//===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the writing of the LLVM IR as a set of C++ calls to the // LLVM IR interface. The input module is assumed to be verified. // //===----------------------------------------------------------------------===// #include "CPPTargetMachine.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Config/config.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/Module.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/TargetRegistry.h" #include <algorithm> #include <cctype> #include <cstdio> #include <map> #include <set> using namespace llvm; static cl::opt<std::string> FuncName("cppfname", cl::desc("Specify the name of the generated function"), cl::value_desc("function name")); enum WhatToGenerate { GenProgram, GenModule, GenContents, GenFunction, GenFunctions, GenInline, GenVariable, GenType }; static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional, cl::desc("Choose what kind of output to generate"), cl::init(GenProgram), cl::values( clEnumValN(GenProgram, "program", "Generate a complete program"), clEnumValN(GenModule, "module", "Generate a module definition"), clEnumValN(GenContents, "contents", "Generate contents of a module"), clEnumValN(GenFunction, "function", "Generate a function definition"), clEnumValN(GenFunctions,"functions", "Generate all function definitions"), clEnumValN(GenInline, "inline", "Generate an inline function"), clEnumValN(GenVariable, "variable", "Generate a variable definition"), clEnumValN(GenType, "type", "Generate a type definition"), clEnumValEnd ) ); static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional, cl::desc("Specify the name of the thing to generate"), cl::init("!bad!")); extern "C" void LLVMInitializeCppBackendTarget() { // Register the target. RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget); } namespace { typedef std::vector<Type*> TypeList; typedef std::map<Type*,std::string> TypeMap; typedef std::map<const Value*,std::string> ValueMap; typedef std::set<std::string> NameSet; typedef std::set<Type*> TypeSet; typedef std::set<const Value*> ValueSet; typedef std::map<const Value*,std::string> ForwardRefMap; /// CppWriter - This class is the main chunk of code that converts an LLVM /// module to a C++ translation unit. class CppWriter : public ModulePass { std::unique_ptr<formatted_raw_ostream> OutOwner; formatted_raw_ostream &Out; const Module *TheModule; uint64_t uniqueNum; TypeMap TypeNames; ValueMap ValueNames; NameSet UsedNames; TypeSet DefinedTypes; ValueSet DefinedValues; ForwardRefMap ForwardRefs; bool is_inline; unsigned indent_level; public: static char ID; explicit CppWriter(std::unique_ptr<formatted_raw_ostream> o) : ModulePass(ID), OutOwner(std::move(o)), Out(*OutOwner), uniqueNum(0), is_inline(false), indent_level(0) {} const char *getPassName() const override { return "C++ backend"; } bool runOnModule(Module &M) override; void printProgram(const std::string& fname, const std::string& modName ); void printModule(const std::string& fname, const std::string& modName ); void printContents(const std::string& fname, const std::string& modName ); void printFunction(const std::string& fname, const std::string& funcName ); void printFunctions(); void printInline(const std::string& fname, const std::string& funcName ); void printVariable(const std::string& fname, const std::string& varName ); void printType(const std::string& fname, const std::string& typeName ); void error(const std::string& msg); formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0); inline void in() { indent_level++; } inline void out() { if (indent_level >0) indent_level--; } private: void printLinkageType(GlobalValue::LinkageTypes LT); void printVisibilityType(GlobalValue::VisibilityTypes VisTypes); void printDLLStorageClassType(GlobalValue::DLLStorageClassTypes DSCType); void printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM); void printCallingConv(CallingConv::ID cc); void printEscapedString(const std::string& str); void printCFP(const ConstantFP* CFP); std::string getCppName(Type* val); inline void printCppName(Type* val); std::string getCppName(const Value* val); inline void printCppName(const Value* val); void printAttributes(const AttributeSet &PAL, const std::string &name); void printType(Type* Ty); void printTypes(const Module* M); void printConstant(const Constant *CPV); void printConstants(const Module* M); void printVariableUses(const GlobalVariable *GV); void printVariableHead(const GlobalVariable *GV); void printVariableBody(const GlobalVariable *GV); void printFunctionUses(const Function *F); void printFunctionHead(const Function *F); void printFunctionBody(const Function *F); void printInstruction(const Instruction *I, const std::string& bbname); std::string getOpName(const Value*); void printModuleBody(); }; } // end anonymous namespace. formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) { Out << '\n'; if (delta >= 0 || indent_level >= unsigned(-delta)) indent_level += delta; Out.indent(indent_level); return Out; } static inline void sanitize(std::string &str) { for (size_t i = 0; i < str.length(); ++i) if (!isalnum(str[i]) && str[i] != '_') str[i] = '_'; } static std::string getTypePrefix(Type *Ty) { switch (Ty->getTypeID()) { case Type::VoidTyID: return "void_"; case Type::IntegerTyID: return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_"; case Type::FloatTyID: return "float_"; case Type::DoubleTyID: return "double_"; case Type::LabelTyID: return "label_"; case Type::FunctionTyID: return "func_"; case Type::StructTyID: return "struct_"; case Type::ArrayTyID: return "array_"; case Type::PointerTyID: return "ptr_"; case Type::VectorTyID: return "packed_"; default: return "other_"; } } void CppWriter::error(const std::string& msg) { report_fatal_error(msg); } static inline std::string ftostr(const APFloat& V) { std::string Buf; if (&V.getSemantics() == &APFloat::IEEEdouble) { raw_string_ostream(Buf) << V.convertToDouble(); return Buf; } else if (&V.getSemantics() == &APFloat::IEEEsingle) { raw_string_ostream(Buf) << (double)V.convertToFloat(); return Buf; } return "<unknown format in ftostr>"; // error } // printCFP - Print a floating point constant .. very carefully :) // This makes sure that conversion to/from floating yields the same binary // result so that we don't lose precision. void CppWriter::printCFP(const ConstantFP *CFP) { bool ignored; APFloat APF = APFloat(CFP->getValueAPF()); // copy if (CFP->getType() == Type::getFloatTy(CFP->getContext())) APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored); Out << "ConstantFP::get(mod->getContext(), "; Out << "APFloat("; #if HAVE_PRINTF_A char Buffer[100]; sprintf(Buffer, "%A", APF.convertToDouble()); if ((!strncmp(Buffer, "0x", 2) || !strncmp(Buffer, "-0x", 3) || !strncmp(Buffer, "+0x", 3)) && APF.bitwiseIsEqual(APFloat(atof(Buffer)))) { if (CFP->getType() == Type::getDoubleTy(CFP->getContext())) Out << "BitsToDouble(" << Buffer << ")"; else Out << "BitsToFloat((float)" << Buffer << ")"; Out << ")"; } else { #endif std::string StrVal = ftostr(CFP->getValueAPF()); while (StrVal[0] == ' ') StrVal.erase(StrVal.begin()); // Check to make sure that the stringized number is not some string like // "Inf" or NaN. Check that the string matches the "[-+]?