//===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the writing of the LLVM IR as a set of C++ calls to the
// LLVM IR interface. The input module is assumed to be verified.
//
//===----------------------------------------------------------------------===//

#include "CPPTargetMachine.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/config.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/TargetRegistry.h"
#include <algorithm>
#include <cctype>
#include <cstdio>
#include <map>
#include <set>
using namespace llvm;

static cl::opt<std::string>
FuncName("cppfname", cl::desc("Specify the name of the generated function"),
         cl::value_desc("function name"));

enum WhatToGenerate {
  GenProgram,
  GenModule,
  GenContents,
  GenFunction,
  GenFunctions,
  GenInline,
  GenVariable,
  GenType
};

static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
  cl::desc("Choose what kind of output to generate"),
  cl::init(GenProgram),
  cl::values(
    clEnumValN(GenProgram,  "program",   "Generate a complete program"),
    clEnumValN(GenModule,   "module",    "Generate a module definition"),
    clEnumValN(GenContents, "contents",  "Generate contents of a module"),
    clEnumValN(GenFunction, "function",  "Generate a function definition"),
    clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
    clEnumValN(GenInline,   "inline",    "Generate an inline function"),
    clEnumValN(GenVariable, "variable",  "Generate a variable definition"),
    clEnumValN(GenType,     "type",      "Generate a type definition"),
    clEnumValEnd
  )
);

static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
  cl::desc("Specify the name of the thing to generate"),
  cl::init("!bad!"));

extern "C" void LLVMInitializeCppBackendTarget() {
  // Register the target.
  RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget);
}

namespace {
  typedef std::vector<Type*> TypeList;
  typedef std::map<Type*,std::string> TypeMap;
  typedef std::map<const Value*,std::string> ValueMap;
  typedef std::set<std::string> NameSet;
  typedef std::set<Type*> TypeSet;
  typedef std::set<const Value*> ValueSet;
  typedef std::map<const Value*,std::string> ForwardRefMap;

  /// CppWriter - This class is the main chunk of code that converts an LLVM
  /// module to a C++ translation unit.
  class CppWriter : public ModulePass {
    std::unique_ptr<formatted_raw_ostream> OutOwner;
    formatted_raw_ostream &Out;
    const Module *TheModule;
    uint64_t uniqueNum;
    TypeMap TypeNames;
    ValueMap ValueNames;
    NameSet UsedNames;
    TypeSet DefinedTypes;
    ValueSet DefinedValues;
    ForwardRefMap ForwardRefs;
    bool is_inline;
    unsigned indent_level;

  public:
    static char ID;
    explicit CppWriter(std::unique_ptr<formatted_raw_ostream> o)
        : ModulePass(ID), OutOwner(std::move(o)), Out(*OutOwner), uniqueNum(0),
          is_inline(false), indent_level(0) {}

    const char *getPassName() const override { return "C++ backend"; }

    bool runOnModule(Module &M) override;

    void printProgram(const std::string& fname, const std::string& modName );
    void printModule(const std::string& fname, const std::string& modName );
    void printContents(const std::string& fname, const std::string& modName );
    void printFunction(const std::string& fname, const std::string& funcName );
    void printFunctions();
    void printInline(const std::string& fname, const std::string& funcName );
    void printVariable(const std::string& fname, const std::string& varName );
    void printType(const std::string& fname, const std::string& typeName );

    void error(const std::string& msg);

    
    formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0);
    inline void in() { indent_level++; }
    inline void out() { if (indent_level >0) indent_level--; }
    
  private:
    void printLinkageType(GlobalValue::LinkageTypes LT);
    void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
    void printDLLStorageClassType(GlobalValue::DLLStorageClassTypes DSCType);
    void printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM);
    void printCallingConv(CallingConv::ID cc);
    void printEscapedString(const std::string& str);
    void printCFP(const ConstantFP* CFP);

    std::string getCppName(Type* val);
    inline void printCppName(Type* val);

    std::string getCppName(const Value* val);
    inline void printCppName(const Value* val);

    void printAttributes(const AttributeSet &PAL, const std::string &name);
    void printType(Type* Ty);
    void printTypes(const Module* M);

    void printConstant(const Constant *CPV);
    void printConstants(const Module* M);

    void printVariableUses(const GlobalVariable *GV);
    void printVariableHead(const GlobalVariable *GV);
    void printVariableBody(const GlobalVariable *GV);

    void printFunctionUses(const Function *F);
    void printFunctionHead(const Function *F);
    void printFunctionBody(const Function *F);
    void printInstruction(const Instruction *I, const std::string& bbname);
    std::string getOpName(const Value*);

    void printModuleBody();
  };
} // end anonymous namespace.

formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) {
  Out << '\n';
  if (delta >= 0 || indent_level >= unsigned(-delta))
    indent_level += delta;
  Out.indent(indent_level);
  return Out;
}

static inline void sanitize(std::string &str) {
  for (size_t i = 0; i < str.length(); ++i)
    if (!isalnum(str[i]) && str[i] != '_')
      str[i] = '_';
}

static std::string getTypePrefix(Type *Ty) {
  switch (Ty->getTypeID()) {
  case Type::VoidTyID:     return "void_";
  case Type::IntegerTyID:
    return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_";
  case Type::FloatTyID:    return "float_";
  case Type::DoubleTyID:   return "double_";
  case Type::LabelTyID:    return "label_";
  case Type::FunctionTyID: return "func_";
  case Type::StructTyID:   return "struct_";
  case Type::ArrayTyID:    return "array_";
  case Type::PointerTyID:  return "ptr_";
  case Type::VectorTyID:   return "packed_";
  default:                 return "other_";
  }
}

void CppWriter::error(const std::string& msg) {
  report_fatal_error(msg);
}

static inline std::string ftostr(const APFloat& V) {
  std::string Buf;
  if (&V.getSemantics() == &APFloat::IEEEdouble) {
    raw_string_ostream(Buf) << V.convertToDouble();
    return Buf;
  } else if (&V.getSemantics() == &APFloat::IEEEsingle) {
    raw_string_ostream(Buf) << (double)V.convertToFloat();
    return Buf;
  }
  return "<unknown format in ftostr>"; // error
}

// printCFP - Print a floating point constant .. very carefully :)
// This makes sure that conversion to/from floating yields the same binary
// result so that we don't lose precision.
void CppWriter::printCFP(const ConstantFP *CFP) {
  bool ignored;
  APFloat APF = APFloat(CFP->getValueAPF());  // copy
  if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
    APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
  Out << "ConstantFP::get(mod->getContext(), ";
  Out << "APFloat(";
#if HAVE_PRINTF_A
  char Buffer[100];
  sprintf(Buffer, "%A", APF.convertToDouble());
  if ((!strncmp(Buffer, "0x", 2) ||
       !strncmp(Buffer, "-0x", 3) ||
       !strncmp(Buffer, "+0x", 3)) &&
      APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
    if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
      Out << "BitsToDouble(" << Buffer << ")";
    else
      Out << "BitsToFloat((float)" << Buffer << ")";
    Out << ")";
  } else {
#endif
    std::string StrVal = ftostr(CFP->getValueAPF());

    while (StrVal[0] == ' ')
      StrVal.erase(StrVal.begin());

    // Check to make sure that the stringized number is not some string like
    // "Inf" or NaN.  Check that the string matches the "[-+]?[0-9]" regex.
    if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
         ((StrVal[0] == '-' || StrVal[0] == '+') &&
          (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
        (CFP->isExactlyValue(atof(StrVal.c_str())))) {
      if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
        Out <<  StrVal;
      else
        Out << StrVal << "f";
    } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
      Out << "BitsToDouble(0x"
          << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
          << "ULL) /* " << StrVal << " */";
    else
      Out << "BitsToFloat(0x"
          << utohexstr((uint32_t)CFP->getValueAPF().
                                      bitcastToAPInt().getZExtValue())
          << "U) /* " << StrVal << " */";
    Out << ")";
#if HAVE_PRINTF_A
  }
#endif
  Out << ")";
}

void CppWriter::printCallingConv(CallingConv::ID cc){
  // Print the calling convention.
  switch (cc) {
  case CallingConv::C:     Out << "CallingConv::C"; break;
  case CallingConv::Fast:  Out << "CallingConv::Fast"; break;
  case CallingConv::Cold:  Out << "CallingConv::Cold"; break;
  case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
  default:                 Out << cc; break;
  }
}

void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
  switch (LT) {
  case GlobalValue::InternalLinkage:
    Out << "GlobalValue::InternalLinkage"; break;
  case GlobalValue::PrivateLinkage:
    Out << "GlobalValue::PrivateLinkage"; break;
  case GlobalValue::AvailableExternallyLinkage:
    Out << "GlobalValue::AvailableExternallyLinkage "; break;
  case GlobalValue::LinkOnceAnyLinkage:
    Out << "GlobalValue::LinkOnceAnyLinkage "; break;
  case GlobalValue::LinkOnceODRLinkage:
    Out << "GlobalValue::LinkOnceODRLinkage "; break;
  case GlobalValue::WeakAnyLinkage:
    Out << "GlobalValue::WeakAnyLinkage"; break;
  case GlobalValue::WeakODRLinkage:
    Out << "GlobalValue::WeakODRLinkage"; break;
  case GlobalValue::AppendingLinkage:
    Out << "GlobalValue::AppendingLinkage"; break;
  case GlobalValue::ExternalLinkage:
    Out << "GlobalValue::ExternalLinkage"; break;
  case GlobalValue::ExternalWeakLinkage:
    Out << "GlobalValue::ExternalWeakLinkage"; break;
  case GlobalValue::CommonLinkage:
    Out << "GlobalValue::CommonLinkage"; break;
  }
}

