//===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the X86 implementation of TargetFrameLowering class. // //===----------------------------------------------------------------------===// #include "X86FrameLowering.h" #include "X86InstrBuilder.h" #include "X86InstrInfo.h" #include "X86MachineFunctionInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "llvm/ADT/SmallSet.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/CommandLine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/Debug.h" #include <cstdlib> using namespace llvm; // FIXME: completely move here. extern cl::opt<bool> ForceStackAlign; bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { return !MF.getFrameInfo()->hasVarSizedObjects() && !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); } /// canSimplifyCallFramePseudos - If there is a reserved call frame, the /// call frame pseudos can be simplified. Having a FP, as in the default /// implementation, is not sufficient here since we can't always use it. /// Use a more nuanced condition. bool X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *> (MF.getSubtarget().getRegisterInfo()); return hasReservedCallFrame(MF) || (hasFP(MF) && !TRI->needsStackRealignment(MF)) || TRI->hasBasePointer(MF); } // needsFrameIndexResolution - Do we need to perform FI resolution for // this function. Normally, this is required only when the function // has any stack objects. However, FI resolution actually has another job, // not apparent from the title - it resolves callframesetup/destroy // that were not simplified earlier. // So, this is required for x86 functions that have push sequences even // when there are no stack objects. bool X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { return MF.getFrameInfo()->hasStackObjects() || MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); } /// hasFP - Return true if the specified function should have a dedicated frame /// pointer register. This is true if the function has variable sized allocas /// or if frame pointer elimination is disabled. bool X86FrameLowering::hasFP(const MachineFunction &MF) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); const MachineModuleInfo &MMI = MF.getMMI(); const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); return (MF.getTarget().Options.DisableFramePointerElim(MF) || RegInfo->needsStackRealignment(MF) || MFI->hasVarSizedObjects() || MFI->isFrameAddressTaken() || MFI->hasInlineAsmWithSPAdjust() || MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || MMI.callsUnwindInit() || MMI.callsEHReturn() || MFI->hasStackMap() || MFI->hasPatchPoint()); } static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) { if (IsLP64) { if (isInt<8>(Imm)) return X86::SUB64ri8; return X86::SUB64ri32; } else { if (isInt<8>(Imm)) return X86::SUB32ri8; return X86::SUB32ri; } } static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) { if (IsLP64) { if (isInt<8>(Imm)) return X86::ADD64ri8; return X86::ADD64ri32; } else { if (isInt<8>(Imm)) return X86::ADD32ri8; return X86::ADD32ri; } } static unsigned getSUBrrOpcode(unsigned isLP64) { return isLP64 ? X86::SUB64rr : X86::SUB32rr; } static unsigned getADDrrOpcode(unsigned isLP64) { return isLP64 ? X86::ADD64rr : X86::ADD32rr; } static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { if (IsLP64) { if (isInt<8>(Imm)) return X86::AND64ri8; return X86::AND64ri32; } if (isInt<8>(Imm)) return X86::AND32ri8; return X86::AND32ri; } static unsigned getLEArOpcode(unsigned IsLP64) { return IsLP64 ? X86::LEA64r : X86::LEA32r; } /// findDeadCallerSavedReg - Return a caller-saved register that isn't live /// when it reaches the "return" instruction. We can then pop a stack object /// to this register without worry about clobbering it. static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, const TargetRegisterInfo &TRI, bool Is64Bit) { const MachineFunction *MF = MBB.getParent(); const Function *F = MF->getFunction(); if (!F || MF->getMMI().callsEHReturn()) return 0; static const uint16_t CallerSavedRegs32Bit[] = { X86::EAX, X86::EDX, X86::ECX, 0 }; static const uint16_t CallerSavedRegs64Bit[] = { X86::RAX, X86::RDX, X86::RCX, X86::RSI, X86::RDI, X86::R8, X86::R9, X86::R10, X86::R11, 0 }; unsigned Opc = MBBI->getOpcode(); switch (Opc) { default: return 0; case X86::RETL: case X86::RETQ: case X86::RETIL: case X86::RETIQ: case X86::TCRETURNdi: case X86::TCRETURNri: case X86::TCRETURNmi: case X86::TCRETURNdi64: case X86::TCRETURNri64: case X86::TCRETURNmi64: case X86::EH_RETURN: case X86::EH_RETURN64: { SmallSet<uint16_t, 8> Uses; for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MBBI->getOperand(i); if (!MO.isReg() || MO.isDef()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI) Uses.insert(*AI); } const uint16_t *CS = Is64Bit ? CallerSavedRegs64Bit : CallerSavedRegs32Bit; for (; *CS; ++CS) if (!Uses.count(*CS)) return *CS; } } return 0; } static bool isEAXLiveIn(MachineFunction &MF) { for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(), EE = MF.getRegInfo().livein_end(); II != EE; ++II) { unsigned Reg = II->first; if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || Reg == X86::AH || Reg == X86::AL) return true; } return false; } /// emitSPUpdate - Emit a series of instructions to increment / decrement the /// stack pointer by a constant value. static void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned StackPtr, int64_t NumBytes, bool Is64BitTarget, bool Is64BitStackPtr, bool UseLEA, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) { bool isSub = NumBytes < 0; uint64_t Offset = isSub ? -NumBytes : NumBytes; unsigned Opc; if (UseLEA) Opc = getLEArOpcode(Is64BitStackPtr); else Opc = isSub ? getSUBriOpcode(Is64BitStackPtr, Offset) : getADDriOpcode(Is64BitStackPtr, Offset); uint64_t Chunk = (1LL << 31) - 1; DebugLoc DL = MBB.findDebugLoc(MBBI); while (Offset) { if (Offset > Chunk) { // Rather than emit a long series of instructions for large offsets, // load the offset into a register and do one sub/add unsigned Reg = 0; if (isSub && !isEAXLiveIn(*MBB.getParent())) Reg = (unsigned)(Is64BitTarget ? X86::RAX : X86::EAX); else Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64BitTarget); if (Reg) { Opc = Is64BitTarget ? X86::MOV64ri : X86::MOV32ri; BuildMI(MBB, MBBI, DL, TII.get(Opc), Reg) .addImm(Offset); Opc = isSub ? getSUBrrOpcode(Is64BitTarget) : getADDrrOpcode(Is64BitTarget); MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) .addReg(StackPtr) .addReg(Reg); MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. Offset = 0; continue; } } uint64_t ThisVal = std::min(Offset, Chunk); if (ThisVal == (Is64BitTarget ? 8 : 4)) { // Use push / pop instead. unsigned Reg = isSub ? (unsigned)(Is64BitTarget ? X86::RAX : X86::EAX) : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64BitTarget); if (Reg) { Opc = isSub ? (Is64BitTarget ? X86::PUSH64r : X86::PUSH32r) : (Is64BitTarget ? X86::POP64r : X86::POP32r); MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc)) .