[0-9]" regex. if (((StrVal[0] >= '0' && StrVal[0] <= '9') || ((StrVal[0] == '-' || StrVal[0] == '+') && (StrVal[1] >= '0' && StrVal[1] <= '9'))) && (CFP->isExactlyValue(atof(StrVal.c_str())))) { if (CFP->getType() == Type::getDoubleTy(CFP->getContext())) Out << StrVal; else Out << StrVal << "f"; } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext())) Out << "BitsToDouble(0x" << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue()) << "ULL) /* " << StrVal << " */"; else Out << "BitsToFloat(0x" << utohexstr((uint32_t)CFP->getValueAPF(). bitcastToAPInt().getZExtValue()) << "U) /* " << StrVal << " */"; Out << ")"; #if HAVE_PRINTF_A } #endif Out << ")"; } void CppWriter::printCallingConv(CallingConv::ID cc){ // Print the calling convention. switch (cc) { case CallingConv::C: Out << "CallingConv::C"; break; case CallingConv::Fast: Out << "CallingConv::Fast"; break; case CallingConv::Cold: Out << "CallingConv::Cold"; break; case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break; default: Out << cc; break; } } void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) { switch (LT) { case GlobalValue::InternalLinkage: Out << "GlobalValue::InternalLinkage"; break; case GlobalValue::PrivateLinkage: Out << "GlobalValue::PrivateLinkage"; break; case GlobalValue::AvailableExternallyLinkage: Out << "GlobalValue::AvailableExternallyLinkage "; break; case GlobalValue::LinkOnceAnyLinkage: Out << "GlobalValue::LinkOnceAnyLinkage "; break; case GlobalValue::LinkOnceODRLinkage: Out << "GlobalValue::LinkOnceODRLinkage "; break; case GlobalValue::WeakAnyLinkage: Out << "GlobalValue::WeakAnyLinkage"; break; case GlobalValue::WeakODRLinkage: Out << "GlobalValue::WeakODRLinkage"; break; case GlobalValue::AppendingLinkage: Out << "GlobalValue::AppendingLinkage"; break; case GlobalValue::ExternalLinkage: Out << "GlobalValue::ExternalLinkage"; break; case GlobalValue::ExternalWeakLinkage: Out << "GlobalValue::ExternalWeakLinkage"; break; case GlobalValue::CommonLinkage: Out << "GlobalValue::CommonLinkage"; break; } } void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) { switch (VisType) { case GlobalValue::DefaultVisibility: Out << "GlobalValue::DefaultVisibility"; break; case GlobalValue::HiddenVisibility: Out << "GlobalValue::HiddenVisibility"; break; case GlobalValue::ProtectedVisibility: Out << "GlobalValue::ProtectedVisibility"; break; } } void CppWriter::printDLLStorageClassType( GlobalValue::DLLStorageClassTypes DSCType) { switch (DSCType) { case GlobalValue::DefaultStorageClass: Out << "GlobalValue::DefaultStorageClass"; break; case GlobalValue::DLLImportStorageClass: Out << "GlobalValue::DLLImportStorageClass"; break; case GlobalValue::DLLExportStorageClass: Out << "GlobalValue::DLLExportStorageClass"; break; } } void CppWriter::printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM) { switch (TLM) { case GlobalVariable::NotThreadLocal: Out << "GlobalVariable::NotThreadLocal"; break; case GlobalVariable::GeneralDynamicTLSModel: Out << "GlobalVariable::GeneralDynamicTLSModel"; break; case GlobalVariable::LocalDynamicTLSModel: Out << "GlobalVariable::LocalDynamicTLSModel"; break; case GlobalVariable::InitialExecTLSModel: Out << "GlobalVariable::InitialExecTLSModel"; break; case GlobalVariable::LocalExecTLSModel: Out << "GlobalVariable::LocalExecTLSModel"; break; } } // printEscapedString - Print each character of the specified string, escaping // it if it is not printable or if it is an escape char. void CppWriter::printEscapedString(const std::string &Str) { for (unsigned i = 0, e = Str.size(); i != e; ++i) { unsigned char C = Str[i]; if (isprint(C) && C != '"' && C != '\\') { Out << C; } else { Out << "\\x" << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')) << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); } } } std::string CppWriter::getCppName(Type* Ty) { switch (Ty->getTypeID()) { default: break; case Type::VoidTyID: return "Type::getVoidTy(mod->getContext())"; case Type::IntegerTyID: { unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")"; } case Type::X86_FP80TyID: return "Type::getX86_FP80Ty(mod->getContext())"; case Type::FloatTyID: return "Type::getFloatTy(mod->getContext())"; case Type::DoubleTyID: return "Type::getDoubleTy(mod->getContext())"; case Type::LabelTyID: return "Type::getLabelTy(mod->getContext())"; case Type::X86_MMXTyID: return "Type::getX86_MMXTy(mod->getContext())"; } // Now, see if we've seen the type before and return that TypeMap::iterator I = TypeNames.find(Ty); if (I != TypeNames.end()) return I->second; // Okay, let's build a new name for this type. Start with a prefix const char* prefix = nullptr; switch (Ty->getTypeID()) { case Type::FunctionTyID: prefix = "FuncTy_"; break; case Type::StructTyID: prefix = "StructTy_"; break; case Type::ArrayTyID: prefix = "ArrayTy_"; break; case Type::PointerTyID: prefix = "PointerTy_"; break; case Type::VectorTyID: prefix = "VectorTy_"; break; default: prefix = "OtherTy_"; break; // prevent breakage } // See if the type has a name in the symboltable and build accordingly std::string name; if (StructType *STy = dyn_cast<StructType>(Ty)) if (STy->hasName()) name = STy->getName(); if (name.empty()) name = utostr(uniqueNum++); name = std::string(prefix) + name; sanitize(name); // Save the name return TypeNames[Ty] = name; } void CppWriter::printCppName(Type* Ty) { printEscapedString(getCppName(Ty)); } std::string CppWriter::getCppName(const Value* val) { std::string name; ValueMap::iterator I = ValueNames.find(val); if (I != ValueNames.end() && I->first == val) return I->second; if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) { name = std::string("gvar_") + getTypePrefix(GV->getType()->getElementType()); } else if (isa<Function>(val)) { name = std::string("func_"); } else if (const Constant* C = dyn_cast<Constant>(val)) { name = std::string("const_") + getTypePrefix(C->getType()); } else if (const Argument* Arg = dyn_cast<Argument>(val)) { if (is_inline) { unsigned argNum = std::distance(Arg->getParent()->arg_begin(), Function::const_arg_iterator(Arg)) + 1; name = std::string("arg_") + utostr(argNum); NameSet::iterator NI = UsedNames.find(name); if (NI != UsedNames.end()) name += std::string("_") + utostr(uniqueNum++); UsedNames.insert(name); return ValueNames[val] = name; } else { name = getTypePrefix(val->getType()); } } else { name = getTypePrefix(val->getType()); } if (val->hasName()) name += val->getName(); else name += utostr(uniqueNum++); sanitize(name); NameSet::iterator NI = UsedNames.find(name); if (NI != UsedNames.end()) name += std::string("_") + utostr(uniqueNum++); UsedNames.insert(name); return ValueNames[val] = name; } void CppWriter::printCppName(const Value* val) { printEscapedString(getCppName(val)); } void CppWriter::printAttributes(const AttributeSet &PAL, const std::string &name) { Out << "AttributeSet " << name << "_PAL;"; nl(Out); if (!PAL.isEmpty()) { Out << '{'; in(); nl(Out); Out << "SmallVector<AttributeSet, 4> Attrs;"; nl(Out); Out << "AttributeSet PAS;"; in(); nl(Out); for (unsigned i = 0; i < PAL.getNumSlots(); ++i) { unsigned index = PAL.getSlotIndex(i); AttrBuilder attrs(PAL.getSlotAttributes(i), index); Out << "{"; in(); nl(Out); Out << "AttrBuilder B;"; nl(Out); #define HANDLE_ATTR(X) \ if (attrs.contains(Attribute::X)) { \ Out << "B.addAttribute(Attribute::" #X ");"; nl(Out); \ attrs.removeAttribute(Attribute::X); \ } HANDLE_ATTR(SExt); HANDLE_ATTR(ZExt); HANDLE_ATTR(NoReturn); HANDLE_ATTR(InReg); HANDLE_ATTR(StructRet); HANDLE_ATTR(NoUnwind); HANDLE_ATTR(NoAlias); HANDLE_ATTR(ByVal); HANDLE_ATTR(InAlloca); HANDLE_ATTR(Nest); HANDLE_ATTR(ReadNone); HANDLE_ATTR(ReadOnly); HANDLE_ATTR(NoInline); HANDLE_ATTR(AlwaysInline); HANDLE_ATTR(OptimizeNone); HANDLE_ATTR(OptimizeForSize); HANDLE_ATTR(StackProtect); HANDLE_ATTR(StackProtectReq); HANDLE_ATTR(StackProtectStrong); HANDLE_ATTR(NoCapture); HANDLE_ATTR(NoRedZone); HANDLE_ATTR(NoImplicitFloat); HANDLE_ATTR(Naked); HANDLE_ATTR(InlineHint); HANDLE_ATTR(ReturnsTwice); HANDLE_ATTR(UWTable); HANDLE_ATTR(NonLazyBind); HANDLE_ATTR(MinSize); #undef HANDLE_ATTR if (attrs.contains(Attribute::StackAlignment)) { Out << "B.addStackAlignmentAttr(" << attrs.getStackAlignment()<<')'; nl(Out); attrs.removeAttribute(Attribute::StackAlignment); } Out << "PAS = AttributeSet::get(mod->getContext(), "; if (index == ~0U) Out << "~0U,"; else Out << index << "U,"; Out << " B);"; out(); nl(Out); Out << "}"; out(); nl(Out); nl(Out); Out << "Attrs.push_back(PAS);"; nl(Out); } Out << name << "_PAL = AttributeSet::get(mod->getContext(), Attrs);"; nl(Out); out(); nl(Out); Out << '}'; nl(Out); } } void CppWriter::printType(Type* Ty) { // We don't print definitions for primitive types if (Ty->isFloatingPointTy() || Ty->isX86_MMXTy() || Ty->isIntegerTy() || Ty->isLabelTy() || Ty->isMetadataTy() || Ty->isVoidTy()) return; // If we already defined this type, we don't need to define it again. if (DefinedTypes.find(Ty) != DefinedTypes.end()) return; // Everything below needs the name for the type so get it now. std::string typeName(getCppName(Ty)); // Print the type definition switch (Ty->getTypeID()) { case Type::FunctionTyID: { FunctionType* FT = cast<FunctionType>(Ty); Out << "std::vector<Type*>" << typeName << "_args;"; nl(Out); FunctionType::param_iterator PI = FT->param_begin(); FunctionType::param_iterator PE = FT->param_end(); for (; PI != PE; ++PI) { Type* argTy = static_cast<Type*>(*PI); printType(argTy); std::string argName(getCppName(argTy)); Out << typeName << "_args.push_back(" << argName; Out << ");"; nl(Out); } printType(FT->getReturnType()); std::string retTypeName(getCppName(FT->getReturnType())); Out << "FunctionType* " << typeName << " = FunctionType::get("; in(); nl(Out) << "/*Result=*/" << retTypeName; Out << ","; nl(Out) << "/*Params=*/" << typeName << "_args,"; nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");"; out(); nl(Out); break; } case Type::StructTyID: { StructType* ST = cast<StructType>(Ty); if (!ST->isLiteral()) { Out << "StructType *" << typeName << " = mod->getTypeByName(\""; printEscapedString(ST->getName()); Out << "\");"; nl(Out); Out << "if (!" << typeName << ") {"; nl(Out); Out << typeName << " = "; Out << "StructType::create(mod->getContext(), \""; printEscapedString(ST->getName()); Out << "\");"; nl(Out); Out << "}"; nl(Out); // Indicate that this type is now defined. DefinedTypes.insert(Ty); } Out << "std::vector<Type*>" << typeName << "_fields;"; nl(Out); StructType::element_iterator EI = ST->element_begin(); StructType::element_iterator EE = ST->element_end(); for (; EI != EE; ++EI) { Type* fieldTy = static_cast<Type*>(*EI); printType(fieldTy); std::string fieldName(getCppName(fieldTy)); Out << typeName << "_fields.push_back(" << fieldName; Out << ");"; nl(Out); } if (ST->isLiteral()) { Out << "StructType *" << typeName << " = "; Out << "StructType::get(" << "mod->getContext(), "; } else { Out << "if (" << typeName << "->isOpaque()) {"; nl(Out); Out << typeName << "->setBody("; } Out << typeName << "_fields, /*isPacked=*/" << (ST->isPacked() ? "true" : "false") << ");"; nl(Out); if (!ST->isLiteral()) { Out << "}"; nl(Out); } break; } case Type::ArrayTyID: { ArrayType* AT = cast<ArrayType>(Ty); Type* ET = AT->getElementType(); printType(ET); if (DefinedTypes.find(Ty) == DefinedTypes.end()) { std::string elemName(getCppName(ET)); Out << "ArrayType* " << typeName << " = ArrayType::get(" << elemName << ", " << utostr(AT->getNumElements()) << ");"; nl(Out); } break; } case Type::PointerTyID: { PointerType* PT = cast<PointerType>(Ty); Type* ET = PT->getElementType(); printType(ET); if (DefinedTypes.find(Ty) == DefinedTypes.end()) { std::string elemName(getCppName(ET)); Out << "PointerType* " << typeName << " = PointerType::get(" << elemName << ", " << utostr(PT->getAddressSpace()) << ");"; nl(Out); } break; } case Type::VectorTyID: { VectorType* PT = cast<VectorType>(Ty); Type* ET = PT->getElementType(); printType(ET); if (DefinedTypes.find(Ty) == DefinedTypes.end()) { std::string elemName(getCppName(ET)); Out << "VectorType* " << typeName << " = VectorType::get(" << elemName << ", " << utostr(PT->getNumElements()) << ");"; nl(Out); } break; } default: error("Invalid TypeID"); } // Indicate that this type is now defined. DefinedTypes.insert(Ty); // Finally, separate the type definition from other with a newline. nl(Out); } void CppWriter::printTypes(const Module* M) { // Add all of the global variables to the value table. for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end(); I != E; ++I) { if (I->hasInitializer()) printType(I->getInitializer()->getType()); printType(I->getType()); } // Add all the functions to the table for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end(); FI != FE; ++FI) { printType(FI->getReturnType()); printType(FI->getFunctionType()); // Add all the function arguments for (Function::const_arg_iterator AI = FI->arg_begin(), AE = FI->arg_end(); AI != AE; ++AI) { printType(AI->getType()); } // Add all of the basic blocks and instructions for (Function::const_iterator BB = FI->begin(), E = FI->end(); BB != E; ++BB) { printType(BB->getType()); for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { printType(I->getType()); for (unsigned i = 0; i < I->getNumOperands(); ++i) printType(I->getOperand(i)->getType()); } } } } // printConstant - Print out a constant pool entry... void CppWriter::printConstant(const Constant *CV) { // First, if the constant is actually a GlobalValue (variable or function) // or its already in the constant list then we've printed it already and we // can just return. if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end()) return; std::string constName(getCppName(CV)); std::string typeName(getCppName(CV->getType())); if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { std::string constValue = CI->getValue().toString(10, true); Out << "ConstantInt* " << constName << " = ConstantInt::get(mod->getContext(), APInt(" << cast<IntegerType>(CI->getType())->getBitWidth() << ", StringRef(\"" << constValue << "\"), 10));"; } else if (isa<ConstantAggregateZero>(CV)) { Out << "ConstantAggregateZero* " << constName << " = ConstantAggregateZero::get(" << typeName << ");"; } else if (isa<ConstantPointerNull>(CV)) { Out << "ConstantPointerNull* " << constName << " = ConstantPointerNull::get(" << typeName << ");"; } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { Out << "ConstantFP* " << constName << " = "; printCFP(CFP); Out << ";"; } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { Out << "std::vector<Constant*> " << constName << "_elems;"; nl(Out); unsigned N = CA->getNumOperands(); for (unsigned i = 0; i < N; ++i) { printConstant(CA->getOperand(i)); // recurse to print operands Out << constName << "_elems.push_back(" << getCppName(CA->getOperand(i)) << ");"; nl(Out); } Out << "Constant* " << constName << " = ConstantArray::get(" << typeName << ", " << constName << "_elems);"; } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { Out << "std::vector<Constant*> " << constName << "_fields;"; nl(Out); unsigned N = CS->getNumOperands(); for (unsigned i = 0; i < N; i++) { printConstant(CS->getOperand(i)); Out << constName << "_fields.push_back(" << getCppName(CS->getOperand(i)) << ");"; nl(Out); } Out << "Constant* " << constName << " = ConstantStruct::get(" << typeName << ", " << constName << "_fields);"; } else if (const ConstantVector *CVec = dyn_cast<ConstantVector>(CV)) { Out << "std::vector<Constant*> " << constName << "_elems;"; nl(Out); unsigned N = CVec->getNumOperands(); for (unsigned i = 0; i < N; ++i) { printConstant(CVec->getOperand(i)); Out << constName << "_elems.push_back(" << getCppName(CVec->getOperand(i)) << ");"; nl(Out); } Out << "Constant* " << constName << " = ConstantVector::get(" << typeName << ", " << constName << "_elems);"; } else if (isa<UndefValue>(CV)) { Out << "UndefValue* " << constName << " = UndefValue::get(" << typeName << ");"; } else if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) { if (CDS->isString()) { Out << "Constant *" << constName << " = ConstantDataArray::getString(mod->getContext(), \""; StringRef Str = CDS->getAsString(); bool nullTerminate = false; if (Str.back() == 0) { Str = Str.drop_back(); nullTerminate = true; } printEscapedString(Str); // Determine if we want null termination or not. if (nullTerminate) Out << "\", true);"; else Out << "\", false);";// No null terminator } else { // TODO: Could generate more efficient code generating CDS calls instead. Out << "std::vector<Constant*> " << constName << "_elems;"; nl(Out); for (unsigned i = 0; i != CDS->getNumElements(); ++i) { Constant *Elt = CDS->getElementAsConstant(i); printConstant(Elt); Out << constName << "_elems.push_back(" << getCppName(Elt) << ");"; nl(Out); } Out << "Constant* " << constName; if (isa<ArrayType>(CDS->getType())) Out << " = ConstantArray::get("; else Out << " = ConstantVector::get("; Out << typeName << ", " << constName << "_elems);"; } } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { if (CE->getOpcode() == Instruction::GetElementPtr) { Out << "std::vector<Constant*> " << constName << "_indices;"; nl(Out); printConstant(CE->getOperand(0)); for (unsigned i = 1; i < CE->getNumOperands(); ++i ) { printConstant(CE->getOperand(i)); Out << constName << "_indices.push_back(" << getCppName(CE->getOperand(i)) << ");"; nl(Out); } Out << "Constant* " << constName << " = ConstantExpr::getGetElementPtr(" << getCppName(CE->getOperand(0)) << ", " << constName << "_indices);"; } else if (CE->isCast()) { printConstant(CE->getOperand(0)); Out << "Constant* " << constName << " = ConstantExpr::getCast("; switch (CE->getOpcode()) { default: llvm_unreachable("Invalid cast opcode"); case Instruction::Trunc: Out << "Instruction::Trunc"; break; case Instruction::ZExt: Out << "Instruction::ZExt"; break; case Instruction::SExt: Out << "Instruction::SExt"; break; case Instruction::FPTrunc: Out << "Instruction::FPTrunc"; break; case Instruction::FPExt: Out << "Instruction::FPExt"; break; case Instruction::FPToUI: Out << "Instruction::FPToUI"; break; case Instruction::FPToSI: Out << "Instruction::FPToSI"; break; case Instruction::UIToFP: Out << "Instruction::UIToFP"; break; case Instruction::SIToFP: Out << "Instruction::SIToFP"; break; case Instruction::PtrToInt: Out << "Instruction::PtrToInt"; break; case Instruction::IntToPtr: Out << "Instruction::IntToPtr"; break; case Instruction::BitCast: Out << "Instruction::BitCast"; break; } Out << ", " << getCppName(CE->getOperand(0)) << ", " << getCppName(CE->getType()) << ");"; } else { unsigned N = CE->getNumOperands(); for (unsigned i = 0; i < N; ++i ) { printConstant(CE->getOperand(i)); } Out << "Constant* " << constName << " = ConstantExpr::"; switch (CE->getOpcode()) { case Instruction::Add: Out << "getAdd("; break; case Instruction::FAdd: Out << "getFAdd("; break; case Instruction::Sub: Out << "getSub("; break; case Instruction::FSub: Out << "getFSub("; break; case Instruction::Mul: Out << "getMul("; break; case Instruction::FMul: Out << "getFMul("; break; case Instruction::UDiv: Out << "getUDiv("; break; case Instruction::SDiv: Out << "getSDiv("; break; case Instruction::FDiv: Out << "getFDiv("; break; case Instruction::URem: Out << "getURem("; break; case Instruction::SRem: Out << "getSRem("; break; case Instruction::FRem: Out << "getFRem("; break; case Instruction::And: Out << "getAnd("; break; case Instruction::Or: Out << "getOr("; break; case Instruction::Xor: Out << "getXor("; break; case Instruction::ICmp: Out << "getICmp(ICmpInst::ICMP_"; switch (CE->getPredicate()) { case ICmpInst::ICMP_EQ: Out << "EQ"; break; case ICmpInst::ICMP_NE: Out << "NE"; break; case ICmpInst::ICMP_SLT: Out << "SLT"; break; case ICmpInst::ICMP_ULT: Out << "ULT"; break; case ICmpInst::ICMP_SGT: Out << "SGT"; break; case ICmpInst::ICMP_UGT: Out << "UGT"; break; case ICmpInst::ICMP_SLE: Out << "SLE"; break; case ICmpInst::ICMP_ULE: Out << "ULE"; break; case ICmpInst::ICMP_SGE: Out << "SGE"; break; case ICmpInst::ICMP_UGE: Out << "UGE"; break; default: error("Invalid ICmp Predicate"); } break; case Instruction::FCmp: Out << "getFCmp(FCmpInst::FCMP_"; switch (CE->getPredicate()) { case FCmpInst::FCMP_FALSE: Out << "FALSE"; break; case FCmpInst::FCMP_ORD: Out << "ORD"; break; case FCmpInst::FCMP_UNO: Out << "UNO"; break; case FCmpInst::FCMP_OEQ: Out << "OEQ"; break; case FCmpInst::FCMP_UEQ: Out << "UEQ"; break; case FCmpInst::FCMP_ONE: Out << "ONE"; break; case FCmpInst::FCMP_UNE: Out << "UNE"; break; case FCmpInst::FCMP_OLT: Out << "OLT"; break; case FCmpInst::FCMP_ULT: Out << "ULT"; break; case FCmpInst::FCMP_OGT: Out << "OGT"; break; case FCmpInst::FCMP_UGT: Out << "UGT"; break; case FCmpInst::FCMP_OLE: Out << "OLE"; break; case FCmpInst::FCMP_ULE: Out << "ULE"; break; case FCmpInst::FCMP_OGE: Out << "OGE"; break; case FCmpInst::FCMP_UGE: Out << "UGE"; break; case FCmpInst::FCMP_TRUE: Out << "TRUE"; break; default: error("Invalid FCmp Predicate"); } break; case Instruction::Shl: Out << "getShl("; break; case Instruction::LShr: Out << "getLShr("; break; case Instruction::AShr: Out << "getAShr("; break; case Instruction::Select: Out << "getSelect("; break; case Instruction::ExtractElement: Out << "getExtractElement("; break; case Instruction::InsertElement: Out << "getInsertElement("; break; case Instruction::ShuffleVector: Out << "getShuffleVector("; break; default: error("Invalid constant expression"); break; } Out << getCppName(CE->getOperand(0)); for (unsigned i = 1; i < CE->getNumOperands(); ++i) Out << ", " << getCppName(CE->getOperand(i)); Out << ");"; } } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { Out << "Constant* " << constName << " = "; Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");"; } else { error("Bad Constant"); Out << "Constant* " << constName << " = 0; "; } nl(Out); } void CppWriter::printConstants(const Module* M) { // Traverse all the global variables looking for constant initializers for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end(); I != E; ++I) if (I->hasInitializer()) printConstant(I->getInitializer()); // Traverse the LLVM functions looking for constants for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end(); FI != FE; ++FI) { // Add all of the basic blocks and instructions for (Function::const_iterator BB = FI->begin(), E = FI->end(); BB != E; ++BB) { for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { for (unsigned i = 0; i < I->getNumOperands(); ++i) { if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) { printConstant(C); } } } } } } void CppWriter::printVariableUses(const GlobalVariable *GV) { nl(Out) << "// Type Definitions"; nl(Out); printType(GV->getType()); if (GV->hasInitializer()) { const Constant *Init = GV->getInitializer(); printType(Init->getType()); if (const Function *F = dyn_cast<Function>(Init)) { nl(Out)<< "/ Function Declarations"; nl(Out); printFunctionHead(F); } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) { nl(Out) << "// Global Variable Declarations"; nl(Out); printVariableHead(gv); nl(Out) << "// Global Variable Definitions"; nl(Out); printVariableBody(gv); } else { nl(Out) << "// Constant Definitions"; nl(Out); printConstant(Init); } } } void CppWriter::printVariableHead(const GlobalVariable *GV) { nl(Out) << "GlobalVariable* " << getCppName(GV); if (is_inline) { Out << " = mod->getGlobalVariable(mod->getContext(), "; printEscapedString(GV->getName()); Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)"; nl(Out) << "if (!" << getCppName(GV) << ") {"; in(); nl(Out) << getCppName(GV); } Out << " = new GlobalVariable(/*Module=*/*mod, "; nl(Out) << "/*Type=*/"; printCppName(GV->getType()->getElementType()); Out << ","; nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false"); Out << ","; nl(Out) << "/*Linkage=*/"; printLinkageType(GV->getLinkage()); Out << ","; nl(Out) << "/*Initializer=*/0, "; if (GV->hasInitializer()) { Out << "// has initializer, specified below"; } nl(Out) << "/*Name=*/\""; printEscapedString(GV->getName()); Out << "\");"; nl(Out); if (GV->hasSection()) { printCppName(GV); Out << "->setSection(\""; printEscapedString(GV->getSection()); Out << "\");"; nl(Out); } if (GV->getAlignment()) { printCppName(GV); Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");"; nl(Out); } if (GV->getVisibility() != GlobalValue::DefaultVisibility) { printCppName(GV); Out << "->setVisibility("; printVisibilityType(GV->getVisibility()); Out << ");"; nl(Out); } if (GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) { printCppName(GV); Out << "->setDLLStorageClass("; printDLLStorageClassType(GV->getDLLStorageClass()); Out << ");"; nl(Out); } if (GV->isThreadLocal()) { printCppName(GV); Out << "->setThreadLocalMode("; printThreadLocalMode(GV->getThreadLocalMode()); Out << ");"; nl(Out); } if (is_inline) { out(); Out << "}"; nl(Out); } } void CppWriter::printVariableBody(const GlobalVariable *GV) { if (GV->hasInitializer()) { printCppName(GV); Out << "->setInitializer("; Out << getCppName(GV->getInitializer()) << ");"; nl(Out); } } std::string CppWriter::getOpName(const Value* V) { if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end()) return getCppName(V); // See if its alread in the map of forward references, if so just return the // name we already set up for it ForwardRefMap::const_iterator I = ForwardRefs.find(V); if (I != ForwardRefs.end()) return I->second; // This is a new forward reference. Generate a unique name for it std::string result(std::string("fwdref_") + utostr(uniqueNum++)); // Yes, this is a hack. An Argument is the smallest instantiable value that // we can make as a placeholder for the real value. We'll replace these // Argument instances later. Out << "Argument* " << result << " = new