//===-- MipsInstrInfo.cpp - Mips Instruction Information ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the Mips implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "MipsInstrInfo.h" #include "InstPrinter/MipsInstPrinter.h" #include "MipsAnalyzeImmediate.h" #include "MipsMachineFunction.h" #include "MipsSubtarget.h" #include "llvm/ADT/STLExtras.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/TargetRegistry.h" using namespace llvm; #define GET_INSTRINFO_CTOR_DTOR #include "MipsGenInstrInfo.inc" // Pin the vtable to this file. void MipsInstrInfo::anchor() {} MipsInstrInfo::MipsInstrInfo(const MipsSubtarget &STI, unsigned UncondBr) : MipsGenInstrInfo(Mips::ADJCALLSTACKDOWN, Mips::ADJCALLSTACKUP), Subtarget(STI), UncondBrOpc(UncondBr) {} const MipsInstrInfo *MipsInstrInfo::create(MipsSubtarget &STI) { if (STI.inMips16Mode()) return llvm::createMips16InstrInfo(STI); return llvm::createMipsSEInstrInfo(STI); } bool MipsInstrInfo::isZeroImm(const MachineOperand &op) const { return op.isImm() && op.getImm() == 0; } /// insertNoop - If data hazard condition is found insert the target nop /// instruction. void MipsInstrInfo:: insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { DebugLoc DL; BuildMI(MBB, MI, DL, get(Mips::NOP)); } MachineMemOperand *MipsInstrInfo::GetMemOperand(MachineBasicBlock &MBB, int FI, unsigned Flag) const { MachineFunction &MF = *MBB.getParent(); MachineFrameInfo &MFI = *MF.getFrameInfo(); unsigned Align = MFI.getObjectAlignment(FI); return MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), Flag, MFI.getObjectSize(FI), Align); } //===----------------------------------------------------------------------===// // Branch Analysis //===----------------------------------------------------------------------===// void MipsInstrInfo::AnalyzeCondBr(const MachineInstr *Inst, unsigned Opc, MachineBasicBlock *&BB, SmallVectorImpl<MachineOperand> &Cond) const { assert(getAnalyzableBrOpc(Opc) && "Not an analyzable branch"); int NumOp = Inst->getNumExplicitOperands(); // for both int and fp branches, the last explicit operand is the // MBB. BB = Inst->getOperand(NumOp-1).getMBB(); Cond.push_back(MachineOperand::CreateImm(Opc)); for (int i=0; i<NumOp-1; i++) Cond.push_back(Inst->getOperand(i)); } bool MipsInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl<MachineOperand> &Cond, bool AllowModify) const { SmallVector<MachineInstr*, 2> BranchInstrs; BranchType BT = AnalyzeBranch(MBB, TBB, FBB, Cond, AllowModify, BranchInstrs); return (BT == BT_None) || (BT == BT_Indirect); } void MipsInstrInfo::BuildCondBr(MachineBasicBlock &MBB, MachineBasicBlock *TBB, DebugLoc DL, const SmallVectorImpl<MachineOperand> &Cond) const { unsigned Opc = Cond[0].getImm(); const MCInstrDesc &MCID = get(Opc); MachineInstrBuilder MIB = BuildMI(&MBB, DL, MCID); for (unsigned i = 1; i < Cond.size(); ++i) { if (Cond[i].isReg()) MIB.addReg(Cond[i].getReg()); else if (Cond[i].isImm()) MIB.addImm(Cond[i].getImm()); else assert(true && "Cannot copy operand"); } MIB.addMBB(TBB); } unsigned MipsInstrInfo::InsertBranch( MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl<MachineOperand> &Cond, DebugLoc DL) const { // Shouldn't be a fall through. assert(TBB && "InsertBranch must not be told to insert a fallthrough"); // # of condition operands: // Unconditional branches: 0 // Floating point branches: 1 (opc) // Int BranchZero: 2 (opc, reg) // Int Branch: 3 (opc, reg0, reg1) assert((Cond.size() <= 3) && "# of Mips branch conditions must be <= 3!"); // Two-way Conditional branch. if (FBB) { BuildCondBr(MBB, TBB, DL, Cond); BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(FBB); return 2; } // One way branch. // Unconditional branch. if (Cond.empty()) BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(TBB); else // Conditional branch. BuildCondBr(MBB, TBB, DL, Cond); return 1; } unsigned MipsInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); MachineBasicBlock::reverse_iterator FirstBr; unsigned