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)); if (isSub) MI->setFlag(MachineInstr::FrameSetup); Offset -= ThisVal; continue; } } MachineInstr *MI = nullptr; if (UseLEA) { MI = addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), StackPtr, false, isSub ? -ThisVal : ThisVal); } else { MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) .addReg(StackPtr) .addImm(ThisVal); MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. } if (isSub) MI->setFlag(MachineInstr::FrameSetup); Offset -= ThisVal; } } /// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator. static void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned StackPtr, uint64_t *NumBytes = nullptr) { if (MBBI == MBB.begin()) return; MachineBasicBlock::iterator PI = std::prev(MBBI); unsigned Opc = PI->getOpcode(); if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || Opc == X86::ADD32ri || Opc == X86::ADD32ri8 || Opc == X86::LEA32r || Opc == X86::LEA64_32r) && PI->getOperand(0).getReg() == StackPtr) { if (NumBytes) *NumBytes += PI->getOperand(2).getImm(); MBB.erase(PI); } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && PI->getOperand(0).getReg() == StackPtr) { if (NumBytes) *NumBytes -= PI->getOperand(2).getImm(); MBB.erase(PI); } } /// mergeSPUpdates - Checks the instruction before/after the passed /// instruction. If it is an ADD/SUB/LEA instruction it is deleted argument and /// the stack adjustment is returned as a positive value for ADD/LEA and a /// negative for SUB. static int mergeSPUpdates(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned StackPtr, bool doMergeWithPrevious) { if ((doMergeWithPrevious && MBBI == MBB.begin()) || (!doMergeWithPrevious && MBBI == MBB.end())) return 0; MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; MachineBasicBlock::iterator NI = doMergeWithPrevious ? nullptr : std::next(MBBI); unsigned Opc = PI->getOpcode(); int Offset = 0; if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || Opc == X86::ADD32ri || Opc == X86::ADD32ri8 || Opc == X86::LEA32r || Opc == X86::LEA64_32r) && PI->getOperand(0).getReg() == StackPtr){ Offset += PI->getOperand(2).getImm(); MBB.erase(PI); if (!doMergeWithPrevious) MBBI = NI; } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && PI->getOperand(0).getReg() == StackPtr) { Offset -= PI->getOperand(2).getImm(); MBB.erase(PI); if (!doMergeWithPrevious) MBBI = NI; } return Offset; } void X86FrameLowering::emitCalleeSavedFrameMoves(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc DL) const { MachineFunction &MF = *MBB.getParent(); MachineFrameInfo *MFI = MF.getFrameInfo(); MachineModuleInfo &MMI = MF.getMMI(); const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); // Add callee saved registers to move list. const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo(); if (CSI.empty()) return; // Calculate offsets. for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(), E = CSI.end(); I != E; ++I) { int64_t Offset = MFI->getObjectOffset(I->getFrameIdx()); unsigned Reg = I->getReg(); unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); } } /// usesTheStack - This function checks if any of the users of EFLAGS /// copies the EFLAGS. We know that the code that lowers COPY of EFLAGS has /// to use the stack, and if we don't adjust the stack we clobber the first /// frame index. /// See X86InstrInfo::copyPhysReg. static bool usesTheStack(const MachineFunction &MF) { const MachineRegisterInfo &MRI = MF.getRegInfo(); for (MachineRegisterInfo::reg_instr_iterator ri = MRI.reg_instr_begin(X86::EFLAGS), re = MRI.reg_instr_end(); ri != re; ++ri) if (ri->isCopy()) return true; return false; } void X86FrameLowering::emitStackProbeCall(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc DL) { const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); const TargetInstrInfo &TII = *STI.getInstrInfo(); bool Is64Bit = STI.is64Bit(); bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; unsigned CallOp; if (Is64Bit) CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; else CallOp = X86::CALLpcrel32; const char *Symbol; if (Is64Bit) { if (STI.isTargetCygMing()) { Symbol = "___chkstk_ms"; } else { Symbol = "__chkstk"; } } else if (STI.isTargetCygMing()) Symbol = "_alloca"; else Symbol = "_chkstk"; MachineInstrBuilder CI; // All current stack probes take AX and SP as input, clobber flags, and // preserve all registers. x86_64 probes leave RSP unmodified. if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { // For the large code model, we have to call through a register. Use R11, // as it is scratch in all supported calling conventions. BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) .addExternalSymbol(Symbol); CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); } else { CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addExternalSymbol(Symbol); } unsigned AX = Is64Bit ? X86::RAX : X86::EAX; unsigned SP = Is64Bit ? X86::RSP : X86::ESP; CI.addReg(AX, RegState::Implicit) .addReg(SP, RegState::Implicit) .addReg(AX, RegState::Define | RegState::Implicit) .addReg(SP, RegState::Define | RegState::Implicit) .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); if (Is64Bit) { // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp // themselves. It also does not clobber %rax so we can reuse it when // adjusting %rsp. BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64rr), X86::RSP) .addReg(X86::RSP) .addReg(X86::RAX); } } static unsigned calculateSetFPREG(uint64_t SPAdjust) { // Win64 ABI has a less restrictive limitation of 240; 128 works equally well // and might require smaller successive adjustments. const uint64_t Win64MaxSEHOffset = 128; uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. return SEHFrameOffset & -16; } // If we're forcing a stack realignment we can't rely on just the frame // info, we need to know the ABI stack alignment as well in case we // have a call out. Otherwise just make sure we have some alignment - we'll // go with the minimum SlotSize. static uint64_t calculateMaxStackAlign(const MachineFunction &MF) { const MachineFrameInfo *MFI = MF.getFrameInfo(); uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment. const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); const X86RegisterInfo *RegInfo = STI.getRegisterInfo(); unsigned SlotSize = RegInfo->getSlotSize(); unsigned StackAlign = STI.getFrameLowering()->getStackAlignment(); if (ForceStackAlign) { if (MFI->hasCalls()) MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; else if (MaxAlign < SlotSize) MaxAlign = SlotSize; } return MaxAlign; } /// emitPrologue - Push callee-saved registers onto the stack, which /// automatically adjust the stack pointer. Adjust the stack pointer to allocate /// space for local variables. Also emit labels used by the exception handler to /// generate the exception handling frames. /* Here's a gist of what gets emitted: ; Establish frame pointer, if needed [if needs FP] push %rbp .cfi_def_cfa_offset 16 .cfi_offset %rbp, -16 .seh_pushreg %rpb mov %rsp, %rbp .cfi_def_cfa_register %rbp ; Spill general-purpose registers [for all callee-saved GPRs] pushq %<reg> [if not needs FP] .cfi_def_cfa_offset (offset from RETADDR) .seh_pushreg %<reg> ; If the required stack alignment > default stack alignment ; rsp needs to be re-aligned. This creates a "re-alignment gap" ; of unknown size in the stack frame. [if stack needs re-alignment] and $MASK, %rsp ; Allocate space for locals [if target is Windows and allocated space > 4096 bytes] ; Windows needs special care for allocations larger ; than one page. mov $NNN, %rax call ___chkstk_ms/___chkstk sub %rax, %rsp [else] sub $NNN, %rsp [if needs FP] .seh_stackalloc (size of XMM spill slots) .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots [else] .seh_stackalloc NNN ; Spill XMMs ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, ; they may get spilled on any platform, if the current function ; calls @llvm.eh.unwind.init [if needs FP] [for all callee-saved XMM registers] movaps %<xmm reg>, -MMM(%rbp) [for all callee-saved XMM registers] .