Argument(" << getCppName(V->getType()) << ");"; nl(Out); ForwardRefs[V] = result; return result; } static StringRef ConvertAtomicOrdering(AtomicOrdering Ordering) { switch (Ordering) { case NotAtomic: return "NotAtomic"; case Unordered: return "Unordered"; case Monotonic: return "Monotonic"; case Acquire: return "Acquire"; case Release: return "Release"; case AcquireRelease: return "AcquireRelease"; case SequentiallyConsistent: return "SequentiallyConsistent"; } llvm_unreachable("Unknown ordering"); } static StringRef ConvertAtomicSynchScope(SynchronizationScope SynchScope) { switch (SynchScope) { case SingleThread: return "SingleThread"; case CrossThread: return "CrossThread"; } llvm_unreachable("Unknown synch scope"); } // printInstruction - This member is called for each Instruction in a function. void CppWriter::printInstruction(const Instruction *I, const std::string& bbname) { std::string iName(getCppName(I)); // Before we emit this instruction, we need to take care of generating any // forward references. So, we get the names of all the operands in advance const unsigned Ops(I->getNumOperands()); std::string* opNames = new std::string[Ops]; for (unsigned i = 0; i < Ops; i++) opNames[i] = getOpName(I->getOperand(i)); switch (I->getOpcode()) { default: error("Invalid instruction"); break; case Instruction::Ret: { const ReturnInst* ret = cast<ReturnInst>(I); Out << "ReturnInst::Create(mod->getContext(), " << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");"; break; } case Instruction::Br: { const BranchInst* br = cast<BranchInst>(I); Out << "BranchInst::Create(" ; if (br->getNumOperands() == 3) { Out << opNames[2] << ", " << opNames[1] << ", " << opNames[0] << ", "; } else if (br->getNumOperands() == 1) { Out << opNames[0] << ", "; } else { error("Branch with 2 operands?"); } Out << bbname << ");"; break; } case Instruction::Switch: { const SwitchInst *SI = cast<SwitchInst>(I); Out << "SwitchInst* " << iName << " = SwitchInst::Create(" << getOpName(SI->getCondition()) << ", " << getOpName(SI->getDefaultDest()) << ", " << SI->getNumCases() << ", " << bbname << ");"; nl(Out); for (SwitchInst::ConstCaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) { const ConstantInt* CaseVal = i.getCaseValue(); const BasicBlock *BB = i.getCaseSuccessor(); Out << iName << "->addCase(" << getOpName(CaseVal) << ", " << getOpName(BB) << ");"; nl(Out); } break; } case Instruction::IndirectBr: { const IndirectBrInst *IBI = cast<IndirectBrInst>(I); Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create(" << opNames[0] << ", " << IBI->getNumDestinations() << ");"; nl(Out); for (unsigned i = 1; i != IBI->getNumOperands(); ++i) { Out << iName << "->addDestination(" << opNames[i] << ");"; nl(Out); } break; } case Instruction::Resume: { Out << "ResumeInst::Create(" << opNames[0] << ", " << bbname << ");"; break; } case Instruction::Invoke: { const InvokeInst* inv = cast<InvokeInst>(I); Out << "std::vector<Value*> " << iName << "_params;"; nl(Out); for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) { Out << iName << "_params.push_back(" << getOpName(inv->getArgOperand(i)) << ");"; nl(Out); } // FIXME: This shouldn't use magic numbers -3, -2, and -1. Out << "InvokeInst *" << iName << " = InvokeInst::Create(" << getOpName(inv->getCalledValue()) << ", " << getOpName(inv->getNormalDest()) << ", " << getOpName(inv->getUnwindDest()) << ", " << iName << "_params, \""; printEscapedString(inv->getName()); Out << "\", " << bbname << ");"; nl(Out) << iName << "->setCallingConv("; printCallingConv(inv->getCallingConv()); Out << ");"; printAttributes(inv->getAttributes(), iName); Out << iName << "->setAttributes(" << iName << "_PAL);"; nl(Out); break; } case Instruction::Unreachable: { Out << "new UnreachableInst(" << "mod->getContext(), " << bbname << ");"; break; } case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr:{ Out << "BinaryOperator* " << iName << " = BinaryOperator::Create("; switch (I->getOpcode()) { case Instruction::Add: Out << "Instruction::Add"; break; case Instruction::FAdd: Out << "Instruction::FAdd"; break; case Instruction::Sub: Out << "Instruction::Sub"; break; case Instruction::FSub: Out << "Instruction::FSub"; break; case Instruction::Mul: Out << "Instruction::Mul"; break; case Instruction::FMul: Out << "Instruction::FMul"; break; case Instruction::UDiv:Out << "Instruction::UDiv"; break; case Instruction::SDiv:Out << "Instruction::SDiv"; break; case Instruction::FDiv:Out << "Instruction::FDiv"; break; case Instruction::URem:Out << "Instruction::URem"; break; case Instruction::SRem:Out << "Instruction::SRem"; break; case Instruction::FRem:Out << "Instruction::FRem"; break; case Instruction::And: Out << "Instruction::And"; break; case Instruction::Or: Out << "Instruction::Or"; break; case Instruction::Xor: Out << "Instruction::Xor"; break; case Instruction::Shl: Out << "Instruction::Shl"; break; case Instruction::LShr:Out << "Instruction::LShr"; break; case Instruction::AShr:Out << "Instruction::AShr"; break; default: Out << "Instruction::BadOpCode"; break; } Out << ", " << opNames[0] << ", " << opNames[1] << ", \""; printEscapedString(I->getName()); Out << "\", " << bbname << ");"; break; } case Instruction::FCmp: { Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", "; switch (cast<FCmpInst>(I)->getPredicate()) { case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break; case FCmpInst::FCMP_OEQ : Out << "FCmpInst::FCMP_OEQ"; break; case FCmpInst::FCMP_OGT : Out << "FCmpInst::FCMP_OGT"; break; case FCmpInst::FCMP_OGE : Out << "FCmpInst::FCMP_OGE"; break; case FCmpInst::FCMP_OLT : Out << "FCmpInst::FCMP_OLT"; break; case FCmpInst::FCMP_OLE : Out << "FCmpInst::FCMP_OLE"; break; case FCmpInst::FCMP_ONE : Out << "FCmpInst::FCMP_ONE"; break; case FCmpInst::FCMP_ORD : Out << "FCmpInst::FCMP_ORD"; break; case FCmpInst::FCMP_UNO : Out << "FCmpInst::FCMP_UNO"; break; case FCmpInst::FCMP_UEQ : Out << "FCmpInst::FCMP_UEQ"; break; case FCmpInst::FCMP_UGT : Out << "FCmpInst::FCMP_UGT"; break; case FCmpInst::FCMP_UGE : Out << "FCmpInst::FCMP_UGE"; break; case FCmpInst::FCMP_ULT : Out << "FCmpInst::FCMP_ULT"; break; case FCmpInst::FCMP_ULE : Out << "FCmpInst::FCMP_ULE"; break; case FCmpInst::FCMP_UNE : Out << "FCmpInst::FCMP_UNE"; break; case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break; default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break; } Out << ", " << opNames[0] << ", " << opNames[1] << ", \""; printEscapedString(I->getName()); Out << "\");"; break; } case Instruction::ICmp: { Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", "; switch (cast<ICmpInst>(I)->getPredicate()) { case ICmpInst::ICMP_EQ: Out << "ICmpInst::ICMP_EQ"; break; case ICmpInst::ICMP_NE: Out << "ICmpInst::ICMP_NE"; break; case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break; case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break; case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break; case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break; case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break; case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break; case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break; case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break; default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break; } Out << ", " << opNames[0] << ", " << opNames[1] << ", \""; printEscapedString(I->getName()); Out << "\");"; break; } case Instruction::Alloca: { const AllocaInst* allocaI = cast<AllocaInst>(I); Out << "AllocaInst* " << iName << " = new AllocaInst(" << getCppName(allocaI->getAllocatedType()) << ", "; if (allocaI->isArrayAllocation()) Out << opNames[0] << ", "; Out << "\""; printEscapedString(allocaI->getName()); Out << "\", " << bbname << ");"; if (allocaI->getAlignment()) nl(Out) << iName << "->setAlignment(" << allocaI->getAlignment() << ");"; break; } case Instruction::Load: { const LoadInst* load = cast<LoadInst>(I); Out << "LoadInst* " << iName << " = new LoadInst(" << opNames[0] << ", \""; printEscapedString(load->getName()); Out << "\", " << (load->isVolatile() ? "true" : "false" ) << ", " << bbname << ");"; if (load->getAlignment()) nl(Out) << iName << "->setAlignment(" << load->getAlignment() << ");"; if (load->isAtomic()) { StringRef Ordering = ConvertAtomicOrdering(load->getOrdering()); StringRef CrossThread = ConvertAtomicSynchScope(load->getSynchScope()); nl(Out) << iName << "->setAtomic(" << Ordering << ", " << CrossThread << ");"; } break; } case Instruction::Store: { const StoreInst* store = cast<StoreInst>(I); Out << "StoreInst* " << iName << " = new StoreInst(" << opNames[0] << ", " << opNames[1] << ", " << (store->isVolatile() ? "true" : "false") << ", " << bbname << ");"; if (store->getAlignment()) nl(Out) << iName << "->setAlignment(" << store->getAlignment() << ");"; if (store->isAtomic()) { StringRef Ordering = ConvertAtomicOrdering(store->getOrdering()); StringRef CrossThread = ConvertAtomicSynchScope(store->getSynchScope()); nl(Out) << iName << "->setAtomic(" << Ordering << ", " << CrossThread << ");"; } break; } case Instruction::GetElementPtr: { const GetElementPtrInst* gep = cast<GetElementPtrInst>(I); if (gep->getNumOperands() <= 2) { Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create(" << opNames[0]; if (gep->getNumOperands() == 2) Out << ", " << opNames[1]; } else { Out << "std::vector<Value*> " << iName << "_indices;"; nl(Out); for (unsigned i = 1; i < gep->getNumOperands(); ++i ) { Out << iName << "_indices.push_back(" << opNames[i] << ");"; nl(Out); } Out << "Instruction* " << iName << " = GetElementPtrInst::Create(" << opNames[0] << ", " << iName << "_indices"; } Out << ", \""; printEscapedString(gep->getName()); Out << "\", " << bbname << ");"; break; } case Instruction::PHI: { const PHINode* phi = cast<PHINode>(I); Out << "PHINode* " << iName << " = PHINode::Create(" << getCppName(phi->getType()) << ", " << phi->getNumIncomingValues() << ", \""; printEscapedString(phi->getName()); Out << "\", " << bbname << ");"; nl(Out); for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) { Out << iName << "->addIncoming(" << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", " << getOpName(phi->getIncomingBlock(i)) << ");"; nl(Out); } break; } case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::BitCast: { const CastInst* cst = cast<CastInst>(I); Out << "CastInst* " << iName << " = new "; switch (I->getOpcode()) { case Instruction::Trunc: Out << "TruncInst"; break; case Instruction::ZExt: Out << "ZExtInst"; break; case Instruction::SExt: Out << "SExtInst"; break; case Instruction::FPTrunc: Out << "FPTruncInst"; break; case Instruction::FPExt: Out << "FPExtInst"; break; case Instruction::FPToUI: Out << "FPToUIInst"; break; case Instruction::FPToSI: Out << "FPToSIInst"; break; case Instruction::UIToFP: Out << "UIToFPInst"; break; case Instruction::SIToFP: Out << "SIToFPInst"; break; case Instruction::PtrToInt: Out << "PtrToIntInst"; break; case Instruction::IntToPtr: Out << "IntToPtrInst"; break; case Instruction::BitCast: Out << "BitCastInst"; break; default: llvm_unreachable("Unreachable"); } Out << "(" << opNames[0] << ", " << getCppName(cst->getType()) << ", \""; printEscapedString(cst->getName()); Out << "\", " << bbname << ");"; break; } case Instruction::Call: { const CallInst* call = cast<CallInst>(I); if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) { Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get(" << getCppName(ila->getFunctionType()) << ", \"" << ila->getAsmString() << "\", \"" << ila->getConstraintString() << "\"," << (ila->hasSideEffects() ? "true" : "false") << ");"; nl(Out); } if (call->getNumArgOperands() > 1) { Out << "std::vector<Value*> " << iName << "_params;"; nl(Out); for (unsigned i = 0; i < call->getNumArgOperands(); ++i) { Out << iName << "_params.push_back(" << opNames[i] << ");"; nl(Out); } Out << "CallInst* " << iName << " = CallInst::Create(" << opNames[call->getNumArgOperands()] << ", " << iName << "_params, \""; } else if (call->getNumArgOperands() == 1) { Out << "CallInst* " << iName << " = CallInst::Create(" << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \""; } else { Out << "CallInst* " << iName << " = CallInst::Create(" << opNames[call->getNumArgOperands()] << ", \""; } printEscapedString(call->getName()); Out << "\", " << bbname << ");"; nl(Out) << iName << "->setCallingConv("; printCallingConv(call->getCallingConv()); Out << ");"; nl(Out) << iName << "->setTailCall(" << (call->isTailCall() ? "true" : "false"); Out << ");"; nl(Out); printAttributes(call->getAttributes(), iName); Out << iName << "->setAttributes(" << iName << "_PAL);"; nl(Out); break; } case Instruction::Select: { const SelectInst* sel = cast<SelectInst>(I); Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create("; Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \""; printEscapedString(sel->getName()); Out << "\", " << bbname << ");"; break; } case Instruction::UserOp1: /// FALL THROUGH case Instruction::UserOp2: { /// FIXME: What should be done here? break; } case Instruction::VAArg: { const VAArgInst* va = cast<VAArgInst>(I); Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst(" << opNames[0] << ", " << getCppName(va->getType()) << ", \""; printEscapedString(va->getName()); Out << "\", " << bbname << ");"; break; } case Instruction::ExtractElement: { const ExtractElementInst* eei = cast<ExtractElementInst>(I); Out << "ExtractElementInst* " << getCppName(eei) << " = new ExtractElementInst(" << opNames[0] << ", " << opNames[1] << ", \""; printEscapedString(eei->getName()); Out << "\", " << bbname << ");"; break; } case Instruction::InsertElement: { const InsertElementInst* iei = cast<InsertElementInst>(I); Out << "InsertElementInst* " << getCppName(iei) << " = InsertElementInst::Create(" << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \""; printEscapedString(iei->getName()); Out << "\", " << bbname << ");"; break; } case Instruction::ShuffleVector: { const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I); Out << "ShuffleVectorInst* " << getCppName(svi) << " = new ShuffleVectorInst(" << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \""; printEscapedString(svi->getName()); Out << "\", " << bbname << ");"; break; } case Instruction::ExtractValue: { const ExtractValueInst *evi = cast<ExtractValueInst>(I); Out << "std::vector<unsigned> " << iName << "_indices;"; nl(Out); for (unsigned i = 0; i < evi->getNumIndices(); ++i) { Out << iName << "_indices.push_back(" << evi->idx_begin()[i] << ");"; nl(Out); } Out << "ExtractValueInst* " << getCppName(evi) << " = ExtractValueInst::Create(" << opNames[0] << ", " << iName << "_indices, \""; printEscapedString(evi->getName()); Out << "\", " << bbname << ");"; break; } case Instruction::InsertValue: { const InsertValueInst *ivi = cast<InsertValueInst>(I); Out << "std::vector<unsigned> " << iName << "_indices;"; nl(Out); for (unsigned i = 0; i < ivi->getNumIndices(); ++i) { Out << iName << "_indices.push_back(" << ivi->idx_begin()[i] << ");"; nl(Out); } Out << "InsertValueInst* " << getCppName(ivi) << " = InsertValueInst::Create(" << opNames[0] << ", " << opNames[1] << ", " << iName << "_indices, \""; printEscapedString(ivi->getName()); Out << "\", " << bbname << ");"; break; } case Instruction::Fence: { const FenceInst *fi = cast<FenceInst>(I); StringRef Ordering = ConvertAtomicOrdering(fi->getOrdering()); StringRef CrossThread = ConvertAtomicSynchScope(fi->getSynchScope()); Out << "FenceInst* " << iName << " = new FenceInst(mod->getContext(), " << Ordering << ", " << CrossThread << ", " << bbname << ");"; break; } case Instruction::AtomicCmpXchg: { const AtomicCmpXchgInst *cxi = cast<AtomicCmpXchgInst>(I); StringRef SuccessOrdering = ConvertAtomicOrdering(cxi->getSuccessOrdering()); StringRef FailureOrdering = ConvertAtomicOrdering(cxi->getFailureOrdering()); StringRef CrossThread = ConvertAtomicSynchScope(cxi->getSynchScope()); Out << "AtomicCmpXchgInst* " << iName << " = new AtomicCmpXchgInst(" << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", " << SuccessOrdering << ", " << FailureOrdering << ", " << CrossThread << ", " << bbname << ");"; nl(Out) << iName << "->setName(\""; printEscapedString(cxi->getName()); Out << "\");"; nl(Out) << iName << "->setVolatile(" << (cxi->isVolatile() ? "true" : "false") << ");"; nl(Out) << iName << "->setWeak(" << (cxi->isWeak() ? "true" : "false") << ");"; break; } case Instruction::AtomicRMW: { const AtomicRMWInst *rmwi = cast<AtomicRMWInst>(I); StringRef Ordering = ConvertAtomicOrdering(rmwi->getOrdering()); StringRef CrossThread = ConvertAtomicSynchScope(rmwi->getSynchScope()); StringRef Operation; switch (rmwi->getOperation()) { case AtomicRMWInst::Xchg: Operation = "AtomicRMWInst::Xchg"; break; case AtomicRMWInst::Add: Operation = "AtomicRMWInst::Add"; break; case AtomicRMWInst::Sub: Operation = "AtomicRMWInst::Sub"; break; case AtomicRMWInst::And: Operation = "AtomicRMWInst::And"; break; case AtomicRMWInst::Nand: Operation = "AtomicRMWInst::Nand"; break; case AtomicRMWInst::Or: Operation = "AtomicRMWInst::Or"; break; case AtomicRMWInst::Xor: Operation = "AtomicRMWInst::Xor"; break; case AtomicRMWInst::Max: Operation = "AtomicRMWInst::Max"; break; case AtomicRMWInst::Min: Operation = "AtomicRMWInst::Min"; break; case AtomicRMWInst::UMax: Operation = "AtomicRMWInst::UMax"; break; case AtomicRMWInst::UMin: Operation = "AtomicRMWInst::UMin"; break; case AtomicRMWInst::BAD_BINOP: llvm_unreachable("Bad atomic operation"); } Out << "AtomicRMWInst* " << iName << " = new AtomicRMWInst(" << Operation << ", " << opNames[0] << ", " << opNames[1] << ", " << Ordering << ", " << CrossThread << ", " << bbname << ");"; nl(Out) << iName << "->setName(\""; printEscapedString(rmwi->getName()); Out << "\");"; nl(Out) << iName << "->setVolatile(" << (rmwi->isVolatile() ? "true" : "false") << ");"; break; } case Instruction::LandingPad: { const LandingPadInst *lpi = cast<LandingPadInst>(I); Out << "LandingPadInst* " << iName << " = LandingPadInst::Create("; printCppName(lpi->getType()); Out << ", " << opNames[0] << ", " << lpi->getNumClauses() << ", \""; printEscapedString(lpi->getName()); Out << "\", " << bbname << ");"; nl(Out) << iName << "->setCleanup(" << (lpi->isCleanup() ? "true" : "false") << ");"; for (unsigned i = 0, e = lpi->getNumClauses(); i != e; ++i) nl(Out) << iName << "->addClause(" << opNames[i+1] << ");"; break; } } DefinedValues.insert(I); nl(Out); delete [] opNames; } // Print out the types, constants and declarations needed by one function void CppWriter::printFunctionUses(const Function* F) { nl(Out) << "// Type Definitions"; nl(Out); if (!is_inline) { // Print the function's return type printType(F->getReturnType()); // Print the function's function type printType(F->getFunctionType()); // Print the types of each of the function's arguments for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); AI != AE; ++AI) { printType(AI->getType()); } } // Print type definitions for every type referenced by an instruction and // make a note of any global values or constants that are referenced SmallPtrSet<GlobalValue*,64> gvs; SmallPtrSet<Constant*,64> consts; for (Function::const_iterator BB = F->begin(), BE = F->end(); BB != BE; ++BB){ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { // Print the type of the instruction itself printType(I->getType()); // Print the type of each of the instruction's operands for (unsigned i = 0; i < I->getNumOperands(); ++i) { Value* operand = I->getOperand(i); printType(operand->getType()); // If the operand references a GVal or Constant, make a note of it if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) { gvs.insert(GV); if (GenerationType != GenFunction) if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) if (GVar->hasInitializer()) consts.insert(GVar->getInitializer()); } else if (Constant* C = dyn_cast<Constant>(operand)) { consts.insert(C); for (unsigned j = 0; j < C->getNumOperands(); ++j) { // If the operand references a GVal or Constant, make a note of it Value* operand = C->getOperand(j); printType(operand->getType()); if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) { gvs.insert(GV); if (GenerationType != GenFunction) if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) if (GVar->hasInitializer()) consts.insert(GVar->getInitializer()); } } } } } } // Print the function declarations for any functions encountered nl(Out) << "// Function Declarations"; nl(Out); for (auto *GV : gvs) { if (Function *Fun = dyn_cast<Function>(GV)) { if (!is_inline || Fun != F) printFunctionHead(Fun); } } // Print the global variable declarations for any variables encountered nl(Out) << "// Global Variable Declarations"; nl(Out); for (auto *GV : gvs) { if (GlobalVariable *F = dyn_cast<GlobalVariable>(GV)) printVariableHead(F); } // Print the constants found nl(Out) << "// Constant Definitions"; nl(Out); for (const auto *C : consts) { printConstant(C); } // Process the global variables definitions now that all the constants have // been emitted. These definitions just couple the gvars with their constant // initializers. if (GenerationType != GenFunction) { nl(Out) << "// Global Variable Definitions"; nl(Out); for (auto *GV : gvs) { if (GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) printVariableBody(Var); } } } void CppWriter::printFunctionHead(const Function* F) { nl(Out) << "Function* " << getCppName(F); Out << " = mod->getFunction(\""; printEscapedString(F->getName()); Out << "\");"; nl(Out) << "if (!" << getCppName(F) << ") {"; nl(Out) << getCppName(F); Out<< " = Function::Create("; nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ","; nl(Out) << "/*Linkage=*/"; printLinkageType(F->getLinkage()); Out << ","; nl(Out) << "/*Name=*/\""; printEscapedString(F->getName()); Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : ""); nl(Out,-1); printCppName(F); Out << "->setCallingConv("; printCallingConv(F->getCallingConv()); Out << ");"; nl(Out); if (F->hasSection()) { printCppName(F); Out << "->setSection(\"" << F->getSection() << "\");"; nl(Out); } if (F->getAlignment()) { printCppName(F); Out << "->setAlignment(" << F->getAlignment() << ");"; nl(Out); } if (F->getVisibility() != GlobalValue::DefaultVisibility) { printCppName(F); Out << "->setVisibility("; printVisibilityType(F->getVisibility()); Out << ");"; nl(Out); } if (F->getDLLStorageClass() != GlobalValue::DefaultStorageClass) { printCppName(F); Out << "->setDLLStorageClass("; printDLLStorageClassType(F->getDLLStorageClass()); Out << ");"; nl(Out); } if (F->hasGC()) { printCppName(F); Out << "->setGC(\"" << F->getGC() << "\");"; nl(Out); } Out << "}"; nl(Out); printAttributes(F->getAttributes(), getCppName(F)); printCppName(F); Out << "->setAttributes(" << getCppName(F) << "_PAL);"; nl(Out); } void CppWriter::printFunctionBody(const Function *F) { if (F->isDeclaration()) return; // external functions have no bodies. // Clear the DefinedValues and ForwardRefs maps because we can't have // cross-function forward refs ForwardRefs.clear(); DefinedValues.clear(); // Create all the argument values if (!is_inline) { if (!F->arg_empty()) { Out << "Function::arg_iterator args = " << getCppName(F) << "->arg_begin();"; nl(Out); } for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); AI != AE; ++AI) { Out << "Value* " << getCppName(AI) << " = args++;"; nl(Out); if (AI->hasName()) { Out << getCppName(AI) << "->setName(\""; printEscapedString(AI->getName()); Out << "\");"; nl(Out); } } } // Create all the basic blocks nl(Out); for (Function::const_iterator BI = F->begin(), BE = F->end(); BI != BE; ++BI) { std::string bbname(getCppName(BI)); Out << "BasicBlock* " << bbname << " = BasicBlock::Create(mod->getContext(), \""; if (BI->hasName()) printEscapedString(BI->getName()); Out << "\"," << getCppName(BI->getParent()) << ",0);"; nl(Out); } // Output all of its basic blocks... for the function for (Function::const_iterator BI = F->begin(), BE = F->end(); BI != BE; ++BI) { std::string bbname(getCppName(BI)); nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")"; nl(Out); // Output all of the instructions in the basic block... for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { printInstruction(I,bbname); } } // Loop over the ForwardRefs and resolve them now that all instructions // are generated. if (!ForwardRefs.empty()) { nl(Out) << "// Resolve Forward References"; nl(Out); } while (!ForwardRefs.empty()) { ForwardRefMap::iterator I = ForwardRefs.begin(); Out << I->second << "->replaceAllUsesWith(" << getCppName(I->first) << "); delete " << I->second << ";"; nl(Out); ForwardRefs.erase(I); } } void CppWriter::printInline(const std::string& fname, const std::string& func) { const Function* F = TheModule->getFunction(func); if (!F) { error(std::string("Function '") + func + "' not found in input module"); return; } if (F->isDeclaration()) { error(std::string("Function '") + func + "' is external!"); return; } nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *" << getCppName(F); unsigned arg_count = 1; for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); AI != AE; ++AI) { Out << ", Value* arg_" << arg_count++; } Out << ") {"; nl(Out); is_inline = true; printFunctionUses(F); printFunctionBody(F); is_inline = false; Out << "return " << getCppName(F->begin()) << ";"; nl(Out) << "}"; nl(Out); } void CppWriter::printModuleBody() { // Print out all the type definitions nl(Out) << "// Type Definitions"; nl(Out); printTypes(TheModule); // Functions can call each other and global variables can reference them so // define all the functions first before emitting their function bodies. nl(Out) << "// Function Declarations"; nl(Out); for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); I != E; ++I) printFunctionHead(I); // Process the global variables declarations. We can't initialze them until // after the constants are printed so just print a header for each global nl(Out) << "// Global Variable Declarations\n"; nl(Out); for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end(); I != E; ++I) { printVariableHead(I); } // Print out all the constants definitions. Constants don't recurse except // through GlobalValues. All GlobalValues have been declared at this point // so we can proceed to generate the constants. nl(Out) << "// Constant Definitions"; nl(Out); printConstants(TheModule); // Process the global variables definitions now that all the constants have // been emitted. These definitions just couple the gvars with their constant // initializers. nl(Out) << "// Global Variable Definitions"; nl(Out); for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end(); I != E; ++I) { printVariableBody(I); } // Finally, we can safely put out all of the function bodies. nl(Out) << "// Function Definitions"; nl(Out); for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); I != E; ++I) { if (!I->isDeclaration()) { nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I) << ")"; nl(Out) << "{"; nl(Out,1); printFunctionBody(I); nl(Out,-1) << "}"; nl(Out); } } } void CppWriter::printProgram(const std::string& fname, const std::string& mName) { Out << "#include <llvm/Pass.h>\n"; Out << "#include <llvm/ADT/SmallVector.h>\n"; Out << "#include <llvm/Analysis/Verifier.h>\n"; Out << "#include <llvm/IR/BasicBlock.h>\n"; Out << "#include <llvm/IR/CallingConv.h>\n"; Out << "#include <llvm/IR/Constants.h>\n"; Out << "#include <llvm/IR/DerivedTypes.h>\n"; Out << "#include <llvm/IR/Function.h>\n"; Out << "#include <llvm/IR/GlobalVariable.h>\n"; Out << "#include <llvm/IR/IRPrintingPasses.h>\n"; Out << "#include <llvm/IR/InlineAsm.h>\n"; Out << "#include <llvm/IR/Instructions.h>\n"; Out << "#include <llvm/IR/LLVMContext.h>\n"; Out << "#include <llvm/IR/LegacyPassManager.h>\n"; Out << "#include <llvm/IR/Module.h>\n"; Out << "#include <llvm/Support/FormattedStream.h>\n"; Out << "#include <llvm/Support/MathExtras.h>\n"; Out << "#include <algorithm>\n"; Out << "using namespace llvm;\n\n"; Out << "Module* " << fname << "();\n\n"; Out << "int main(int argc, char**argv) {\n"; Out << " Module* Mod = " << fname << "();\n"; Out << " verifyModule(*Mod, PrintMessageAction);\n"; Out << " PassManager PM;\n"; Out << " PM.add(createPrintModulePass(&outs()));\n"; Out << " PM.run(*Mod);\n"; Out << " return 0;\n"; Out << "}\n\n"; printModule(fname,mName); } void CppWriter::printModule(const std::string& fname, const std::string& mName) { nl(Out) << "Module* " << fname << "() {"; nl(Out,1) << "// Module Construction"; nl(Out) << "Module* mod = new Module(\""; printEscapedString(mName); Out << "\", getGlobalContext());"; if (!TheModule->getTargetTriple().empty()) { nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayoutStr() << "\");"; } if (!TheModule->getTargetTriple().empty()) { nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple() << "\");"; } if (!TheModule->getModuleInlineAsm().empty()) { nl(Out) << "mod->setModuleInlineAsm(\""; printEscapedString(TheModule->getModuleInlineAsm()); Out << "\");"; } nl(Out); printModuleBody(); nl(Out) << "return mod;"; nl(Out,-1) << "}"; nl(Out); } void CppWriter::printContents(const std::string& fname, const std::string& mName) { Out << "\nModule* " << fname << "(Module *mod) {\n"; Out << "\nmod->setModuleIdentifier(\""; printEscapedString(mName); Out << "\");\n"; printModuleBody(); Out << "\nreturn mod;\n"; Out << "\n}\n"; } void CppWriter::printFunction(const std::string& fname, const std::string& funcName) { const Function* F = TheModule->getFunction(funcName); if (!F) { error(std::string("Function '") + funcName + "' not found in input module"); return; } Out << "\nFunction* " << fname << "(Module *mod) {\n"; printFunctionUses(F); printFunctionHead(F); printFunctionBody(F); Out << "return " << getCppName(F) << ";\n"; Out << "}\n"; } void CppWriter::printFunctions() { const Module::FunctionListType &funcs = TheModule->getFunctionList(); Module::const_iterator I = funcs.begin(); Module::const_iterator IE = funcs.end(); for (; I != IE; ++I) { const Function &func = *I; if (!func.isDeclaration()) { std::string name("define_"); name += func.getName(); printFunction(name, func.getName()); } } } void CppWriter::printVariable(const std::string& fname, const std::string& varName) { const GlobalVariable* GV = TheModule->getNamedGlobal(varName); if (!GV) { error(std::string("Variable '") + varName + "' not found in input module"); return; } Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n"; printVariableUses(GV); printVariableHead(GV); printVariableBody(GV); Out << "return " << getCppName(GV) << ";\n"; Out << "}\n"; } void CppWriter::printType(const std::string &fname, const std::string &typeName) { Type* Ty = TheModule->getTypeByName(typeName); if (!Ty) { error(std::string("Type '") + typeName + "' not found in input module"); return; } Out << "\nType* " << fname << "(Module *mod) {\n"; printType(Ty); Out << "return " << getCppName(Ty) << ";\n"; Out << "}\n"; } bool CppWriter::runOnModule(Module &M) { TheModule = &M; // Emit a header Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n"; // Get the name of the function we're supposed to generate std::string fname = FuncName.getValue(); // Get the name of the thing we are to generate std::string tgtname = NameToGenerate.getValue(); if (GenerationType == GenModule || GenerationType == GenContents || GenerationType == GenProgram || GenerationType == GenFunctions) { if (tgtname == "!bad!") { if (M.getModuleIdentifier() == "-") tgtname = "<stdin>"; else tgtname = M.getModuleIdentifier(); } } else if (tgtname == "!bad!") error("You must use the -for option with -gen-{function,variable,type}"); switch (WhatToGenerate(GenerationType)) { case GenProgram: if (fname.empty()) fname = "makeLLVMModule"; printProgram(fname,tgtname); break; case GenModule: if (fname.empty()) fname = "makeLLVMModule"; printModule(fname,tgtname); break; case GenContents: if (fname.empty()) fname = "makeLLVMModuleContents"; printContents(fname,tgtname); break; case GenFunction: if (fname.empty()) fname = "makeLLVMFunction"; printFunction(fname,tgtname); break; case GenFunctions: printFunctions(); break; case GenInline: if (fname.empty()) fname = "makeLLVMInline"; printInline(fname,tgtname); break; case GenVariable: if (fname.empty()) fname = "makeLLVMVariable"; printVariable(fname,tgtname); break; case GenType: if (fname.empty()) fname = "makeLLVMType"; printType(fname,tgtname); break; } return false; } char CppWriter::ID = 0; //===----------------------------------------------------------------------===// // External Interface declaration //===----------------------------------------------------------------------===// bool CPPTargetMachine::addPassesToEmitFile( PassManagerBase &PM, raw_pwrite_stream &o, CodeGenFileType FileType, bool DisableVerify, AnalysisID StartAfter, AnalysisID StopAfter) { if (FileType != TargetMachine::CGFT_AssemblyFile) return true; auto FOut = llvm::make_unique<formatted_raw_ostream>(o); PM.add(new CppWriter(std::move(FOut))); return false; }