//===-- SparcAsmParser.cpp - Parse Sparc assembly to MCInst instructions --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/SparcMCTargetDesc.h" #include "MCTargetDesc/SparcMCExpr.h" #include "llvm/ADT/STLExtras.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCTargetAsmParser.h" #include "llvm/Support/TargetRegistry.h" using namespace llvm; // The generated AsmMatcher SparcGenAsmMatcher uses "Sparc" as the target // namespace. But SPARC backend uses "SP" as its namespace. namespace llvm { namespace Sparc { using namespace SP; } } namespace { class SparcOperand; class SparcAsmParser : public MCTargetAsmParser { MCSubtargetInfo &STI; MCAsmParser &Parser; /// @name Auto-generated Match Functions /// { #define GET_ASSEMBLER_HEADER #include "SparcGenAsmMatcher.inc" /// } // public interface of the MCTargetAsmParser. bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) override; bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) override; bool ParseDirective(AsmToken DirectiveID) override; unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, unsigned Kind) override; // Custom parse functions for Sparc specific operands. OperandMatchResultTy parseMEMOperand(OperandVector &Operands); OperandMatchResultTy parseOperand(OperandVector &Operands, StringRef Name); OperandMatchResultTy parseSparcAsmOperand(std::unique_ptr<SparcOperand> &Operand, bool isCall = false); OperandMatchResultTy parseBranchModifiers(OperandVector &Operands); // returns true if Tok is matched to a register and returns register in RegNo. bool matchRegisterName(const AsmToken &Tok, unsigned &RegNo, unsigned &RegKind); bool matchSparcAsmModifiers(const MCExpr *&EVal, SMLoc &EndLoc); bool parseDirectiveWord(unsigned Size, SMLoc L); bool is64Bit() const { return STI.getTargetTriple().startswith("sparcv9"); } public: SparcAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser, const MCInstrInfo &MII, const MCTargetOptions &Options) : MCTargetAsmParser(), STI(sti), Parser(parser) { // Initialize the set of available features. setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); } }; static unsigned IntRegs[32] = { Sparc::G0, Sparc::G1, Sparc::G2, Sparc::G3, Sparc::G4, Sparc::G5, Sparc::G6, Sparc::G7, Sparc::O0, Sparc::O1, Sparc::O2, Sparc::O3, Sparc::O4, Sparc::O5, Sparc::O6, Sparc::O7, Sparc::L0, Sparc::L1, Sparc::L2, Sparc::L3, Sparc::L4, Sparc::L5, Sparc::L6, Sparc::L7, Sparc::I0, Sparc::I1, Sparc::I2, Sparc::I3, Sparc::I4, Sparc::I5, Sparc::I6, Sparc::I7 }; static unsigned FloatRegs[32] = { Sparc::F0, Sparc::F1, Sparc::F2, Sparc::F3, Sparc::F4, Sparc::F5, Sparc::F6, Sparc::F7, Sparc::F8, Sparc::F9, Sparc::F10, Sparc::F11, Sparc::F12, Sparc::F13, Sparc::F14, Sparc::F15, Sparc::F16, Sparc::F17, Sparc::F18, Sparc::F19, Sparc::F20, Sparc::F21, Sparc::F22, Sparc::F23, Sparc::F24, Sparc::F25, Sparc::F26, Sparc::F27, Sparc::F28, Sparc::F29, Sparc::F30, Sparc::F31 }; static unsigned DoubleRegs[32] = { Sparc::D0, Sparc::D1, Sparc::D2, Sparc::D3, Sparc::D4, Sparc::D5, Sparc::D6, Sparc::D7, Sparc::D8, Sparc::D7, Sparc::D8, Sparc::D9, Sparc::D12, Sparc::D13, Sparc::D14, Sparc::D15, Sparc::D16, Sparc::D17, Sparc::D18, Sparc::D19, Sparc::D20, Sparc::D21, Sparc::D22, Sparc::D23, Sparc::D24, Sparc::D25, Sparc::D26, Sparc::D27, Sparc::D28, Sparc::D29, Sparc::D30, Sparc::D31 }; static unsigned QuadFPRegs[32] = { Sparc::Q0, Sparc::Q1, Sparc::Q2, Sparc::Q3, Sparc::Q4, Sparc::Q5, Sparc::Q6, Sparc::Q7, Sparc::Q8, Sparc::Q9, Sparc::Q10, Sparc::Q11, Sparc::Q12, Sparc::Q13, Sparc::Q14, Sparc::Q15 }; /// SparcOperand - Instances of this class represent a parsed Sparc machine /// instruction. class SparcOperand : public MCParsedAsmOperand { public: enum RegisterKind { rk_None, rk_IntReg, rk_FloatReg, rk_DoubleReg, rk_QuadReg, rk_CCReg, rk_Y }; private: enum KindTy { k_Token, k_Register, k_Immediate, k_MemoryReg, k_MemoryImm } Kind; SMLoc StartLoc, EndLoc; struct Token { const char *Data; unsigned Length; }; struct RegOp { unsigned RegNum; RegisterKind Kind; }; struct ImmOp { const MCExpr *Val; }; struct MemOp { unsigned Base; unsigned OffsetReg; const MCExpr *Off; }; union { struct Token Tok; struct RegOp Reg; struct ImmOp Imm; struct MemOp Mem; }; public: SparcOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} bool isToken() const override { return Kind == k_Token; } bool isReg() const override { return Kind == k_Register; } bool isImm() const override { return Kind == k_Immediate; } bool isMem() const override { return isMEMrr() || isMEMri(); } bool isMEMrr() const { return Kind == k_MemoryReg; } bool isMEMri() const { return Kind == k_MemoryImm; } bool isFloatReg() const { return (Kind == k_Register && Reg.Kind == rk_FloatReg); } bool isFloatOrDoubleReg() const { return (Kind == k_Register && (Reg.Kind == rk_FloatReg || Reg.Kind == rk_DoubleReg)); } StringRef getToken() const { assert(Kind == k_Token && "Invalid access!"); return StringRef(Tok.Data, Tok.Length); } unsigned getReg() const override { assert((Kind == k_Register) && "Invalid access!"); return Reg.RegNum; } const MCExpr *getImm() const { assert((Kind == k_Immediate) && "Invalid access!"); return Imm.Val; } unsigned getMemBase() const { assert((Kind == k_MemoryReg || Kind == k_MemoryImm) && "Invalid access!"); return Mem.Base; } unsigned getMemOffsetReg() const { assert((Kind == k_MemoryReg) && "Invalid access!"); return Mem.OffsetReg; } const MCExpr *getMemOff() const { assert((Kind == k_MemoryImm) && "Invalid access!"); return Mem.Off; } /// getStartLoc - Get the location of the first token of this operand. SMLoc getStartLoc() const override { return StartLoc; } /// getEndLoc - Get the location of the last token of this operand. SMLoc getEndLoc() const override { return EndLoc; } void print(raw_ostream &OS) const override { switch (Kind) { case k_Token: OS << "Token: " << getToken() << "\n"; break; case k_Register: OS << "Reg: #" << getReg() << "\n"; break; case k_Immediate: OS << "Imm: " << getImm() << "\n"; break; case k_MemoryReg: OS << "Mem: " << getMemBase() << "+" << getMemOffsetReg() << "\n"; break; case k_MemoryImm: assert(getMemOff() != nullptr); OS << "Mem: " << getMemBase() << "+" << *getMemOff() << "\n"; break; } } void addRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getReg())); } void addImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCExpr *Expr = getImm(); addExpr(Inst, Expr); } void addExpr(MCInst &Inst, const MCExpr *Expr) const{ // Add as immediate when