//===-- AMDGPUAsmPrinter.cpp - AMDGPU Assebly printer --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// /// The AMDGPUAsmPrinter is used to print both assembly string and also binary /// code. When passed an MCAsmStreamer it prints assembly and when passed /// an MCObjectStreamer it outputs binary code. // //===----------------------------------------------------------------------===// // #include "AMDGPUAsmPrinter.h" #include "InstPrinter/AMDGPUInstPrinter.h" #include "AMDGPU.h" #include "AMDKernelCodeT.h" #include "AMDGPUSubtarget.h" #include "R600Defines.h" #include "R600MachineFunctionInfo.h" #include "R600RegisterInfo.h" #include "SIDefines.h" #include "SIMachineFunctionInfo.h" #include "SIRegisterInfo.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCStreamer.h" #include "llvm/Support/ELF.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Target/TargetLoweringObjectFile.h" using namespace llvm; // TODO: This should get the default rounding mode from the kernel. We just set // the default here, but this could change if the OpenCL rounding mode pragmas // are used. // // The denormal mode here should match what is reported by the OpenCL runtime // for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but // can also be override to flush with the -cl-denorms-are-zero compiler flag. // // AMD OpenCL only sets flush none and reports CL_FP_DENORM for double // precision, and leaves single precision to flush all and does not report // CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports // CL_FP_DENORM for both. // // FIXME: It seems some instructions do not support single precision denormals // regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32, // and sin_f32, cos_f32 on most parts). // We want to use these instructions, and using fp32 denormals also causes // instructions to run at the double precision rate for the device so it's // probably best to just report no single precision denormals. static uint32_t getFPMode(const MachineFunction &F) { const AMDGPUSubtarget& ST = F.getSubtarget<AMDGPUSubtarget>(); // TODO: Is there any real use for the flush in only / flush out only modes? uint32_t FP32Denormals = ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; uint32_t FP64Denormals = ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) | FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) | FP_DENORM_MODE_SP(FP32Denormals) | FP_DENORM_MODE_DP(FP64Denormals); } static AsmPrinter * createAMDGPUAsmPrinterPass(TargetMachine &tm, std::unique_ptr<MCStreamer> &&Streamer) { return new AMDGPUAsmPrinter(tm, std::move(Streamer)); } extern "C" void LLVMInitializeR600AsmPrinter() { TargetRegistry::RegisterAsmPrinter(TheAMDGPUTarget, createAMDGPUAsmPrinterPass); TargetRegistry::RegisterAsmPrinter(TheGCNTarget, createAMDGPUAsmPrinterPass); } AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer) : AsmPrinter(TM, std::move(Streamer)) {} void AMDGPUAsmPrinter::EmitEndOfAsmFile(Module &M) { // This label is used to mark the end of the .text section. const TargetLoweringObjectFile &TLOF = getObjFileLowering(); OutStreamer.SwitchSection(TLOF.getTextSection()); MCSymbol *EndOfTextLabel = OutContext.GetOrCreateSymbol(StringRef(END_OF_TEXT_LABEL_NAME)); OutStreamer.EmitLabel(EndOfTextLabel); } bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) { // The starting address of all shader programs must be 256 bytes aligned. MF.setAlignment(8); SetupMachineFunction(MF); MCContext &Context = getObjFileLowering().getContext(); const MCSectionELF *ConfigSection = Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0); OutStreamer.SwitchSection(ConfigSection); const AMDGPUSubtarget &STM = MF.getSubtarget<AMDGPUSubtarget>(); SIProgramInfo KernelInfo; if (STM.isAmdHsaOS()) { getSIProgramInfo(KernelInfo, MF); EmitAmdKernelCodeT(MF, KernelInfo); OutStreamer.EmitCodeAlignment(2 << (MF.getAlignment() - 1)); } else if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) { getSIProgramInfo(KernelInfo, MF); EmitProgramInfoSI(MF, KernelInfo); } else { EmitProgramInfoR600(MF); } DisasmLines.clear(); HexLines.clear(); DisasmLineMaxLen = 0; EmitFunctionBody(); if (isVerbose()) { const MCSectionELF *CommentSection = Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0); OutStreamer.SwitchSection(CommentSection); if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) { OutStreamer.emitRawComment(" Kernel info:", false); OutStreamer.emitRawComment(" codeLenInByte = " + Twine(KernelInfo.CodeLen), false); OutStreamer.emitRawComment(" NumSgprs: " + Twine(KernelInfo.NumSGPR), false); OutStreamer.emitRawComment(" NumVgprs: " + Twine(KernelInfo.NumVGPR), false); OutStreamer.emitRawComment(" FloatMode: " + Twine(KernelInfo.FloatMode), false); OutStreamer.emitRawComment(" IeeeMode: " + Twine(KernelInfo.IEEEMode), false); OutStreamer.emitRawComment(" ScratchSize: " + Twine(KernelInfo.ScratchSize), false); } else { R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>(); OutStreamer.emitRawComment( Twine("SQ_PGM_RESOURCES:STACK_SIZE = " + Twine(MFI->StackSize))); } } if (STM.dumpCode()) { OutStreamer.SwitchSection( Context.getELFSection(".AMDGPU.disasm", ELF::SHT_NOTE, 0)); for (size_t i = 0; i < DisasmLines.size(); ++i) { std::string Comment(DisasmLineMaxLen - DisasmLines[i].size(), ' '); Comment += " ; " + HexLines[i] + "\n"; OutStreamer.EmitBytes(StringRef(DisasmLines[i])); OutStreamer.EmitBytes(StringRef(Comment)); } } return false; } void AMDGPUAsmPrinter::EmitProgramInfoR600(const MachineFunction &MF) { unsigned MaxGPR = 0; bool killPixel = false; const AMDGPUSubtarget &STM = MF.getSubtarget<AMDGPUSubtarget>(); const R600RegisterInfo *RI = static_cast<const R600RegisterInfo *>(STM.getRegisterInfo()); const R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>(); for (const MachineBasicBlock &MBB : MF) { for (const MachineInstr &MI : MBB) { if (MI.getOpcode() == AMDGPU::KILLGT) killPixel = true; unsigned numOperands = MI.getNumOperands(); for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) { const MachineOperand &MO = MI.getOperand(op_idx); if (!MO.isReg()) continue; unsigned HWReg = RI->getEncodingValue(MO.getReg()) & 0xff; // Register with value > 127 aren't GPR if (HWReg > 127) continue; MaxGPR = std::max(MaxGPR, HWReg); } } } unsigned RsrcReg; if (STM.getGeneration() >= AMDGPUSubtarget::EVERGREEN) { // Evergreen / Northern Islands switch (MFI->getShaderType()) { default: // Fall through case ShaderType::COMPUTE: RsrcReg = R_0288D4_SQ_PGM_RESOURCES_LS; break; case ShaderType::GEOMETRY: RsrcReg = R_028878_SQ_PGM_RESOURCES_GS; break; case ShaderType::PIXEL: RsrcReg = R_028844_SQ_PGM_RESOURCES_PS; break; case ShaderType::VERTEX: RsrcReg = R_028860_SQ_PGM_RESOURCES_VS; break; } } else { // R600 / R700 switch (MFI->getShaderType()) { default: // Fall through case ShaderType::GEOMETRY: // Fall through case ShaderType::COMPUTE: // Fall through case ShaderType::VERTEX: RsrcReg = R_028868_SQ_PGM_RESOURCES_VS; break; case ShaderType::PIXEL: RsrcReg = R_028850_SQ_PGM_RESOURCES_PS; break; } } OutStreamer.EmitIntValue(RsrcReg, 4); OutStreamer.EmitIntValue(S_NUM_GPRS(MaxGPR + 1) | S_STACK_SIZE(MFI->StackSize), 4); OutStreamer.EmitIntValue(R_02880C_DB_SHADER_CONTROL, 4); OutStreamer.EmitIntValue(S_02880C_KILL_ENABLE(killPixel), 4); if (MFI->getShaderType() == ShaderType::COMPUTE) { OutStreamer.EmitIntValue(R_0288E8_SQ_LDS_ALLOC, 4); OutStreamer.EmitIntValue(RoundUpToAlignment(MFI->LDSSize, 4) >> 2, 4); } } void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo, const MachineFunction &MF) const { const AMDGPUSubtarget &STM = MF.getSubtarget<AMDGPUSubtarget>(); const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); uint64_t CodeSize = 0; unsigned MaxSGPR = 0; unsigned