//===- NVPTXLowerAggrCopies.cpp - ------------------------------*- C++ -*--===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Lower aggregate copies, memset, memcpy, memmov intrinsics into loops when // the size is large or is not a compile-time constant. // //===----------------------------------------------------------------------===// #include "NVPTXLowerAggrCopies.h" #include "llvm/CodeGen/MachineFunctionAnalysis.h" #include "llvm/CodeGen/StackProtector.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Support/Debug.h" #define DEBUG_TYPE "nvptx" using namespace llvm; namespace { // actual analysis class, which is a functionpass struct NVPTXLowerAggrCopies : public FunctionPass { static char ID; NVPTXLowerAggrCopies() : FunctionPass(ID) {} void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addPreserved<MachineFunctionAnalysis>(); AU.addPreserved<StackProtector>(); } bool runOnFunction(Function &F) override; static const unsigned MaxAggrCopySize = 128; const char *getPassName() const override { return "Lower aggregate copies/intrinsics into loops"; } }; } // namespace char NVPTXLowerAggrCopies::ID = 0; // Lower MemTransferInst or load-store pair to loop static void convertTransferToLoop( Instruction *splitAt, Value *srcAddr, Value *dstAddr, Value *len, //unsigned numLoads, bool srcVolatile, bool dstVolatile, LLVMContext &Context, Function &F) { Type *indType = len->getType(); BasicBlock *origBB = splitAt->getParent(); BasicBlock *newBB = splitAt->getParent()->splitBasicBlock(splitAt, "split"); BasicBlock *loopBB = BasicBlock::Create(Context, "loadstoreloop", &F, newBB); origBB->getTerminator()->setSuccessor(0, loopBB); IRBuilder<> builder(origBB, origBB->getTerminator()); // srcAddr and dstAddr are expected to be pointer types, // so no check is made here. unsigned srcAS = cast<PointerType>(srcAddr->getType())->getAddressSpace(); unsigned dstAS = cast<PointerType>(dstAddr->getType())->getAddressSpace(); // Cast pointers to (char *) srcAddr = builder.CreateBitCast(srcAddr, Type::getInt8PtrTy(Context, srcAS)); dstAddr = builder.CreateBitCast(dstAddr, Type::getInt8PtrTy(Context, dstAS)); IRBuilder<> loop(loopBB); // The loop index (ind) is a phi node. PHINode *ind = loop.CreatePHI(indType, 0); // Incoming value for ind is 0 ind->addIncoming(ConstantInt::get(indType, 0), origBB); // load from srcAddr+ind Value *val = loop.CreateLoad(loop.CreateGEP(loop.getInt8Ty(), srcAddr, ind), srcVolatile); // store at dstAddr+ind loop.CreateStore(val, loop.CreateGEP(loop.getInt8Ty(), dstAddr, ind), dstVolatile); // The value for ind coming from backedge is (ind + 1) Value *newind = loop.CreateAdd(ind, ConstantInt::get(indType, 1)); ind->addIncoming(newind, loopBB); loop.CreateCondBr(loop.CreateICmpULT(newind, len), loopBB, newBB); } // Lower MemSetInst to loop static void convertMemSetToLoop(Instruction *splitAt, Value *dstAddr, Value *len, Value *val, LLVMContext &Context, Function &F) { BasicBlock *origBB = splitAt->getParent(); BasicBlock *newBB = splitAt->getParent()->splitBasicBlock(splitAt, "split"); BasicBlock *loopBB = BasicBlock::Create(Context, "loadstoreloop", &F, newBB); origBB->getTerminator()->setSuccessor(0, loopBB); IRBuilder<> builder(origBB, origBB->getTerminator()); unsigned dstAS = cast<PointerType>(dstAddr->getType())->getAddressSpace(); // Cast pointer to the type of value getting stored dstAddr = builder.CreateBitCast(dstAddr, PointerType::get(val->getType(), dstAS)); IRBuilder<> loop(loopBB); PHINode *ind = loop.CreatePHI(len->getType(), 0); ind->addIncoming(ConstantInt::get(len->getType(), 0), origBB); loop.CreateStore(val, loop.CreateGEP(val->getType(), dstAddr, ind), false); Value *newind = loop.CreateAdd(ind, ConstantInt::get(len->getType(), 1)); ind->addIncoming(newind, loopBB); loop.CreateCondBr(loop.CreateICmpULT(newind, len), loopBB, newBB); } bool NVPTXLowerAggrCopies::runOnFunction(Function &F) { SmallVector<LoadInst *, 4> aggrLoads; SmallVector<MemTransferInst *, 4> aggrMemcpys; SmallVector<MemSetInst *, 4> aggrMemsets; const DataLayout &DL = F.getParent()->getDataLayout(); LLVMContext &Context = F.getParent()->getContext(); // // Collect all the aggrLoads, aggrMemcpys and addrMemsets. // //const BasicBlock *firstBB = &F.front(); // first BB in F for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { //BasicBlock *bb = BI; for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; ++II) { if (LoadInst *load = dyn_cast<LoadInst>(II)) { if (!load->hasOneUse()) continue; if (DL.getTypeStoreSize(load->getType()) < MaxAggrCopySize) continue; User *use = load->user_back(); if (StoreInst *store = dyn_cast<StoreInst>(use)) { if (store->getOperand(0) != load) //getValueOperand continue; aggrLoads.push_back(load); } } else if (MemTransferInst *intr = dyn_cast<MemTransferInst>(II)) { Value *len = intr->getLength(); // If the number of elements being copied is greater // than MaxAggrCopySize, lower it to a loop if (ConstantInt *len_int = dyn_cast<ConstantInt>(len)) { if (len_int->getZExtValue() >= MaxAggrCopySize) { aggrMemcpys.push_back(intr); } } else { // turn variable length memcpy/memmov into loop aggrMemcpys.push_back(intr); } } else if (MemSetInst *memsetintr = dyn_cast<MemSetInst>(II)) { Value *len = memsetintr->getLength(); if (ConstantInt *len_int = dyn_cast<ConstantInt>(len)) { if (len_int->getZExtValue() >= MaxAggrCopySize) { aggrMemsets.push_back(memsetintr); } } else { // turn variable length memset into loop aggrMemsets.push_back(memsetintr); } } } } if ((aggrLoads.size() == 0) && (aggrMemcpys.size() == 0) && (aggrMemsets.size() == 0)) return false; // // Do the transformation of an aggr load/copy/set to a loop // for (unsigned i = 0, e = aggrLoads.size(); i != e; ++i) { LoadInst *load = aggrLoads[i]; StoreInst *store = dyn_cast<StoreInst>(*load->user_begin()); Value *srcAddr = load->getOperand(0); Value *dstAddr = store->getOperand(1); unsigned numLoads = DL.getTypeStoreSize(load->getType()); Value *len = ConstantInt::get(Type::getInt32Ty(Context), numLoads); convertTransferToLoop(store, srcAddr, dstAddr, len, load->isVolatile(), store->isVolatile(), Context, F); store->eraseFromParent(); load->eraseFromParent(); } for (unsigned i = 0, e = aggrMemcpys.size(); i != e; ++i) { MemTransferInst *cpy = aggrMemcpys[i]; Value *len = cpy->getLength(); // llvm 2.7 version of memcpy does not have volatile // operand yet. So always making it non-volatile // optimistically, so that we don't see unnecessary // st.volatile in ptx convertTransferToLoop(cpy, cpy->getSource(), cpy->getDest(), len, false, false, Context, F); cpy->eraseFromParent(); } for (unsigned i = 0, e = aggrMemsets.size(); i != e; ++i) { MemSetInst *memsetinst = aggrMemsets[i]; Value *len = memsetinst->getLength(); Value *val = memsetinst->getValue(); convertMemSetToLoop(memsetinst, memsetinst->getDest(), len, val, Context, F); memsetinst->eraseFromParent(); } return true; } FunctionPass *llvm::createLowerAggrCopies() { return new NVPTXLowerAggrCopies(); }