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) ; i.e. the offset relative to (%rbp - SEHFrameOffset) [else] [for all callee-saved XMM registers] movaps %<xmm reg>, KKK(%rsp) [for all callee-saved XMM registers] .seh_savexmm %<xmm reg>, KKK .seh_endprologue [if needs base pointer] mov %rsp, %rbx [if needs to restore base pointer] mov %rsp, -MMM(%rbp) ; Emit CFI info [if needs FP] [for all callee-saved registers] .cfi_offset %<reg>, (offset from %rbp) [else] .cfi_def_cfa_offset (offset from RETADDR) [for all callee-saved registers] .cfi_offset %<reg>, (offset from %rsp) Notes: - .seh directives are emitted only for Windows 64 ABI - .cfi directives are emitted for all other ABIs - for 32-bit code, substitute %e?? registers for %r?? */ void X86FrameLowering::emitPrologue(MachineFunction &MF) const { MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB. MachineBasicBlock::iterator MBBI = MBB.begin(); MachineFrameInfo *MFI = MF.getFrameInfo(); const Function *Fn = MF.getFunction(); const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); const X86RegisterInfo *RegInfo = STI.getRegisterInfo(); const TargetInstrInfo &TII = *STI.getInstrInfo(); MachineModuleInfo &MMI = MF.getMMI(); X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. uint64_t StackSize = MFI->getStackSize(); // Number of bytes to allocate. bool HasFP = hasFP(MF); bool Is64Bit = STI.is64Bit(); // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. const bool Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); bool IsWin64 = STI.isCallingConvWin64(Fn->getCallingConv()); // Not necessarily synonymous with IsWin64. bool IsWinEH = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); bool NeedsWinEH = IsWinEH && Fn->needsUnwindTableEntry(); bool NeedsDwarfCFI = !IsWinEH && (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry()); bool UseLEA = STI.useLeaForSP(); unsigned SlotSize = RegInfo->getSlotSize(); unsigned FramePtr = RegInfo->getFrameRegister(MF); const unsigned MachineFramePtr = STI.isTarget64BitILP32() ? getX86SubSuperRegister(FramePtr, MVT::i64, false) : FramePtr; unsigned StackPtr = RegInfo->getStackRegister(); unsigned BasePtr = RegInfo->getBaseRegister(); DebugLoc DL; // Add RETADDR move area to callee saved frame size. int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); if (TailCallReturnAddrDelta && IsWinEH) report_fatal_error("Can't handle guaranteed tail call under win64 yet"); if (TailCallReturnAddrDelta < 0) X86FI->setCalleeSavedFrameSize( X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); bool UseStackProbe = (STI.isOSWindows() && !STI.isTargetMachO()); // The default stack probe size is 4096 if the function has no stackprobesize // attribute. unsigned StackProbeSize = 4096; if (Fn->hasFnAttribute("stack-probe-size")) Fn->getFnAttribute("stack-probe-size") .getValueAsString() .getAsInteger(0, StackProbeSize); // If this is x86-64 and the Red Zone is not disabled, if we are a leaf // function, and use up to 128 bytes of stack space, don't have a frame // pointer, calls, or dynamic alloca then we do not need to adjust the // stack pointer (we fit in the Red Zone). We also check that we don't // push and pop from the stack. if (Is64Bit && !Fn->hasFnAttribute(Attribute::NoRedZone) && !RegInfo->needsStackRealignment(MF) && !MFI->hasVarSizedObjects() && // No dynamic alloca. !MFI->adjustsStack() && // No calls. !IsWin64 && // Win64 has no Red Zone !usesTheStack(MF) && // Don't push and pop. !MF.shouldSplitStack()) { // Regular stack uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); if (HasFP) MinSize += SlotSize; StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); MFI->setStackSize(StackSize); } // Insert stack pointer adjustment for later moving of return addr. Only // applies to tail call optimized functions where the callee argument stack // size is bigger than the callers. if (TailCallReturnAddrDelta < 0) { MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(getSUBriOpcode(Uses64BitFramePtr, -TailCallReturnAddrDelta)), StackPtr) .addReg(StackPtr) .addImm(-TailCallReturnAddrDelta) .setMIFlag(MachineInstr::FrameSetup); MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. } // Mapping for machine moves: // // DST: VirtualFP AND // SRC: VirtualFP => DW_CFA_def_cfa_offset // ELSE => DW_CFA_def_cfa // // SRC: VirtualFP AND // DST: Register => DW_CFA_def_cfa_register // // ELSE // OFFSET < 0 => DW_CFA_offset_extended_sf // REG < 64 => DW_CFA_offset + Reg // ELSE => DW_CFA_offset_extended uint64_t NumBytes = 0; int stackGrowth = -SlotSize; if (HasFP) { // Calculate required stack adjustment. uint64_t FrameSize = StackSize - SlotSize; // If required, include space for extra hidden slot for stashing base pointer. if (X86FI->getRestoreBasePointer()) FrameSize += SlotSize; NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); // Callee-saved registers are pushed on stack before the stack is realigned. if (RegInfo->needsStackRealignment(MF) && !IsWinEH) NumBytes = RoundUpToAlignment(NumBytes, MaxAlign); // Get the offset of the stack slot for the EBP register, which is // guaranteed to be the last slot by processFunctionBeforeFrameFinalized. // Update the frame offset adjustment. MFI->setOffsetAdjustment(-NumBytes); // Save EBP/RBP into the appropriate stack slot. BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) .addReg(MachineFramePtr, RegState::Kill) .setMIFlag(MachineInstr::FrameSetup); if (NeedsDwarfCFI) { // Mark the place where EBP/RBP was saved. // Define the current CFA rule to use the provided offset. assert(StackSize); unsigned CFIIndex = MMI.addFrameInst( MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth)); BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); // Change the rule for the FramePtr to be an "offset" rule. unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(MachineFramePtr, true); CFIIndex = MMI.addFrameInst( MCCFIInstruction::createOffset(nullptr, DwarfFramePtr, 2 * stackGrowth)); BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); } if (NeedsWinEH) { BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) .addImm(FramePtr) .setMIFlag(MachineInstr::FrameSetup); } if (!IsWinEH) { // Update EBP with the new base value. BuildMI(MBB, MBBI, DL, TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), FramePtr) .addReg(StackPtr) .setMIFlag(MachineInstr::FrameSetup); } if (NeedsDwarfCFI) { // Mark effective beginning of when frame pointer becomes valid. // Define the current CFA to use the EBP/RBP register. unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(MachineFramePtr, true); unsigned CFIIndex = MMI.addFrameInst( MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr)); BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); } // Mark the FramePtr as live-in in every block. for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) I->addLiveIn(MachineFramePtr); } else { NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); } // Skip the callee-saved push instructions. bool PushedRegs = false; int StackOffset = 2 * stackGrowth; while (MBBI != MBB.end() && (MBBI->getOpcode() == X86::PUSH32r || MBBI->getOpcode() == X86::PUSH64r)) { PushedRegs = true; unsigned Reg = MBBI->getOperand(0).getReg(); ++MBBI; if (!HasFP && NeedsDwarfCFI) { // Mark callee-saved push instruction. // Define the current CFA rule to use the provided offset. assert(StackSize); unsigned CFIIndex = MMI.addFrameInst( MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset)); BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); StackOffset += stackGrowth; } if (NeedsWinEH) { BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)).addImm(Reg).setMIFlag( MachineInstr::FrameSetup); } } // Realign stack after we pushed callee-saved registers (so that we'll be // able to calculate their offsets from the frame pointer). // Don't do this for Win64, it needs to realign the stack after the prologue. if (!IsWinEH && RegInfo->needsStackRealignment(MF)) { assert(HasFP && "There should be a frame pointer if stack is realigned."); uint64_t Val = -MaxAlign; MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(getANDriOpcode(Uses64BitFramePtr, Val)), StackPtr) .addReg(StackPtr) .addImm(Val) .setMIFlag(MachineInstr::FrameSetup); // The EFLAGS implicit def is dead. MI->getOperand(3).setIsDead(); } // If there is an SUB32ri of ESP immediately before this instruction, merge // the two. This can be the case when tail call elimination is enabled and // the callee has more arguments then the caller. NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true); // Adjust stack pointer: ESP -= numbytes. // Windows and cygwin/mingw require a prologue helper routine when allocating // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the // stack and adjust the stack pointer in one go. The 64-bit version of // __chkstk is only responsible for probing the stack. The 64-bit prologue is // responsible for adjusting the stack pointer. Touching the stack at 4K // increments is necessary to ensure that the guard