 : fma4p<0x78, "vfnmaddps", X86Fnmadd, v4f32, v8f32, loadv4f32, loadv8f32>; defm VFNMSUBPS4 : fma4p<0x7C, "vfnmsubps", X86Fnmsub, v4f32, v8f32, loadv4f32, loadv8f32>; defm VFMADDSUBPS4 : fma4p<0x5C, "vfmaddsubps", X86Fmaddsub, v4f32, v8f32, loadv4f32, loadv8f32>; defm VFMSUBADDPS4 : fma4p<0x5E, "vfmsubaddps", X86Fmsubadd, v4f32, v8f32, loadv4f32, loadv8f32>; } let ExeDomain = SSEPackedDouble in { defm VFMADDPD4 : fma4p<0x69, "vfmaddpd", X86Fmadd, v2f64, v4f64, loadv2f64, loadv4f64>; defm VFMSUBPD4 : fma4p<0x6D, "vfmsubpd", X86Fmsub, v2f64, v4f64, loadv2f64, loadv4f64>; defm VFNMADDPD4 : fma4p<0x79, "vfnmaddpd", X86Fnmadd, v2f64, v4f64, loadv2f64, loadv4f64>; defm VFNMSUBPD4 : fma4p<0x7D, "vfnmsubpd", X86Fnmsub, v2f64, v4f64, loadv2f64, loadv4f64>; defm VFMADDSUBPD4 : fma4p<0x5D, "vfmaddsubpd", X86Fmaddsub, v2f64, v4f64, loadv2f64, loadv4f64>; defm VFMSUBADDPD4 : fma4p<0x5F, "vfmsubaddpd", X86Fmsubadd, v2f64, v4f64, loadv2f64, loadv4f64>; }