MaxVGPR = 0; bool VCCUsed = false; bool FlatUsed = false; const SIRegisterInfo *RI = static_cast<const SIRegisterInfo *>(STM.getRegisterInfo()); for (const MachineBasicBlock &MBB : MF) { for (const MachineInstr &MI : MBB) { // TODO: CodeSize should account for multiple functions. CodeSize += MI.getDesc().Size; unsigned numOperands = MI.getNumOperands(); for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) { const MachineOperand &MO = MI.getOperand(op_idx); unsigned width = 0; bool isSGPR = false; if (!MO.isReg()) { continue; } unsigned reg = MO.getReg(); if (reg == AMDGPU::VCC || reg == AMDGPU::VCC_LO || reg == AMDGPU::VCC_HI) { VCCUsed = true; continue; } else if (reg == AMDGPU::FLAT_SCR || reg == AMDGPU::FLAT_SCR_LO || reg == AMDGPU::FLAT_SCR_HI) { FlatUsed = true; continue; } switch (reg) { default: break; case AMDGPU::SCC: case AMDGPU::EXEC: case AMDGPU::M0: continue; } if (AMDGPU::SReg_32RegClass.contains(reg)) { isSGPR = true; width = 1; } else if (AMDGPU::VGPR_32RegClass.contains(reg)) { isSGPR = false; width = 1; } else if (AMDGPU::SReg_64RegClass.contains(reg)) { isSGPR = true; width = 2; } else if (AMDGPU::VReg_64RegClass.contains(reg)) { isSGPR = false; width = 2; } else if (AMDGPU::VReg_96RegClass.contains(reg)) { isSGPR = false; width = 3; } else if (AMDGPU::SReg_128RegClass.contains(reg)) { isSGPR = true; width = 4; } else if (AMDGPU::VReg_128RegClass.contains(reg)) { isSGPR = false; width = 4; } else if (AMDGPU::SReg_256RegClass.contains(reg)) { isSGPR = true; width = 8; } else if (AMDGPU::VReg_256RegClass.contains(reg)) { isSGPR = false; width = 8; } else if (AMDGPU::SReg_512RegClass.contains(reg)) { isSGPR = true; width = 16; } else if (AMDGPU::VReg_512RegClass.contains(reg)) { isSGPR = false; width = 16; } else { llvm_unreachable("Unknown register class"); } unsigned hwReg = RI->getEncodingValue(reg) & 0xff; unsigned maxUsed = hwReg + width - 1; if (isSGPR) { MaxSGPR = maxUsed > MaxSGPR ? maxUsed : MaxSGPR; } else { MaxVGPR = maxUsed > MaxVGPR ? maxUsed : MaxVGPR; } } } } if (VCCUsed) MaxSGPR += 2; if (FlatUsed) MaxSGPR += 2; // We found the maximum register index. They start at 0, so add one to get the // number of registers. ProgInfo.NumVGPR = MaxVGPR + 1; ProgInfo.NumSGPR = MaxSGPR + 1; if (STM.hasSGPRInitBug()) { if (ProgInfo.NumSGPR > AMDGPUSubtarget::FIXED_SGPR_COUNT_FOR_INIT_BUG) llvm_unreachable("Too many SGPRs used with the SGPR init bug"); ProgInfo.NumSGPR = AMDGPUSubtarget::FIXED_SGPR_COUNT_FOR_INIT_BUG; } ProgInfo.VGPRBlocks = (ProgInfo.NumVGPR - 1) / 4; ProgInfo.SGPRBlocks = (ProgInfo.NumSGPR - 1) / 8; // Set the value to initialize FP_ROUND and FP_DENORM parts of the mode // register. ProgInfo.FloatMode = getFPMode(MF); // XXX: Not quite sure what this does, but sc seems to unset this. ProgInfo.IEEEMode = 0; // Do not clamp NAN to 0. ProgInfo.DX10Clamp = 0; const MachineFrameInfo *FrameInfo = MF.getFrameInfo(); ProgInfo.ScratchSize = FrameInfo->estimateStackSize(MF); ProgInfo.FlatUsed = FlatUsed; ProgInfo.VCCUsed = VCCUsed; ProgInfo.CodeLen = CodeSize; unsigned LDSAlignShift; if (STM.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { // LDS is allocated in 64 dword blocks. LDSAlignShift = 8; } else { // LDS is allocated in 128 dword blocks. LDSAlignShift = 9; } unsigned LDSSpillSize = MFI->LDSWaveSpillSize * MFI->getMaximumWorkGroupSize(MF); ProgInfo.LDSSize = MFI->LDSSize + LDSSpillSize; ProgInfo.LDSBlocks = RoundUpToAlignment(ProgInfo.LDSSize, 1 << LDSAlignShift) >> LDSAlignShift; // Scratch is allocated in 256 dword blocks. unsigned ScratchAlignShift = 10; // We need to program the hardware with the amount of scratch memory that // is used by the entire wave. ProgInfo.ScratchSize is the amount of // scratch memory used per thread. ProgInfo.ScratchBlocks = RoundUpToAlignment(ProgInfo.ScratchSize * STM.getWavefrontSize(), 1 << ScratchAlignShift) >> ScratchAlignShift; ProgInfo.ComputePGMRSrc1 = S_00B848_VGPRS(ProgInfo.VGPRBlocks) | S_00B848_SGPRS(ProgInfo.SGPRBlocks) | S_00B848_PRIORITY(ProgInfo.Priority) | S_00B848_FLOAT_MODE(ProgInfo.FloatMode) | S_00B848_PRIV(ProgInfo.Priv) | S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp) | S_00B848_IEEE_MODE(ProgInfo.DebugMode) | S_00B848_IEEE_MODE(ProgInfo.IEEEMode); ProgInfo.ComputePGMRSrc2 = S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) | S_00B84C_USER_SGPR(MFI->NumUserSGPRs) | S_00B84C_TGID_X_EN(1) | S_00B84C_TGID_Y_EN(1) | S_00B84C_TGID_Z_EN(1) | S_00B84C_TG_SIZE_EN(1) | S_00B84C_TIDIG_COMP_CNT(2) | S_00B84C_LDS_SIZE(ProgInfo.LDSBlocks); } static unsigned getRsrcReg(unsigned ShaderType) { switch (ShaderType) { default: // Fall through case ShaderType::COMPUTE: return R_00B848_COMPUTE_PGM_RSRC1; case ShaderType::GEOMETRY: return R_00B228_SPI_SHADER_PGM_RSRC1_GS; case ShaderType::PIXEL: return R_00B028_SPI_SHADER_PGM_RSRC1_PS; case ShaderType::VERTEX: return R_00B128_SPI_SHADER_PGM_RSRC1_VS; } } void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF, const SIProgramInfo &KernelInfo) { const AMDGPUSubtarget &STM = MF.getSubtarget<AMDGPUSubtarget>(); const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); unsigned RsrcReg = getRsrcReg(MFI->getShaderType()); if (MFI->getShaderType() == ShaderType::COMPUTE) { OutStreamer.EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4); OutStreamer.EmitIntValue(KernelInfo.ComputePGMRSrc1, 4); OutStreamer.EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4); OutStreamer.EmitIntValue(KernelInfo.ComputePGMRSrc2, 4); OutStreamer.EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4); OutStreamer.EmitIntValue(S_00B860_WAVESIZE(KernelInfo.ScratchBlocks), 4); // TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 = // 0" comment but I don't see a corresponding field in the register spec. } else { OutStreamer.EmitIntValue(RsrcReg, 4); OutStreamer.EmitIntValue(S_00B028_VGPRS(KernelInfo.VGPRBlocks) | S_00B028_SGPRS(KernelInfo.SGPRBlocks), 4); if (STM.isVGPRSpillingEnabled(MFI)) { OutStreamer.EmitIntValue(R_0286E8_SPI_TMPRING_SIZE, 4); OutStreamer.EmitIntValue(S_0286E8_WAVESIZE(KernelInfo.ScratchBlocks), 4); } } if (MFI->getShaderType() == ShaderType::PIXEL) { OutStreamer.EmitIntValue(R_00B02C_SPI_SHADER_PGM_RSRC2_PS, 4); OutStreamer.EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(KernelInfo.LDSBlocks), 4); OutStreamer.EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4); OutStreamer.EmitIntValue(MFI->PSInputAddr, 4); } } void AMDGPUAsmPrinter::EmitAmdKernelCodeT(const MachineFunction &MF, const SIProgramInfo &KernelInfo) const { const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); const AMDGPUSubtarget &STM = MF.getSubtarget<AMDGPUSubtarget>(); amd_kernel_code_t header; memset(&header, 0, sizeof(header)); header.amd_code_version_major = AMD_CODE_VERSION_MAJOR; header.amd_code_version_minor = AMD_CODE_VERSION_MINOR; header.struct_byte_size = sizeof(amd_kernel_code_t); header.target_chip = STM.getAmdKernelCodeChipID(); header.kernel_code_entry_byte_offset = (1ULL << MF.getAlignment()); header.compute_pgm_resource_registers = KernelInfo.ComputePGMRSrc1 | (KernelInfo.ComputePGMRSrc2 << 32); // Code Properties: header.code_properties = AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR | AMD_CODE_PROPERTY_IS_PTR64; if (KernelInfo.FlatUsed) header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; if (KernelInfo.ScratchBlocks) header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE; header.workitem_private_segment_byte_size = KernelInfo.ScratchSize; header.workgroup_group_segment_byte_size = KernelInfo.LDSSize; // MFI->ABIArgOffset is the number of bytes for the kernel arguments // plus 36. 