pages used by the OS // virtual memory manager are allocated in correct sequence. uint64_t AlignedNumBytes = NumBytes; if (IsWinEH && RegInfo->needsStackRealignment(MF)) AlignedNumBytes = RoundUpToAlignment(AlignedNumBytes, MaxAlign); if (AlignedNumBytes >= StackProbeSize && UseStackProbe) { // Check whether EAX is livein for this function. bool isEAXAlive = isEAXLiveIn(MF); if (isEAXAlive) { // Sanity check that EAX is not livein for this function. // It should not be, so throw an assert. assert(!Is64Bit && "EAX is livein in x64 case!"); // Save EAX BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) .addReg(X86::EAX, RegState::Kill) .setMIFlag(MachineInstr::FrameSetup); } if (Is64Bit) { // Handle the 64-bit Windows ABI case where we need to call __chkstk. // Function prologue is responsible for adjusting the stack pointer. if (isUInt<32>(NumBytes)) { BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) .addImm(NumBytes) .setMIFlag(MachineInstr::FrameSetup); } else if (isInt<32>(NumBytes)) { BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX) .addImm(NumBytes) .setMIFlag(MachineInstr::FrameSetup); } else { BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) .addImm(NumBytes) .setMIFlag(MachineInstr::FrameSetup); } } else { // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. // We'll also use 4 already allocated bytes for EAX. BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) .setMIFlag(MachineInstr::FrameSetup); } // Save a pointer to the MI where we set AX. MachineBasicBlock::iterator SetRAX = MBBI; --SetRAX; // Call __chkstk, __chkstk_ms, or __alloca. emitStackProbeCall(MF, MBB, MBBI, DL); // Apply the frame setup flag to all inserted instrs. for (; SetRAX != MBBI; ++SetRAX) SetRAX->setFlag(MachineInstr::FrameSetup); if (isEAXAlive) { // Restore EAX MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), StackPtr, false, NumBytes - 4); MI->setFlag(MachineInstr::FrameSetup); MBB.insert(MBBI, MI); } } else if (NumBytes) { emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, Uses64BitFramePtr, UseLEA, TII, *RegInfo); } if (NeedsWinEH && NumBytes) BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) .addImm(NumBytes) .setMIFlag(MachineInstr::FrameSetup); int SEHFrameOffset = 0; if (IsWinEH && HasFP) { SEHFrameOffset = calculateSetFPREG(NumBytes); if (SEHFrameOffset) addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), StackPtr, false, SEHFrameOffset); else BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr).addReg(StackPtr); if (NeedsWinEH) BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) .addImm(FramePtr) .addImm(SEHFrameOffset) .setMIFlag(MachineInstr::FrameSetup); } while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { const MachineInstr *FrameInstr = &*MBBI; ++MBBI; if (NeedsWinEH) { int FI; if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { if (X86::FR64RegClass.contains(Reg)) { int Offset = getFrameIndexOffset(MF, FI); Offset += SEHFrameOffset; BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) .addImm(Reg) .addImm(Offset) .setMIFlag(MachineInstr::FrameSetup); } } } } if (NeedsWinEH) BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) .setMIFlag(MachineInstr::FrameSetup); // Realign stack after we spilled callee-saved registers (so that we'll be // able to calculate their offsets from the frame pointer). // Win64 requires aligning the stack after the prologue. if (IsWinEH && RegInfo->needsStackRealignment(MF)) { assert(HasFP && "There should be a frame pointer if stack is realigned."); uint64_t Val = -MaxAlign; MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(getANDriOpcode(Uses64BitFramePtr, Val)), StackPtr) .addReg(StackPtr) .addImm(Val) .setMIFlag(MachineInstr::FrameSetup); // The EFLAGS implicit def is dead. MI->getOperand(3).setIsDead(); } // If we need a base pointer, set it up here. It's whatever the value // of the stack pointer is at this point. Any variable size objects // will be allocated after this, so we can still use the base pointer // to reference locals. if (RegInfo->hasBasePointer(MF)) { // Update the base pointer with the current stack pointer. unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) .addReg(StackPtr) .setMIFlag(MachineInstr::FrameSetup); if (X86FI->getRestoreBasePointer()) { // Stash value of base pointer. Saving RSP instead of EBP shortens dependence chain. unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), FramePtr, true, X86FI->getRestoreBasePointerOffset()) .addReg(StackPtr) .setMIFlag(MachineInstr::FrameSetup); } } if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { // Mark end of stack pointer adjustment. if (!HasFP && NumBytes) { // Define the current CFA rule to use the provided offset. assert(StackSize); unsigned CFIIndex = MMI.addFrameInst( MCCFIInstruction::createDefCfaOffset(nullptr, -StackSize + stackGrowth)); BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); } // Emit DWARF info specifying the offsets of the callee-saved registers. if (PushedRegs) emitCalleeSavedFrameMoves(MBB, MBBI, DL); } } void X86FrameLowering::emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); const X86RegisterInfo *RegInfo = STI.getRegisterInfo(); const TargetInstrInfo &TII = *STI.getInstrInfo(); MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); assert(MBBI != MBB.end() && "Returning block has no instructions"); unsigned RetOpcode = MBBI->getOpcode(); DebugLoc DL = MBBI->getDebugLoc(); bool Is64Bit = STI.is64Bit(); // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. const bool Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); bool HasFP = hasFP(MF); const bool Is64BitILP32 = STI.isTarget64BitILP32(); unsigned SlotSize = RegInfo->getSlotSize(); unsigned FramePtr = RegInfo->getFrameRegister(MF); unsigned MachineFramePtr = Is64BitILP32 ? getX86SubSuperRegister(FramePtr, MVT::i64, false) : FramePtr; unsigned StackPtr = RegInfo->getStackRegister(); bool IsWinEH = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); bool NeedsWinEH = IsWinEH && MF.getFunction()->needsUnwindTableEntry(); bool UseLEAForSP = false; // We can't use LEA instructions for adjusting the stack pointer if this is a // leaf function in the Win64 ABI. Only ADD instructions may be used to // deallocate the stack. if (STI.useLeaForSP()) { if (!IsWinEH) { // We *aren't* using the Win64 ABI which means we are free to use LEA. UseLEAForSP = true; } else if (HasFP) { // We *have* a frame pointer which means we are permitted to use LEA. UseLEAForSP = true; } } switch (RetOpcode) { default: llvm_unreachable("Can only insert epilogue into returning blocks"); case X86::RETQ: case X86::RETL: case X86::RETIL: case X86::RETIQ: case X86::TCRETURNdi: case X86::TCRETURNri: case X86::TCRETURNmi: case X86::TCRETURNdi64: case X86::TCRETURNri64: case X86::TCRETURNmi64: case X86::EH_RETURN: case X86::EH_RETURN64: break; // These are ok } // Get the number of bytes to allocate from the FrameInfo. uint64_t StackSize = MFI->getStackSize(); uint64_t MaxAlign = calculateMaxStackAlign(MF); unsigned CSSize = X86FI->getCalleeSavedFrameSize(); uint64_t NumBytes = 0; if (hasFP(MF)) { // Calculate required stack adjustment. uint64_t FrameSize = StackSize - SlotSize; NumBytes = FrameSize - CSSize; // Callee-saved registers were pushed on stack before the stack was // realigned. if (RegInfo->needsStackRealignment(MF) && !IsWinEH) NumBytes = RoundUpToAlignment(FrameSize, MaxAlign); // Pop EBP. BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), MachineFramePtr); } else { NumBytes = StackSize - CSSize; } uint64_t SEHStackAllocAmt = NumBytes; // Skip the callee-saved pop instructions. while (MBBI != MBB.begin()) { MachineBasicBlock::iterator PI = std::prev(MBBI); unsigned Opc = PI->getOpcode(); if (Opc != X86::POP32r && Opc != X86::POP64r && Opc != X86::DBG_VALUE && !PI->isTerminator()) break; --MBBI; } MachineBasicBlock::iterator FirstCSPop = MBBI; DL = MBBI->getDebugLoc(); // If there is an ADD32ri or SUB32ri of ESP immediately before this // instruction, merge the two