//===- HexagonOperands.td - Hexagon immediate processing -*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illnois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Immediate operands. let PrintMethod = "printImmOperand" in { // f32Ext type is used to identify constant extended floating point immediates. def f32Ext : Operand<f32>; def s32Imm : Operand<i32>; def s26_6Imm : Operand<i32>; def s16Imm : Operand<i32>; def s12Imm : Operand<i32>; def s11Imm : Operand<i32>; def s11_0Imm : Operand<i32>; def s11_1Imm : Operand<i32>; def s11_2Imm : Operand<i32>; def s11_3Imm : Operand<i32>; def s10Imm : Operand<i32>; def s9Imm : Operand<i32>; def m9Imm : Operand<i32>; def s8Imm : Operand<i32>; def s8Imm64 : Operand<i64>; def s6Imm : Operand<i32>; def s4Imm : Operand<i32>; def s4_0Imm : Operand<i32>; def s4_1Imm : Operand<i32>; def s4_2Imm : Operand<i32>; def s4_3Imm : Operand<i32>; def u64Imm : Operand<i64>; def u32Imm : Operand<i32>; def u26_6Imm : Operand<i32>; def u16Imm : Operand<i32>; def u16_0Imm : Operand<i32>; def u16_1Imm : Operand<i32>; def u16_2Imm : Operand<i32>; def u16_3Imm : Operand<i32>; def u11_3Imm : Operand<i32>; def u10Imm : Operand<i32>; def u9Imm : Operand<i32>; def u8Imm : Operand<i32>; def u7Imm : Operand<i32>; def u6Imm : Operand<i32>; def u6_0Imm : Operand<i32>; def u6_1Imm : Operand<i32>; def u6_2Imm : Operand<i32>; def u6_3Imm : Operand<i32>; def u5Imm : Operand<i32>; def u4Imm : Operand<i32>; def u3Imm : Operand<i32>; def u2Imm : Operand<i32>; def u1Imm : Operand<i32>; def n8Imm : Operand<i32>; def m6Imm : Operand<i32>; } let PrintMethod = "printNOneImmOperand" in def nOneImm : Operand<i32>; // // Immediate predicates // def s32ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isInt<32>(v); }]>; def s32_0ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isInt<32>(v); }]>; def s31_1ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<31,1>(v); }]>; def s30_2ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<31,1>(v); }]>; def s29_3ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<31,1>(v); }]>; def s22_10ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<22,10>(v); }]>; def s8_24ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<8,24>(v); }]>; def s16_16ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<16,16>(v); }]>; def s26_6ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<26,6>(v); }]>; def s16ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isInt<16>(v); }]>; def s13ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isInt<13>(v); }]>; def s12ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isInt<12>(v); }]>; def s11_0ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isInt<11>(v); }]>; def s11_1ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<11,1>(v); }]>; def s11_2ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<11,2>(v); }]>; def s11_3ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<11,3>(v); }]>; def s10ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isInt<10>(v); }]>; def s9ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isInt<9>(v); }]>; def m9ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isInt<9>(v) && (v != -256); }]>; def s8ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isInt<8>(v); }]>; def s8Imm64Pred : PatLeaf<(i64 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isInt<8>(v); }]>; def s6ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isInt<6>(v); }]>; def s4_0ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isInt<4>(v); }]>; def s4_1ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<4,1>(v); }]>; def s4_2ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<4,2>(v); }]>; def s4_3ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<4,3>(v); }]>; def u64ImmPred : PatLeaf<(i64 imm), [{ // Adding "N ||" to suppress gcc unused warning. return (N || true); }]>; def