possible. Null MCExpr = 0. if (!Expr) Inst.addOperand(MCOperand::CreateImm(0)); else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) Inst.addOperand(MCOperand::CreateImm(CE->getValue())); else Inst.addOperand(MCOperand::CreateExpr(Expr)); } void addMEMrrOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getMemBase())); assert(getMemOffsetReg() != 0 && "Invalid offset"); Inst.addOperand(MCOperand::CreateReg(getMemOffsetReg())); } void addMEMriOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getMemBase())); const MCExpr *Expr = getMemOff(); addExpr(Inst, Expr); } static std::unique_ptr<SparcOperand> CreateToken(StringRef Str, SMLoc S) { auto Op = make_unique<SparcOperand>(k_Token); Op->Tok.Data = Str.data(); Op->Tok.Length = Str.size(); Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr<SparcOperand> CreateReg(unsigned RegNum, unsigned Kind, SMLoc S, SMLoc E) { auto Op = make_unique<SparcOperand>(k_Register); Op->Reg.RegNum = RegNum; Op->Reg.Kind = (SparcOperand::RegisterKind)Kind; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<SparcOperand> CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) { auto Op = make_unique<SparcOperand>(k_Immediate); Op->Imm.Val = Val; Op->StartLoc = S; Op->EndLoc = E; return Op; } static bool MorphToDoubleReg(SparcOperand &Op) { unsigned Reg = Op.getReg(); assert(Op.Reg.Kind == rk_FloatReg); unsigned regIdx = Reg - Sparc::F0; if (regIdx % 2 || regIdx > 31) return false; Op.Reg.RegNum = DoubleRegs[regIdx / 2]; Op.Reg.Kind = rk_DoubleReg; return true; } static bool MorphToQuadReg(SparcOperand &Op) { unsigned Reg = Op.getReg(); unsigned regIdx = 0; switch (Op.Reg.Kind) { default: llvm_unreachable("Unexpected register kind!"); case rk_FloatReg: regIdx = Reg - Sparc::F0; if (regIdx % 4 || regIdx > 31) return false; Reg = QuadFPRegs[regIdx / 4]; break; case rk_DoubleReg: regIdx = Reg - Sparc::D0; if (regIdx % 2 || regIdx > 31) return false; Reg = QuadFPRegs[regIdx / 2]; break; } Op.Reg.RegNum = Reg; Op.Reg.Kind = rk_QuadReg; return true; } static std::unique_ptr<SparcOperand> MorphToMEMrr(unsigned Base, std::unique_ptr<SparcOperand> Op) { unsigned offsetReg = Op->getReg(); Op->Kind = k_MemoryReg; Op->Mem.Base = Base; Op->Mem.OffsetReg = offsetReg; Op->Mem.Off = nullptr; return Op; } static std::unique_ptr<SparcOperand> CreateMEMri(unsigned Base, const MCExpr *Off, SMLoc S, SMLoc E) { auto Op = make_unique<SparcOperand>(k_MemoryImm); Op->Mem.Base = Base; Op->Mem.OffsetReg = 0; Op->Mem.Off = Off; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr<SparcOperand> MorphToMEMri(unsigned Base, std::unique_ptr<SparcOperand> Op) { const MCExpr *Imm = Op->getImm(); Op->Kind = k_MemoryImm; Op->Mem.Base = Base; Op->Mem.OffsetReg = 0; Op->Mem.Off = Imm; return Op; } }; } // end namespace bool SparcAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) { MCInst Inst; SmallVector<MCInst, 8> Instructions; unsigned MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); switch (MatchResult) { case Match_Success: { Inst.setLoc(IDLoc); Out.EmitInstruction(Inst, STI); return false; } case Match_MissingFeature: return Error(IDLoc, "instruction requires a CPU feature not currently enabled"); case Match_InvalidOperand: { SMLoc ErrorLoc = IDLoc; if (ErrorInfo != ~0ULL) { if (ErrorInfo >= Operands.size()) return Error(IDLoc, "too few operands for instruction"); ErrorLoc = ((SparcOperand &)*Operands[ErrorInfo]).getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; } return Error(ErrorLoc, "invalid operand for instruction"); } case Match_MnemonicFail: return Error(IDLoc, "invalid instruction mnemonic"); } llvm_unreachable("Implement any new match types added!"); } bool SparcAsmParser:: ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { const AsmToken &Tok = Parser.getTok(); StartLoc = Tok.getLoc(); EndLoc = Tok.getEndLoc(); RegNo = 0; if (getLexer().getKind() != AsmToken::Percent) return false; Parser.Lex(); unsigned regKind = SparcOperand::rk_None; if (matchRegisterName(Tok, RegNo, regKind)) { Parser.Lex(); return false; } return Error(StartLoc, "invalid register name"); } static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, unsigned VariantID); bool SparcAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) { // First operand in MCInst is instruction mnemonic. Operands.push_back(SparcOperand::CreateToken(Name, NameLoc)); // apply mnemonic aliases, if any, so that we can parse operands correctly. applyMnemonicAliases(Name, getAvailableFeatures(), 0); if (getLexer().isNot(AsmToken::EndOfStatement)) { // Read the first operand. if (getLexer().is(AsmToken::Comma)) { if (parseBranchModifiers(Operands) != MatchOperand_Success) { SMLoc Loc = getLexer().getLoc(); Parser.eatToEndOfStatement(); return Error(Loc, "unexpected token"); } } if (parseOperand(Operands, Name) != MatchOperand_Success) { SMLoc Loc = getLexer().getLoc(); Parser.eatToEndOfStatement(); return Error(Loc, "unexpected token"); } while (getLexer().is(AsmToken::Comma)) { Parser.Lex(); // Eat the comma. // Parse and remember the operand. if (parseOperand(Operands, Name) != MatchOperand_Success) { SMLoc Loc = getLexer().getLoc(); Parser.eatToEndOfStatement(); return Error(Loc, "unexpected token"); } } } if (getLexer().isNot(AsmToken::EndOfStatement)) { SMLoc Loc = getLexer().getLoc(); Parser.eatToEndOfStatement(); return Error(Loc, "unexpected token"); } Parser.Lex(); // Consume the EndOfStatement. return false; } bool SparcAsmParser:: ParseDirective(AsmToken DirectiveID) { StringRef IDVal = DirectiveID.getString(); if (IDVal == ".byte") return parseDirectiveWord(1, DirectiveID.getLoc()); if (IDVal == ".half") return parseDirectiveWord(2, DirectiveID.getLoc()); if (IDVal == ".word") return parseDirectiveWord(4, DirectiveID.getLoc()); if (IDVal == ".nword") return parseDirectiveWord(is64Bit() ? 8 : 4, DirectiveID.getLoc()); if (is64Bit() && IDVal == ".xword") return parseDirectiveWord(8, DirectiveID.getLoc()); if (IDVal == ".register") { // For now, ignore .register directive. Parser.eatToEndOfStatement(); return false; } // Let the MC layer to handle other directives. return true; } bool SparcAsmParser:: parseDirectiveWord(unsigned Size, SMLoc L) { if (getLexer().isNot(AsmToken::EndOfStatement)) { for (;;) { const MCExpr *Value; if (getParser().parseExpression(Value)) return true; getParser().getStreamer().EmitValue(Value, Size); if (getLexer().is(AsmToken::EndOfStatement)) break; // FIXME: Improve diagnostic. if (getLexer().isNot(AsmToken::Comma)) return Error(L, "unexpected token in directive"); Parser.Lex(); } } Parser.Lex(); return false; } SparcAsmParser::OperandMatchResultTy SparcAsmParser::parseMEMOperand(OperandVector &Operands) { SMLoc S, E; unsigned BaseReg = 0; if (ParseRegister(BaseReg, S, E)) { return MatchOperand_NoMatch; } switch (getLexer().getKind()) { default: return MatchOperand_NoMatch; case AsmToken::Comma: case AsmToken::RBrac: case AsmToken::EndOfStatement: Operands.push_back(SparcOperand::CreateMEMri(BaseReg, nullptr, S, E)); return MatchOperand_Success; case AsmToken:: Plus: Parser.Lex(); // Eat the '+' break; case AsmToken::Minus: break; } std::unique_ptr<SparcOperand> Offset; OperandMatchResultTy ResTy = parseSparcAsmOperand(Offset); if (ResTy != MatchOperand_Success || !Offset) return MatchOperand_NoMatch; Operands.push_back( Offset->isImm() ? SparcOperand::MorphToMEMri(BaseReg, std::move(Offset)) : SparcOperand::MorphToMEMrr(BaseReg, std::move(Offset))); return MatchOperand_Success; } SparcAsmParser::OperandMatchResultTy SparcAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); // If there wasn't a custom match, try the generic matcher below. Otherwise, // there was a match, but an error occurred, in which case, just return that // the operand parsing failed. if (ResTy == MatchOperand_Success || ResTy == MatchOperand_ParseFail) return ResTy; if (getLexer().is(AsmToken::LBrac)) { // Memory operand Operands.push_back(SparcOperand::CreateToken("[", Parser.getTok().getLoc())); Parser.Lex(); // Eat the [ if (Mnemonic == "cas" || Mnemonic == "casx") { SMLoc S = Parser.getTok().getLoc(); if (getLexer().getKind() != AsmToken::Percent) return MatchOperand_NoMatch; Parser.Lex(); // eat % unsigned RegNo, RegKind; if (!matchRegisterName(Parser.getTok(), RegNo, RegKind)) return MatchOperand_NoMatch; Parser.Lex(); // Eat the identifier token. SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer()-1); Operands.push_back(SparcOperand::CreateReg(RegNo, RegKind, S, E)); ResTy = MatchOperand_Success; } else { ResTy = parseMEMOperand(Operands); } if (ResTy != MatchOperand_Success) return ResTy; if (!getLexer().is(AsmToken::RBrac)) return MatchOperand_ParseFail; Operands.push_back(SparcOperand::CreateToken("]", Parser.getTok().getLoc())); Parser.Lex(); // Eat the ] return MatchOperand_Success; } std::unique_ptr<SparcOperand> Op; ResTy = parseSparcAsmOperand(Op, (Mnemonic == "call")); if (ResTy != MatchOperand_Success || !Op) return MatchOperand_ParseFail; // Push the parsed operand into the list of operands Operands.push_back(std::move(Op)); return MatchOperand_Success; } SparcAsmParser::OperandMatchResultTy SparcAsmParser::parseSparcAsmOperand(std::unique_ptr<SparcOperand> &Op, bool isCall) { SMLoc S = Parser.getTok().getLoc(); SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); const MCExpr *EVal; Op = nullptr; switch (getLexer().getKind()) { default: break; case AsmToken::Percent: Parser.Lex(); // Eat the '%'. unsigned RegNo; unsigned RegKind; if (matchRegisterName(Parser.getTok(), RegNo, RegKind)) { StringRef name = Parser.getTok().getString(); Parser.Lex(); // Eat the identifier token. E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); switch (RegNo) { default: Op = SparcOperand::CreateReg(RegNo, RegKind, S, E); break; case Sparc::Y: Op = SparcOperand::CreateToken("%y", S); break; case Sparc::ICC: if (name == "xcc") Op = SparcOperand::CreateToken("%xcc", S); else Op = SparcOperand::CreateToken("%icc", S); break; } break; } if (matchSparcAsmModifiers(EVal, E)) { E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); Op = SparcOperand::CreateImm(EVal, S, E); } break; case AsmToken::Minus: case AsmToken::Integer: if (!getParser().parseExpression(EVal, E)) Op = SparcOperand::CreateImm(EVal, S, E); break; case AsmToken::Identifier: { StringRef Identifier; if (!getParser().parseIdentifier(Identifier)) { E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); MCSymbol *Sym = getContext().GetOrCreateSymbol(Identifier); const MCExpr *Res = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_None, getContext()); if (isCall && getContext().getObjectFileInfo()->getRelocM() == Reloc::PIC_) Res = SparcMCExpr::Create(SparcMCExpr::VK_Sparc_WPLT30, Res, getContext()); Op = SparcOperand::CreateImm(Res, S, E); } break; } } return (Op) ? MatchOperand_Success : MatchOperand_ParseFail; } SparcAsmParser::OperandMatchResultTy SparcAsmParser::parseBranchModifiers(OperandVector &Operands) { // parse (,a|,pn|,pt)+ while (getLexer().is(AsmToken::Comma)) { Parser.Lex(); // Eat the comma if (!getLexer().is(AsmToken::Identifier)) return MatchOperand_ParseFail; StringRef modName = Parser.getTok().getString(); if (modName == "a" || modName == "pn" || modName == "pt") { Operands.push_back(SparcOperand::CreateToken(modName, Parser.getTok().getLoc())); Parser.Lex(); // eat the identifier. } } return MatchOperand_Success; } bool SparcAsmParser::matchRegisterName(const AsmToken &Tok, unsigned &RegNo, unsigned &RegKind) { int64_t intVal = 0; RegNo = 0; RegKind = SparcOperand::rk_None; if (Tok.is(AsmToken::Identifier)) { StringRef name = Tok.getString(); // %fp if (name.equals("fp")) { RegNo = Sparc::I6; RegKind = SparcOperand::rk_IntReg; return true; } // %sp if (name.equals("sp")) { RegNo = Sparc::O6; RegKind = SparcOperand::rk_IntReg; return true; } if (name.equals("y")) { RegNo = Sparc::Y; RegKind = SparcOperand::rk_Y; return true; } if (name.equals("icc")) { RegNo = Sparc::ICC; RegKind = SparcOperand::rk_CCReg; return true; } if (name.equals("xcc")) { // FIXME:: check 64bit. RegNo = Sparc::ICC; RegKind = SparcOperand::rk_CCReg; return true; } // %fcc0 - %fcc3 if (name.substr(0, 3).equals_lower("fcc") && !name.substr(3).getAsInteger(10, intVal) && intVal < 4) { // FIXME: check 64bit and handle %fcc1 - %fcc3 RegNo = Sparc::FCC0 + intVal; RegKind = SparcOperand::rk_CCReg; return true; } // %g0 - %g7 if (name.substr(0, 1).equals_lower("g") && !name.substr(1).getAsInteger(10, intVal) && intVal < 8) { RegNo = IntRegs[intVal]; RegKind = SparcOperand::rk_IntReg; return true; } // %o0 - %o7 if (name.substr(0, 1).equals_lower("o") && !name.substr(1).getAsInteger(10, intVal) && intVal < 8) { RegNo = IntRegs[8 + intVal]; RegKind = SparcOperand::rk_IntReg; return true; } if (name.substr(0, 1).equals_lower("l") && !name.substr(1).getAsInteger(10, intVal) && intVal < 8) { RegNo = IntRegs[16 + intVal]; RegKind = SparcOperand::rk_IntReg; return true; } if (name.substr(0, 1).equals_lower("i") && !name.substr(1).getAsInteger(10, intVal) && intVal < 8) { RegNo = IntRegs[24 + intVal]; RegKind = SparcOperand::rk_IntReg; return true; } // %f0 - %f31 if (name.substr(0, 1).equals_lower("f") && !name.substr(1, 2).getAsInteger(10, intVal) && intVal < 32) { RegNo = FloatRegs[intVal]; RegKind = SparcOperand::rk_FloatReg; return true; } // %f32 - %f62 if (name.substr(0, 1).equals_lower("f") && !name.substr(1, 2).getAsInteger(10, intVal) && intVal >= 32 && intVal <= 62 && (intVal % 2 == 0)) { // FIXME: Check V9 RegNo = DoubleRegs[intVal/2]; RegKind = SparcOperand::rk_DoubleReg; return true; } // %r0 - %r31 if (name.substr(0, 1).equals_lower("r") && !name.substr(1, 2).getAsInteger(10, intVal) && intVal < 31) { RegNo = IntRegs[intVal]; RegKind = SparcOperand::rk_IntReg; return true; } } return false; } static bool hasGOTReference(const MCExpr *Expr) { switch (Expr->getKind()) { case MCExpr::Target: if (const SparcMCExpr *SE = dyn_cast<SparcMCExpr>(Expr)) return hasGOTReference(SE->getSubExpr()); break; case MCExpr::Constant: break; case MCExpr::Binary: { const MCBinaryExpr *BE = cast<MCBinaryExpr>(Expr); return hasGOTReference(BE->getLHS()) || hasGOTReference(BE->getRHS()); } case MCExpr::SymbolRef: { const MCSymbolRefExpr &SymRef = *cast<MCSymbolRefExpr>(Expr); return (SymRef.getSymbol().getName() == "_GLOBAL_OFFSET_TABLE_"); } case MCExpr::Unary: return hasGOTReference(cast<MCUnaryExpr>(Expr)->getSubExpr()); } return false; } bool SparcAsmParser::matchSparcAsmModifiers(const MCExpr *&EVal, SMLoc &EndLoc) { AsmToken Tok = Parser.getTok(); if (!Tok.is(AsmToken::Identifier)) return false; StringRef name = Tok.getString(); SparcMCExpr::VariantKind VK = SparcMCExpr::parseVariantKind(name); if (VK == SparcMCExpr::VK_Sparc_None) return false; Parser.Lex(); // Eat the identifier. if (Parser.getTok().getKind() != AsmToken::LParen) return false; Parser.Lex(); // Eat the LParen token. const MCExpr *subExpr; if (Parser.parseParenExpression(subExpr, EndLoc)) return false; bool isPIC = getContext().getObjectFileInfo()->getRelocM() == Reloc::PIC_; switch(VK) { default: break; case SparcMCExpr::VK_Sparc_LO: VK = (hasGOTReference(subExpr) ? SparcMCExpr::VK_Sparc_PC10 : (isPIC ? SparcMCExpr::VK_Sparc_GOT10 : VK)); break; case SparcMCExpr::VK_Sparc_HI: VK = (hasGOTReference(subExpr) ? SparcMCExpr::VK_Sparc_PC22 : (isPIC ? SparcMCExpr::VK_Sparc_GOT22 : VK)); break; } EVal = SparcMCExpr::Create(VK, subExpr, getContext()); return true; } extern "C" void LLVMInitializeSparcAsmParser() { RegisterMCAsmParser<SparcAsmParser> A(TheSparcTarget); RegisterMCAsmParser<SparcAsmParser> B(TheSparcV9Target); } #define GET_REGISTER_MATCHER #define GET_MATCHER_IMPLEMENTATION #include "SparcGenAsmMatcher.inc" unsigned SparcAsmParser::validateTargetOperandClass(MCParsedAsmOperand &GOp, unsigned Kind) { SparcOperand &Op = (SparcOperand &)GOp; if (Op.isFloatOrDoubleReg()) { switch (Kind) { default: break; case MCK_DFPRegs: if (!Op.isFloatReg() || SparcOperand::MorphToDoubleReg(Op)) return MCTargetAsmParser::Match_Success; break; case MCK_QFPRegs: if (SparcOperand::MorphToQuadReg(Op)) return MCTargetAsmParser::Match_Success; break; } } return Match_InvalidOperand; }