instructions. if (NumBytes || MFI->hasVarSizedObjects()) mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes); // If dynamic alloca is used, then reset esp to point to the last callee-saved // slot before popping them off! Same applies for the case, when stack was // realigned. if (RegInfo->needsStackRealignment(MF) || MFI->hasVarSizedObjects()) { if (RegInfo->needsStackRealignment(MF)) MBBI = FirstCSPop; unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); uint64_t LEAAmount = IsWinEH ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; // There are only two legal forms of epilogue: // - add SEHAllocationSize, %rsp // - lea SEHAllocationSize(%FramePtr), %rsp // // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. // However, we may use this sequence if we have a frame pointer because the // effects of the prologue can safely be undone. if (LEAAmount != 0) { unsigned Opc = getLEArOpcode(Uses64BitFramePtr); addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), FramePtr, false, LEAAmount); --MBBI; } else { unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) .addReg(FramePtr); --MBBI; } } else if (NumBytes) { // Adjust stack pointer back: ESP += numbytes. emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, Uses64BitFramePtr, UseLEAForSP, TII, *RegInfo); --MBBI; } // Windows unwinder will not invoke function's exception handler if IP is // either in prologue or in epilogue. This behavior causes a problem when a // call immediately precedes an epilogue, because the return address points // into the epilogue. To cope with that, we insert an epilogue marker here, // then replace it with a 'nop' if it ends up immediately after a CALL in the // final emitted code. if (NeedsWinEH) BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); // We're returning from function via eh_return. if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) { MBBI = MBB.getLastNonDebugInstr(); MachineOperand &DestAddr = MBBI->getOperand(0); assert(DestAddr.isReg() && "Offset should be in register!"); BuildMI(MBB, MBBI, DL, TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), StackPtr).addReg(DestAddr.getReg()); } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi || RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64 || RetOpcode == X86::TCRETURNmi64) { bool isMem = RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64; // Tail call return: adjust the stack pointer and jump to callee. MBBI = MBB.getLastNonDebugInstr(); MachineOperand &JumpTarget = MBBI->getOperand(0); MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1); assert(StackAdjust.isImm() && "Expecting immediate value."); // Adjust stack pointer. int StackAdj = StackAdjust.getImm(); int MaxTCDelta = X86FI->getTCReturnAddrDelta(); int Offset = 0; assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive"); // Incoporate the retaddr area. Offset = StackAdj-MaxTCDelta; assert(Offset >= 0 && "Offset should never be negative"); if (Offset) { // Check for possible merge with preceding ADD instruction. Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true); emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, Uses64BitFramePtr, UseLEAForSP, TII, *RegInfo); } // Jump to label or value in register. bool IsWin64 = STI.isTargetWin64(); if (RetOpcode == X86::TCRETURNdi || RetOpcode == X86::TCRETURNdi64) { unsigned Op = (RetOpcode == X86::TCRETURNdi) ? X86::TAILJMPd : (IsWin64 ? X86::TAILJMPd64_REX : X86::TAILJMPd64); MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(Op)); if (JumpTarget.isGlobal()) MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(), JumpTarget.getTargetFlags()); else { assert(JumpTarget.isSymbol()); MIB.addExternalSymbol(JumpTarget.getSymbolName(), JumpTarget.getTargetFlags()); } } else if (RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64) { unsigned Op = (RetOpcode == X86::TCRETURNmi) ? X86::TAILJMPm : (IsWin64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64); MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(Op)); for (unsigned i = 0; i != 5; ++i) MIB.addOperand(MBBI->getOperand(i)); } else if (RetOpcode == X86::TCRETURNri64) { BuildMI(MBB, MBBI, DL, TII.get(IsWin64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64)) .addReg(JumpTarget.getReg(), RegState::Kill); } else { BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr)). addReg(JumpTarget.getReg(), RegState::Kill); } MachineInstr *NewMI = std::prev(MBBI); NewMI->copyImplicitOps(MF, MBBI); // Delete the pseudo instruction TCRETURN. MBB.erase(MBBI); } else if ((RetOpcode == X86::RETQ || RetOpcode == X86::RETL || RetOpcode == X86::RETIQ || RetOpcode == X86::RETIL) && (X86FI->getTCReturnAddrDelta() < 0)) { // Add the return addr area delta back since we are not tail calling. int delta = -1*X86FI->getTCReturnAddrDelta(); MBBI = MBB.getLastNonDebugInstr(); // Check for possible merge with preceding ADD instruction. delta += mergeSPUpdates(MBB, MBBI, StackPtr, true); emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, Uses64BitFramePtr, UseLEAForSP, TII, *RegInfo); } } int X86FrameLowering::getFrameIndexOffset(const MachineFunction &MF, int FI) const { const X86RegisterInfo *RegInfo = MF.getSubtarget<X86Subtarget>().getRegisterInfo(); const MachineFrameInfo *MFI = MF.getFrameInfo(); // Offset will hold the offset from the stack pointer at function entry to the // object. // We need to factor in additional offsets applied during the prologue to the // frame, base, and stack pointer depending on which is used. int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea(); const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); unsigned CSSize = X86FI->getCalleeSavedFrameSize(); uint64_t StackSize = MFI->getStackSize(); unsigned SlotSize = RegInfo->getSlotSize(); bool HasFP = hasFP(MF); bool IsWinEH = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); int64_t FPDelta = 0; if (IsWinEH) { assert(!MFI->hasCalls() || (StackSize % 16) == 8); // Calculate required stack adjustment. uint64_t FrameSize = StackSize - SlotSize; // If required, include space for extra hidden slot for stashing base pointer. if (X86FI->getRestoreBasePointer()) FrameSize += SlotSize; uint64_t NumBytes = FrameSize - CSSize; uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); if (FI && FI == X86FI->getFAIndex()) return -SEHFrameOffset; // FPDelta is the offset from the "traditional" FP location of the old base // pointer followed by return address and the location required by the // restricted Win64 prologue. // Add FPDelta to all offsets below that go through the frame pointer. FPDelta = FrameSize - SEHFrameOffset; assert((!MFI->hasCalls() || (FPDelta % 16) == 0) && "FPDelta isn't aligned per the Win64 ABI!"); } if (RegInfo->hasBasePointer(MF)) { assert(HasFP && "VLAs and dynamic stack realign, but no FP?!"); if (FI < 0) { // Skip the saved EBP. return Offset + SlotSize + FPDelta; } else { assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0); return Offset + StackSize; } } else if (RegInfo->needsStackRealignment(MF)) { if (FI < 0) { // Skip the saved EBP. return Offset + SlotSize + FPDelta; } else { assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0); return Offset + StackSize; } // FIXME: Support tail calls } else { if (!HasFP) return Offset + StackSize; // Skip the saved EBP. Offset += SlotSize; // Skip the RETADDR move area int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); if (TailCallReturnAddrDelta < 0) Offset -= TailCallReturnAddrDelta; } return Offset + FPDelta; } int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, unsigned &FrameReg) const { const X86RegisterInfo *RegInfo = MF.getSubtarget<X86Subtarget>().getRegisterInfo(); // We can't calculate offset from frame pointer if the stack is realigned, // so enforce usage of stack/base pointer. The base pointer is used when we // have dynamic allocas in addition to dynamic realignment. if (RegInfo->hasBasePointer(MF)) FrameReg = RegInfo->getBaseRegister(); else if (RegInfo->needsStackRealignment(MF)) FrameReg = RegInfo->getStackRegister(); else FrameReg = RegInfo->getFrameRegister(MF); return getFrameIndexOffset(MF, FI); } // Simplified from getFrameIndexOffset keeping only StackPointer cases int X86FrameLowering::getFrameIndexOffsetFromSP(const MachineFunction &MF, int FI) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); // Does not include any dynamic realign. const uint64_t StackSize = MFI->getStackSize(); { #ifndef NDEBUG const X86RegisterInfo *RegInfo = MF.getSubtarget<X86Subtarget>().getRegisterInfo(); // Note: LLVM arranges the stack as: // Args > Saved RetPC (<--FP) > CSRs > dynamic alignment (<--BP) // > "Stack Slots" (<--SP) // We can always address StackSlots from RSP. We can usually (unless // needsStackRealignment) address CSRs from RSP, but sometimes need to // address them from RBP. FixedObjects can be placed anywhere in the stack // frame depending on their specific requirements (i.e. we can actually // refer to arguments to the function which are stored in the *callers* // frame). As a result, THE RESULT OF THIS CALL IS MEANINGLESS FOR CSRs // AND FixedObjects IFF needsStackRealignment or hasVarSizedObject. assert(!RegInfo->hasBasePointer(MF) && "we don't handle this case"); // We don't handle tail calls, and shouldn't be seeing them // either. int TailCallReturnAddrDelta = MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta(); assert(!(TailCallReturnAddrDelta < 0) && "we don't handle this case!"); #endif } // This is how the math works out: // // %rsp grows (i.e. gets lower) left to right. Each box below is // one word (eight bytes). Obj0 is the stack slot we're trying to // get to. // // ---------------------------------- // | BP | Obj0 | Obj1 | ... | ObjN | // ---------------------------------- // ^ ^ ^ ^ // A B C E // // A is the incoming stack pointer. // (B - A) is the local area offset (-8 for x86-64) [1] // (C - A) is the Offset returned by MFI->getObjectOffset for Obj0 [2] // // |(E - B)| is the StackSize (absolute value, positive). For a // stack that grown down, this works out to be (B - E). [3] // // E is also the value of %rsp after stack has been set up, and we // want (C - E) -- the value we can add to %rsp to get to Obj0. Now // (C - E) == (C - A) - (B - A) + (B - E) // { Using [1], [2] and [3] above } // == getObjectOffset - LocalAreaOffset + StackSize // // Get the Offset from the StackPointer int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea(); return Offset + StackSize; } // Simplified from getFrameIndexReference keeping only StackPointer cases int X86FrameLowering::getFrameIndexReferenceFromSP(const MachineFunction &MF, int FI, unsigned &FrameReg) const { const X86RegisterInfo *RegInfo = MF.getSubtarget<X86Subtarget>().getRegisterInfo(); assert(!RegInfo->hasBasePointer(MF) && "we don't handle this case"); FrameReg = RegInfo->getStackRegister(); return getFrameIndexOffsetFromSP(MF, FI); } bool X86FrameLowering::assignCalleeSavedSpillSlots( MachineFunction &MF, const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const { MachineFrameInfo *MFI = MF.getFrameInfo(); const X86RegisterInfo *RegInfo = MF.getSubtarget<X86Subtarget>().getRegisterInfo(); unsigned SlotSize = RegInfo->getSlotSize(); X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); unsigned CalleeSavedFrameSize = 0; int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); if (hasFP(MF)) { // emitPrologue always spills frame register the first thing. SpillSlotOffset -= SlotSize; MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); // Since emitPrologue and emitEpilogue will handle spilling and restoring of // the frame register, we can delete it from CSI list and not have to worry // about avoiding it later. unsigned FPReg = RegInfo->getFrameRegister(MF); for (unsigned i = 0; i < CSI.size(); ++i) { if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { CSI.erase(CSI.begin() + i); break; } } } // Assign slots for GPRs. It increases frame size. for (unsigned i = CSI.size(); i != 0; --i) { unsigned Reg = CSI[i - 1].getReg(); if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) continue; SpillSlotOffset -= SlotSize; CalleeSavedFrameSize += SlotSize; int SlotIndex = MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); CSI[i - 1].setFrameIdx(SlotIndex); } X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); // Assign slots for XMMs. for (unsigned i = CSI.size(); i != 0; --i) { unsigned Reg = CSI[i - 1].getReg(); if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) continue; const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg); // ensure alignment SpillSlotOffset -= std::abs(SpillSlotOffset) % RC->getAlignment(); // spill into slot SpillSlotOffset -= RC->getSize(); int SlotIndex = MFI->CreateFixedSpillStackObject(RC->getSize(), SpillSlotOffset); CSI[i - 1].setFrameIdx(SlotIndex); MFI->ensureMaxAlignment(RC->getAlignment()); } return true; } bool X86FrameLowering::spillCalleeSavedRegisters( MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector<CalleeSavedInfo> &CSI, const TargetRegisterInfo *TRI) const { DebugLoc DL = MBB.findDebugLoc(MI); MachineFunction &MF = *MBB.getParent(); const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); const TargetInstrInfo &TII = *STI.getInstrInfo(); // Push GPRs. It increases frame size. unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; for (unsigned i = CSI.size(); i != 0; --i) { unsigned Reg = CSI[i - 1].getReg(); if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) continue; // Add the callee-saved register as live-in. It's killed at the spill. MBB.addLiveIn(Reg); BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill) .setMIFlag(MachineInstr::FrameSetup); } // Make XMM regs spilled. X86 does not have ability of push/pop XMM. // It can be done by spilling XMMs to stack frame. for (unsigned i = CSI.size(); i != 0; --i) { unsigned Reg = CSI[i-1].getReg(); if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) continue; // Add the callee-saved register as live-in. It's killed at the spill. MBB.addLiveIn(Reg); const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC, TRI); --MI; MI->setFlag(MachineInstr::FrameSetup); ++MI; } return true; } bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector<CalleeSavedInfo> &CSI, const TargetRegisterInfo *TRI) const { if (CSI.empty()) return false; DebugLoc DL = MBB.findDebugLoc(MI); MachineFunction &MF = *MBB.getParent(); const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); const TargetInstrInfo &TII = *STI.getInstrInfo(); // Reload XMMs from stack frame. for (unsigned i = 0, e = CSI.size(); i != e; ++i) { unsigned Reg = CSI[i].getReg(); if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) continue; const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); } // POP GPRs. unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; for (unsigned i = 0, e = CSI.size(); i != e; ++i) { unsigned Reg = CSI[i].getReg(); if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) continue; BuildMI(MBB, MI, DL, TII.get(Opc), Reg); } return true; } void X86FrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF, RegScavenger *RS) const { MachineFrameInfo *MFI = MF.getFrameInfo(); const X86RegisterInfo *RegInfo = MF.getSubtarget<X86Subtarget>().getRegisterInfo(); unsigned SlotSize = RegInfo->getSlotSize(); X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); if (TailCallReturnAddrDelta < 0) { // create RETURNADDR area // arg // arg // RETADDR // { ... // RETADDR area // ... // } // [EBP] MFI->CreateFixedObject(-TailCallReturnAddrDelta, TailCallReturnAddrDelta - SlotSize, true); } // Spill the BasePtr if it's used. if (RegInfo->hasBasePointer(MF)) MF.getRegInfo().setPhysRegUsed(RegInfo->getBaseRegister()); } static bool HasNestArgument(const MachineFunction *MF) { const Function *F = MF->getFunction(); for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; I++) { if (I->hasNestAttr()) return true; } return false; } /// GetScratchRegister - Get a temp register for performing work in the /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform /// and the properties of the function either one or two registers will be /// needed. Set primary to true for the first register, false for the second. static unsigned GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv(); // Erlang stuff. if (CallingConvention == CallingConv::HiPE) { if (Is64Bit) return Primary ? X86::R14 : X86::R13; else return Primary ? X86::EBX : X86::EDI; } if (Is64Bit) { if (IsLP64) return Primary ? X86::R11 : X86::R12; else return Primary ? X86::R11D : X86::R12D; } bool IsNested = HasNestArgument(&MF); if (CallingConvention == CallingConv::X86_FastCall || CallingConvention == CallingConv::Fast) { if (IsNested) report_fatal_error("Segmented stacks does not support fastcall with " "nested function."); return Primary ? X86::EAX : X86::ECX; } if (IsNested) return Primary ? X86::EDX : X86::EAX; return Primary ? X86::ECX : X86::EAX; } // The stack limit in the TCB is set to this many bytes above the actual stack // limit. static const uint64_t kSplitStackAvailable = 256; void X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const { MachineBasicBlock &prologueMBB = MF.front(); MachineFrameInfo *MFI = MF.getFrameInfo(); const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); const TargetInstrInfo &TII = *STI.getInstrInfo(); uint64_t StackSize; bool Is64Bit = STI.is64Bit(); const bool IsLP64 = STI.isTarget64BitLP64(); unsigned TlsReg, TlsOffset; DebugLoc DL; unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); assert(!MF.getRegInfo().isLiveIn(ScratchReg) && "Scratch register is live-in"); if (MF.getFunction()->isVarArg()) report_fatal_error("Segmented stacks do not support vararg functions."); if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && !STI.isTargetWin64() && !STI.isTargetFreeBSD() && !STI.isTargetDragonFly()) report_fatal_error("Segmented stacks not supported on this platform."); // Eventually StackSize will be calculated by a link-time pass; which will // also decide whether checking code needs to be injected into this particular // prologue. StackSize = MFI->getStackSize(); // Do not generate a prologue for functions with a stack of size zero if (StackSize == 0) return; MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); bool IsNested = false; // We need to know if the function has a nest argument only in 64 bit mode. if (Is64Bit) IsNested = HasNestArgument(&MF); // The MOV R10, RAX needs to be in a different block, since the RET we emit in // allocMBB needs to be last (terminating) instruction. for (MachineBasicBlock::livein_iterator i = prologueMBB.livein_begin(), e = prologueMBB.livein_end(); i != e; i++) { allocMBB->addLiveIn(*i); checkMBB->addLiveIn(*i); } if (IsNested) allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); MF.push_front(allocMBB); MF.push_front(checkMBB); // When the frame size is less than 256 we just compare the stack // boundary directly to the value of the stack pointer, per gcc. bool CompareStackPointer = StackSize < kSplitStackAvailable; // Read the limit off the current stacklet off the stack_guard location. if (Is64Bit) { if (STI.isTargetLinux()) { TlsReg = X86::FS; TlsOffset = IsLP64 ? 0x70 : 0x40; } else if (STI.isTargetDarwin()) { TlsReg = X86::GS; TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. } else if (STI.isTargetWin64()) { TlsReg = X86::GS; TlsOffset = 0x28; // pvArbitrary, reserved for application use } else if (STI.isTargetFreeBSD()) { TlsReg = X86::FS; TlsOffset = 0x18; } else if (STI.isTargetDragonFly()) { TlsReg = X86::FS; TlsOffset = 0x20; // use tls_tcb.tcb_segstack } else { report_fatal_error("Segmented stacks not supported on this platform."); } if (CompareStackPointer) ScratchReg = IsLP64 ? X86::RSP : X86::ESP; else BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) .addImm(1).addReg(0).addImm(-StackSize).addReg(0); BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); } else { if (STI.isTargetLinux()) { TlsReg = X86::GS; TlsOffset = 0x30; } else if (STI.isTargetDarwin()) { TlsReg = X86::GS; TlsOffset = 0x48 + 90*4; } else if (STI.isTargetWin32()) { TlsReg = X86::FS; TlsOffset = 0x14; // pvArbitrary, reserved for application use } else if (STI.isTargetDragonFly()) { TlsReg = X86::FS; TlsOffset = 0x10; // use tls_tcb.tcb_segstack } else if (STI.isTargetFreeBSD()) { report_fatal_error("Segmented stacks not supported on FreeBSD i386."); } else { report_fatal_error("Segmented stacks not supported on this platform."); } if (CompareStackPointer) ScratchReg = X86::ESP; else BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) .addImm(1).addReg(0).addImm(-StackSize).addReg(0); if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || STI.isTargetDragonFly()) { BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); } else if (STI.isTargetDarwin()) { // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. unsigned ScratchReg2; bool SaveScratch2; if (CompareStackPointer) { // The primary scratch register is available for holding the TLS offset. ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); SaveScratch2 = false; } else { // Need to use a second register to hold the TLS offset ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); // Unfortunately, with fastcc the second scratch register may hold an // argument. SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); } // If Scratch2 is live-in then it needs to be saved. assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && "Scratch register is live-in and not saved"); if (SaveScratch2) BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) .addReg(ScratchReg2, RegState::Kill); BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) .addImm(TlsOffset); BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) .addReg(ScratchReg) .addReg(ScratchReg2).addImm(1).addReg(0) .addImm(0) .addReg(TlsReg); if (SaveScratch2) BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); } } // This jump is taken if SP >= (Stacklet Limit + Stack Space required). // It jumps to normal execution of the function body. BuildMI(checkMBB, DL, TII.get(X86::JA_1)).addMBB(&prologueMBB); // On 32 bit we first push the arguments size and then the frame size. On 64 // bit, we pass the stack frame size in r10 and the argument size in r11. if (Is64Bit) { // Functions with nested arguments use R10, so it needs to be saved across // the call to _morestack const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri; if (IsNested) BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); BuildMI(allocMBB, DL, TII.get(MOVri), Reg10) .addImm(StackSize); BuildMI(allocMBB, DL, TII.get(MOVri), Reg11) .addImm(X86FI->getArgumentStackSize()); MF.getRegInfo().setPhysRegUsed(Reg10); MF.getRegInfo().setPhysRegUsed(Reg11); } else { BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) .addImm(X86FI->getArgumentStackSize()); BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) .addImm(StackSize); } // __morestack is in libgcc if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { // Under the large code model, we cannot assume that __morestack lives // within 2^31 bytes of the call site, so we cannot use pc-relative // addressing. We cannot perform the call via a temporary register, // as the rax register may be used to store the static chain, and all // other suitable registers may be either callee-save or used for // parameter passing. We cannot use the stack at this point either // because __morestack manipulates the stack directly. // // To avoid these issues, perform an indirect call via a read-only memory // location containing the address. // // This solution is not perfect, as it assumes that the .rodata section // is laid out within 2^31 bytes of each function body, but this seems // to be sufficient for JIT. BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) .addReg(X86::RIP) .addImm(0) .addReg(0) .addExternalSymbol("__morestack_addr") .addReg(0); MF.getMMI().setUsesMorestackAddr(true); } else { if (Is64Bit) BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) .addExternalSymbol("__morestack"); else BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) .addExternalSymbol("__morestack"); } if (IsNested) BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); else BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); allocMBB->addSuccessor(&prologueMBB); checkMBB->addSuccessor(allocMBB); checkMBB->addSuccessor(&prologueMBB); #ifdef XDEBUG MF.verify(); #endif } /// Erlang programs may need a special prologue to handle the stack size they /// might need at runtime. That is because Erlang/OTP does not implement a C /// stack but uses a custom implementation of hybrid stack/heap architecture. /// (for more information see Eric Stenman's Ph.D. thesis: /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) /// /// CheckStack: /// temp0 = sp - MaxStack /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart /// OldStart: /// ... /// IncStack: /// call inc_stack # doubles the stack space /// temp0 = sp - MaxStack /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart void X86FrameLowering::adjustForHiPEPrologue(MachineFunction &MF) const { const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); const TargetInstrInfo &TII = *STI.getInstrInfo(); MachineFrameInfo *MFI = MF.getFrameInfo(); const unsigned SlotSize = STI.getRegisterInfo()->getSlotSize(); const bool Is64Bit = STI.is64Bit(); const bool IsLP64 = STI.isTarget64BitLP64(); DebugLoc DL; // HiPE-specific values const unsigned HipeLeafWords = 24; const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; const unsigned Guaranteed = HipeLeafWords * SlotSize; unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ? MF.getFunction()->arg_size() - CCRegisteredArgs : 0; unsigned MaxStack = MFI->getStackSize() + CallerStkArity*SlotSize + SlotSize; assert(STI.isTargetLinux() && "HiPE prologue is only supported on Linux operating systems."); // Compute the largest caller's frame that is needed to fit the callees' // frames. This 'MaxStack' is computed from: // // a) the fixed frame size, which is the space needed for all spilled temps, // b) outgoing on-stack parameter areas, and // c) the minimum stack space this function needs to make available for the // functions it calls (a tunable ABI property). if (MFI->hasCalls()) { unsigned MoreStackForCalls = 0; for (MachineFunction::iterator MBBI = MF.begin(), MBBE = MF.end(); MBBI != MBBE; ++MBBI) for (MachineBasicBlock::iterator MI = MBBI->begin(), ME = MBBI->end(); MI != ME; ++MI) { if (!MI->isCall()) continue; // Get callee operand. const MachineOperand &MO = MI->getOperand(0); // Only take account of global function calls (no closures etc.). if (!MO.isGlobal()) continue; const Function *F = dyn_cast<Function>(MO.getGlobal()); if (!F) continue; // Do not update 'MaxStack' for primitive and built-in functions // (encoded with names either starting with "erlang."/"bif_" or not // having a ".", such as a simple <Module>.<Function>.<Arity>, or an // "_", such as the BIF "suspend_0") as they are executed on another // stack. if (F->getName().find("erlang.") != StringRef::npos || F->getName().find("bif_") != StringRef::npos || F->getName().find_first_of("._") == StringRef::npos) continue; unsigned CalleeStkArity = F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; if (HipeLeafWords - 1 > CalleeStkArity) MoreStackForCalls = std::max(MoreStackForCalls, (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); } MaxStack += MoreStackForCalls; } // If the stack frame needed is larger than the guaranteed then runtime checks // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. if (MaxStack > Guaranteed) { MachineBasicBlock &prologueMBB = MF.front(); MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); for (MachineBasicBlock::livein_iterator I = prologueMBB.livein_begin(), E = prologueMBB.livein_end(); I != E; I++) { stackCheckMBB->addLiveIn(*I); incStackMBB->addLiveIn(*I); } MF.push_front(incStackMBB); MF.push_front(stackCheckMBB); unsigned ScratchReg, SPReg, PReg, SPLimitOffset; unsigned LEAop, CMPop, CALLop; if (Is64Bit) { SPReg = X86::RSP; PReg = X86::RBP; LEAop = X86::LEA64r; CMPop = X86::CMP64rm; CALLop = X86::CALL64pcrel32; SPLimitOffset = 0x90; } else { SPReg = X86::ESP; PReg = X86::EBP; LEAop = X86::LEA32r; CMPop = X86::CMP32rm; CALLop = X86::CALLpcrel32; SPLimitOffset = 0x4c; } ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); assert(!MF.getRegInfo().isLiveIn(ScratchReg) && "HiPE prologue scratch register is live-in"); // Create new MBB for StackCheck: addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), SPReg, false, -MaxStack); // SPLimitOffset is in a fixed heap location (pointed by BP). addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) .addReg(ScratchReg), PReg, false, SPLimitOffset); BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_1)).addMBB(&prologueMBB); // Create new MBB for IncStack: BuildMI(incStackMBB, DL, TII.get(CALLop)). addExternalSymbol("inc_stack_0"); addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), SPReg, false, -MaxStack); addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) .addReg(ScratchReg), PReg, false, SPLimitOffset); BuildMI(incStackMBB, DL, TII.get(X86::JLE_1)).addMBB(incStackMBB); stackCheckMBB->addSuccessor(&prologueMBB, 99); stackCheckMBB->addSuccessor(incStackMBB, 1); incStackMBB->addSuccessor(&prologueMBB, 99); incStackMBB->addSuccessor(incStackMBB, 1); } #ifdef XDEBUG MF.verify(); #endif } void X86FrameLowering:: eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); const TargetInstrInfo &TII = *STI.getInstrInfo(); const X86RegisterInfo &RegInfo = *STI.getRegisterInfo(); unsigned StackPtr = RegInfo.getStackRegister(); bool reserveCallFrame = hasReservedCallFrame(MF); int Opcode = I->getOpcode(); bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); bool IsLP64 = STI.isTarget64BitLP64(); DebugLoc DL = I->getDebugLoc(); uint64_t Amount = !reserveCallFrame ? I->getOperand(0).getImm() : 0; uint64_t InternalAmt = (isDestroy || Amount) ? I->getOperand(1).getImm() : 0; I = MBB.erase(I); if (!reserveCallFrame) { // If the stack pointer can be changed after prologue, turn the // adjcallstackup instruction into a 'sub ESP, <amt>' and the // adjcallstackdown instruction into 'add ESP, <amt>' if (Amount == 0) return; // We need to keep the stack aligned properly. To do this, we round the // amount of space needed for the outgoing arguments up to the next // alignment boundary. unsigned StackAlign = getStackAlignment(); Amount = RoundUpToAlignment(Amount, StackAlign); MachineInstr *New = nullptr; // Factor out the amount that gets handled inside the sequence // (Pushes of argument for frame setup, callee pops for frame destroy) Amount -= InternalAmt; if (Amount) { if (Opcode == TII.getCallFrameSetupOpcode()) { New = BuildMI(MF, DL, TII.get(getSUBriOpcode(IsLP64, Amount)), StackPtr) .addReg(StackPtr).addImm(Amount); } else { assert(Opcode == TII.getCallFrameDestroyOpcode()); unsigned Opc = getADDriOpcode(IsLP64, Amount); New = BuildMI(MF, DL, TII.get(Opc), StackPtr) .addReg(StackPtr).addImm(Amount); } } if (New) { // The EFLAGS implicit def is dead. New->getOperand(3).setIsDead(); // Replace the pseudo instruction with a new instruction. MBB.insert(I, New); } return; } if (Opcode == TII.getCallFrameDestroyOpcode() && InternalAmt) { // If we are performing frame pointer elimination and if the callee pops // something off the stack pointer, add it back. We do this until we have // more advanced stack pointer tracking ability. unsigned Opc = getSUBriOpcode(IsLP64, InternalAmt); MachineInstr *New = BuildMI(MF, DL, TII.get(Opc), StackPtr) .addReg(StackPtr).addImm(InternalAmt); // The EFLAGS implicit def is dead. New->getOperand(3).setIsDead(); // We are not tracking the stack pointer adjustment by the callee, so make // sure we restore the stack pointer immediately after the call, there may // be spill code inserted between the CALL and ADJCALLSTACKUP instructions. MachineBasicBlock::iterator B = MBB.begin(); while (I != B && !std::prev(I)->isCall()) --I; MBB.insert(I, New); } }