u32ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<32>(v); }]>; def u32_0ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<32>(v); }]>; def u31_1ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<31,1>(v); }]>; def u30_2ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<30,2>(v); }]>; def u29_3ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<29,3>(v); }]>; def u26_6ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<26,6>(v); }]>; def u16ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<16>(v); }]>; def u16_s8ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<16,8>(v); }]>; def u16_0ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<16>(v); }]>; def u11_3ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<11,3>(v); }]>; def u9ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<9>(v); }]>; def u8ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<8>(v); }]>; def u7StrictPosImmPred : ImmLeaf<i32, [{ // u7StrictPosImmPred predicate - True if the immediate fits in an 7-bit // unsigned field and is strictly greater than 0. return isUInt<7>(Imm) && Imm > 0; }]>; def u7ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<7>(v); }]>; def u6ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<6>(v); }]>; def u6_0ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<6>(v); }]>; def u6_1ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<6,1>(v); }]>; def u6_2ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<6,2>(v); }]>; def u6_3ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<6,3>(v); }]>; def u5ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<5>(v); }]>; def u4ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<4>(v); }]>; def u3ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<3>(v); }]>; def u2ImmPred : PatLeaf<(i32 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<2>(v); }]>; def u1ImmPred : PatLeaf<(i1 imm), [{ int64_t v = (int64_t)N->getSExtValue(); return isUInt<1>(v); }]>; def m5BImmPred : PatLeaf<(i32 imm), [{ // m5BImmPred predicate - True if the (char) number is in range -1 .. -31 // and will fit in a 5 bit field when made positive, for use in memops. // this is specific to the zero extending of a negative by CombineInstr int8_t v = (int8_t)N->getSExtValue(); return (-31 <= v && v <= -1); }]>; def m5HImmPred : PatLeaf<(i32 imm), [{ // m5HImmPred predicate - True if the (short) number is in range -1 .. -31 // and will fit in a 5 bit field when made positive, for use in memops. // this is specific to the zero extending of a negative by CombineInstr int16_t v = (int16_t)N->getSExtValue(); return (-31 <= v && v <= -1); }]>; def m5ImmPred : PatLeaf<(i32 imm), [{ // m5ImmPred predicate - True if the number is in range -1 .. -31 // and will fit in a 5 bit field when made positive, for use in memops. int64_t v = (int64_t)N->getSExtValue(); return (-31 <= v && v <= -1); }]>; //InN means negative integers in [-(2^N - 1), 0] def n8ImmPred : PatLeaf<(i32 imm), [{ // n8ImmPred predicate - True if the immediate fits in a 8-bit signed // field. int64_t v = (int64_t)N->getSExtValue(); return (-255 <= v && v <= 0); }]>; def nOneImmPred : PatLeaf<(i32 imm), [{ // nOneImmPred predicate - True if the immediate is -1. int64_t v = (int64_t)N->getSExtValue(); return (-1 == v); }]>; def Set5ImmPred : PatLeaf<(i32 imm), [{ // Set5ImmPred predicate - True if the number is in the series of values. // [ 2^0, 2^1, ... 2^31 ] // For use in setbit immediate. uint32_t v = (int32_t)N->getSExtValue(); // Constrain to 32 bits, and then check for single bit. return ImmIsSingleBit(v); }]>; def Clr5ImmPred : PatLeaf<(i32 imm), [{ // Clr5ImmPred predicate - True if the number is in the series of // bit negated values. // [ 2^0, 2^1, ... 