removed; // Skip all the debug instructions. while (I != REnd && I->isDebugValue()) ++I; FirstBr = I; // Up to 2 branches are removed. // Note that indirect branches are not removed. for (removed = 0; I != REnd && removed < 2; ++I, ++removed) if (!getAnalyzableBrOpc(I->getOpcode())) break; MBB.erase(I.base(), FirstBr.base()); return removed; } /// ReverseBranchCondition - Return the inverse opcode of the /// specified Branch instruction. bool MipsInstrInfo::ReverseBranchCondition( SmallVectorImpl<MachineOperand> &Cond) const { assert( (Cond.size() && Cond.size() <= 3) && "Invalid Mips branch condition!"); Cond[0].setImm(getOppositeBranchOpc(Cond[0].getImm())); return false; } MipsInstrInfo::BranchType MipsInstrInfo::AnalyzeBranch( MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl<MachineOperand> &Cond, bool AllowModify, SmallVectorImpl<MachineInstr *> &BranchInstrs) const { MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); // Skip all the debug instructions. while (I != REnd && I->isDebugValue()) ++I; if (I == REnd || !isUnpredicatedTerminator(&*I)) { // This block ends with no branches (it just falls through to its succ). // Leave TBB/FBB null. TBB = FBB = nullptr; return BT_NoBranch; } MachineInstr *LastInst = &*I; unsigned LastOpc = LastInst->getOpcode(); BranchInstrs.push_back(LastInst); // Not an analyzable branch (e.g., indirect jump). if (!getAnalyzableBrOpc(LastOpc)) return LastInst->isIndirectBranch() ? BT_Indirect : BT_None; // Get the second to last instruction in the block. unsigned SecondLastOpc = 0; MachineInstr *SecondLastInst = nullptr; if (++I != REnd) { SecondLastInst = &*I; SecondLastOpc = getAnalyzableBrOpc(SecondLastInst->getOpcode()); // Not an analyzable branch (must be an indirect jump). if (isUnpredicatedTerminator(SecondLastInst) && !SecondLastOpc) return BT_None; } // If there is only one terminator instruction, process it. if (!SecondLastOpc) { // Unconditional branch. if (LastOpc == UncondBrOpc) { TBB = LastInst->getOperand(0).getMBB(); return BT_Uncond; } // Conditional branch AnalyzeCondBr(LastInst, LastOpc, TBB, Cond); return BT_Cond; } // If we reached here, there are two branches. // If there are three terminators, we don't know what sort of block this is. if (++I != REnd && isUnpredicatedTerminator(&*I)) return BT_None; BranchInstrs.insert(BranchInstrs.begin(), SecondLastInst); // If second to last instruction is an unconditional branch, // analyze it and remove the last instruction. if (SecondLastOpc == UncondBrOpc) { // Return if the last instruction cannot be removed. if (!AllowModify) return BT_None; TBB = SecondLastInst->getOperand(0).getMBB(); LastInst->eraseFromParent(); BranchInstrs.pop_back(); return BT_Uncond; } // Conditional branch followed by an unconditional branch. // The last one must be unconditional. if (LastOpc != UncondBrOpc) return BT_None; AnalyzeCondBr(SecondLastInst, SecondLastOpc, TBB, Cond); FBB = LastInst->getOperand(0).getMBB(); return BT_CondUncond; } /// Return the number of bytes of code the specified instruction may be. unsigned MipsInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { switch (MI->getOpcode()) { default: return MI->getDesc().getSize(); case TargetOpcode::INLINEASM: { // Inline Asm: Variable size. const MachineFunction *MF = MI->getParent()->getParent(); const char *AsmStr = MI->getOperand(0).getSymbolName(); return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); } case Mips::CONSTPOOL_ENTRY: // If this machine instr is a constant pool entry, its size is recorded as // operand #2. return MI->getOperand(2).getImm(); } } MachineInstrBuilder MipsInstrInfo::genInstrWithNewOpc(unsigned NewOpc, MachineBasicBlock::iterator I) const { MachineInstrBuilder MIB; MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), get(NewOpc)); for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) MIB.addOperand(I->getOperand(J)); MIB.setMemRefs(I->memoperands_begin(), I->memoperands_end()); return MIB; }