36 is the number of bytes reserved at the begining of the // input buffer to store work-group size information. // FIXME: We should be adding the size of the implicit arguments // to this value. header.kernarg_segment_byte_size = MFI->ABIArgOffset; header.wavefront_sgpr_count = KernelInfo.NumSGPR; header.workitem_vgpr_count = KernelInfo.NumVGPR; // FIXME: What values do I put for these alignments header.kernarg_segment_alignment = 0; header.group_segment_alignment = 0; header.private_segment_alignment = 0; header.code_type = 1; // HSA_EXT_CODE_KERNEL header.wavefront_size = STM.getWavefrontSize(); const MCSectionELF *VersionSection = OutContext.getELFSection(".hsa.version", ELF::SHT_PROGBITS, 0); OutStreamer.SwitchSection(VersionSection); OutStreamer.EmitBytes(Twine("HSA Code Unit:" + Twine(header.hsail_version_major) + "." + Twine(header.hsail_version_minor) + ":" + "AMD:" + Twine(header.amd_code_version_major) + "." + Twine(header.amd_code_version_minor) + ":" + "GFX8.1:0").str()); OutStreamer.SwitchSection(getObjFileLowering().getTextSection()); if (isVerbose()) { OutStreamer.emitRawComment("amd_code_version_major = " + Twine(header.amd_code_version_major), false); OutStreamer.emitRawComment("amd_code_version_minor = " + Twine(header.amd_code_version_minor), false); OutStreamer.emitRawComment("struct_byte_size = " + Twine(header.struct_byte_size), false); OutStreamer.emitRawComment("target_chip = " + Twine(header.target_chip), false); OutStreamer.emitRawComment(" compute_pgm_rsrc1: " + Twine::utohexstr(KernelInfo.ComputePGMRSrc1), false); OutStreamer.emitRawComment(" compute_pgm_rsrc2: " + Twine::utohexstr(KernelInfo.ComputePGMRSrc2), false); OutStreamer.emitRawComment("enable_sgpr_private_segment_buffer = " + Twine((bool)(header.code_properties & AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE)), false); OutStreamer.emitRawComment("enable_sgpr_kernarg_segment_ptr = " + Twine((bool)(header.code_properties & AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR)), false); OutStreamer.emitRawComment("private_element_size = 2 ", false); OutStreamer.emitRawComment("is_ptr64 = " + Twine((bool)(header.code_properties & AMD_CODE_PROPERTY_IS_PTR64)), false); OutStreamer.emitRawComment("workitem_private_segment_byte_size = " + Twine(header.workitem_private_segment_byte_size), false); OutStreamer.emitRawComment("workgroup_group_segment_byte_size = " + Twine(header.workgroup_group_segment_byte_size), false); OutStreamer.emitRawComment("gds_segment_byte_size = " + Twine(header.gds_segment_byte_size), false); OutStreamer.emitRawComment("kernarg_segment_byte_size = " + Twine(header.kernarg_segment_byte_size), false); OutStreamer.emitRawComment("wavefront_sgpr_count = " + Twine(header.wavefront_sgpr_count), false); OutStreamer.emitRawComment("workitem_vgpr_count = " + Twine(header.workitem_vgpr_count), false); OutStreamer.emitRawComment("code_type = " + Twine(header.code_type), false); OutStreamer.emitRawComment("wavefront_size = " + Twine((int)header.wavefront_size), false); OutStreamer.emitRawComment("optimization_level = " + Twine(header.optimization_level), false); OutStreamer.emitRawComment("hsail_profile = " + Twine(header.hsail_profile), false); OutStreamer.emitRawComment("hsail_machine_model = " + Twine(header.hsail_machine_model), false); OutStreamer.emitRawComment("hsail_version_major = " + Twine(header.hsail_version_major), false); OutStreamer.emitRawComment("hsail_version_minor = " + Twine(header.hsail_version_minor), false); } OutStreamer.EmitBytes(StringRef((char*)&header, sizeof(header))); } bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O) { if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { default: // See if this is a generic print operand return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O); case 'r': break; } } AMDGPUInstPrinter::printRegOperand(MI->getOperand(OpNo).getReg(), O, *TM.getSubtargetImpl(*MF->getFunction())->getRegisterInfo()); return false; }