2^31 ] // For use in clrbit immediate. // Note: we are bit NOTing the value. uint32_t v = ~ (int32_t)N->getSExtValue(); // Constrain to 32 bits, and then check for single bit. return ImmIsSingleBit(v); }]>; def SetClr5ImmPred : PatLeaf<(i32 imm), [{ // SetClr5ImmPred predicate - True if the immediate is in range 0..31. int32_t v = (int32_t)N->getSExtValue(); return (v >= 0 && v <= 31); }]>; def Set4ImmPred : PatLeaf<(i32 imm), [{ // Set4ImmPred predicate - True if the number is in the series of values: // [ 2^0, 2^1, ... 2^15 ]. // For use in setbit immediate. uint16_t v = (int16_t)N->getSExtValue(); // Constrain to 16 bits, and then check for single bit. return ImmIsSingleBit(v); }]>; def Clr4ImmPred : PatLeaf<(i32 imm), [{ // Clr4ImmPred predicate - True if the number is in the series of // bit negated values: // [ 2^0, 2^1, ... 2^15 ]. // For use in setbit and clrbit immediate. uint16_t v = ~ (int16_t)N->getSExtValue(); // Constrain to 16 bits, and then check for single bit. return ImmIsSingleBit(v); }]>; def SetClr4ImmPred : PatLeaf<(i32 imm), [{ // SetClr4ImmPred predicate - True if the immediate is in the range 0..15. int16_t v = (int16_t)N->getSExtValue(); return (v >= 0 && v <= 15); }]>; def Set3ImmPred : PatLeaf<(i32 imm), [{ // Set3ImmPred predicate - True if the number is in the series of values: // [ 2^0, 2^1, ... 2^7 ]. // For use in setbit immediate. uint8_t v = (int8_t)N->getSExtValue(); // Constrain to 8 bits, and then check for single bit. return ImmIsSingleBit(v); }]>; def Clr3ImmPred : PatLeaf<(i32 imm), [{ // Clr3ImmPred predicate - True if the number is in the series of // bit negated values: // [ 2^0, 2^1, ... 2^7 ]. // For use in setbit and clrbit immediate. uint8_t v = ~ (int8_t)N->getSExtValue(); // Constrain to 8 bits, and then check for single bit. return ImmIsSingleBit(v); }]>; def SetClr3ImmPred : PatLeaf<(i32 imm), [{ // SetClr3ImmPred predicate - True if the immediate is in the range 0..7. int8_t v = (int8_t)N->getSExtValue(); return (v >= 0 && v <= 7); }]>; // Extendable immediate operands. let PrintMethod = "printExtOperand" in { def s16Ext : Operand<i32>; def s12Ext : Operand<i32>; def s10Ext : Operand<i32>; def s9Ext : Operand<i32>; def s8Ext : Operand<i32>; def s6Ext : Operand<i32>; def s11_0Ext : Operand<i32>; def s11_1Ext : Operand<i32>; def s11_2Ext : Operand<i32>; def s11_3Ext : Operand<i32>; def u6Ext : Operand<i32>; def u7Ext : Operand<i32>; def u8Ext : Operand<i32>; def u9Ext : Operand<i32>; def u10Ext : Operand<i32>; def u6_0Ext : Operand<i32>; def u6_1Ext : Operand<i32>; def u6_2Ext : Operand<i32>; def u6_3Ext : Operand<i32>; } // This complex pattern exists only to create a machine instruction operand // of type "frame index". There doesn't seem to be a way to do that directly // in the patterns. def AddrFI : ComplexPattern<i32, 1, "SelectAddrFI", [frameindex], []>; // These complex patterns are not strictly necessary, since global address // folding will happen during DAG combining. For distinguishing between GA // and GP, pat frags with HexagonCONST32 and HexagonCONST32_GP can be used. def AddrGA : ComplexPattern<i32, 1, "SelectAddrGA", [], []>; def AddrGP : ComplexPattern<i32, 1, "SelectAddrGP", [], []>; // Address operands. let PrintMethod = "printGlobalOperand" in { def globaladdress : Operand<i32>; def globaladdressExt : Operand<i32>; } let PrintMethod = "printJumpTable" in def jumptablebase : Operand<i32>; def brtarget : Operand<OtherVT>; def brtargetExt : Operand<OtherVT>; def calltarget : Operand<i32>; def bblabel : Operand<i32>; def bbl : SDNode<"ISD::BasicBlock", SDTPtrLeaf , [], "BasicBlockSDNode">; def symbolHi32 : Operand<i32> { let PrintMethod = "printSymbolHi"; } def symbolLo32 : Operand<i32> { let PrintMethod = "printSymbolLo"; } // Return true if for a 32 to 64-bit sign-extended load. def is_sext_i32 : PatLeaf<(i64 DoubleRegs:$src1), [{ LoadSDNode *LD = dyn_cast<LoadSDNode>(N); if (!LD) return false; return LD->getExtensionType() == ISD::SEXTLOAD && LD->getMemoryVT().getScalarType() == MVT::i32; }]>;