void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
  switch (VisType) {
  case GlobalValue::DefaultVisibility:
    Out << "GlobalValue::DefaultVisibility";
    break;
  case GlobalValue::HiddenVisibility:
    Out << "GlobalValue::HiddenVisibility";
    break;
  case GlobalValue::ProtectedVisibility:
    Out << "GlobalValue::ProtectedVisibility";
    break;
  }
}

void CppWriter::printDLLStorageClassType(
                                    GlobalValue::DLLStorageClassTypes DSCType) {
  switch (DSCType) {
  case GlobalValue::DefaultStorageClass:
    Out << "GlobalValue::DefaultStorageClass";
    break;
  case GlobalValue::DLLImportStorageClass:
    Out << "GlobalValue::DLLImportStorageClass";
    break;
  case GlobalValue::DLLExportStorageClass:
    Out << "GlobalValue::DLLExportStorageClass";
    break;
  }
}

void CppWriter::printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM) {
  switch (TLM) {
    case GlobalVariable::NotThreadLocal:
      Out << "GlobalVariable::NotThreadLocal";
      break;
    case GlobalVariable::GeneralDynamicTLSModel:
      Out << "GlobalVariable::GeneralDynamicTLSModel";
      break;
    case GlobalVariable::LocalDynamicTLSModel:
      Out << "GlobalVariable::LocalDynamicTLSModel";
      break;
    case GlobalVariable::InitialExecTLSModel:
      Out << "GlobalVariable::InitialExecTLSModel";
      break;
    case GlobalVariable::LocalExecTLSModel:
      Out << "GlobalVariable::LocalExecTLSModel";
      break;
  }
}

// printEscapedString - Print each character of the specified string, escaping
// it if it is not printable or if it is an escape char.
void CppWriter::printEscapedString(const std::string &Str) {
  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    unsigned char C = Str[i];
    if (isprint(C) && C != '"' && C != '\\') {
      Out << C;
    } else {
      Out << "\\x"
          << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
          << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
    }
  }
}

std::string CppWriter::getCppName(Type* Ty) {
  switch (Ty->getTypeID()) {
  default:
    break;
  case Type::VoidTyID:
    return "Type::getVoidTy(mod->getContext())";
  case Type::IntegerTyID: {
    unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
    return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")";
  }
  case Type::X86_FP80TyID:
    return "Type::getX86_FP80Ty(mod->getContext())";
  case Type::FloatTyID:
    return "Type::getFloatTy(mod->getContext())";
  case Type::DoubleTyID:
    return "Type::getDoubleTy(mod->getContext())";
  case Type::LabelTyID:
    return "Type::getLabelTy(mod->getContext())";
  case Type::X86_MMXTyID:
    return "Type::getX86_MMXTy(mod->getContext())";
  }

  // Now, see if we've seen the type before and return that
  TypeMap::iterator I = TypeNames.find(Ty);
  if (I != TypeNames.end())
    return I->second;

  // Okay, let's build a new name for this type. Start with a prefix
  const char* prefix = nullptr;
  switch (Ty->getTypeID()) {
  case Type::FunctionTyID:    prefix = "FuncTy_"; break;
  case Type::StructTyID:      prefix = "StructTy_"; break;
  case Type::ArrayTyID:       prefix = "ArrayTy_"; break;
  case Type::PointerTyID:     prefix = "PointerTy_"; break;
  case Type::VectorTyID:      prefix = "VectorTy_"; break;
  default:                    prefix = "OtherTy_"; break; // prevent breakage
  }

  // See if the type has a name in the symboltable and build accordingly
  std::string name;
  if (StructType *STy = dyn_cast<StructType>(Ty))
    if (STy->hasName())
      name = STy->getName();
  
  if (name.empty())
    name = utostr(uniqueNum++);
  
  name = std::string(prefix) + name;
  sanitize(name);

  // Save the name
  return TypeNames[Ty] = name;
}

void CppWriter::printCppName(Type* Ty) {
  printEscapedString(getCppName(Ty));
}

std::string CppWriter::getCppName(const Value* val) {
  std::string name;
  ValueMap::iterator I = ValueNames.find(val);
  if (I != ValueNames.end() && I->first == val)
    return  I->second;

  if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
    name = std::string("gvar_") +
      getTypePrefix(GV->getType()->getElementType());
  } else if (isa<Function>(val)) {
    name = std::string("func_");
  } else if (const Constant* C = dyn_cast<Constant>(val)) {
    name = std::string("const_") + getTypePrefix(C->getType());
  } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
    if (is_inline) {
      unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
                                      Function::const_arg_iterator(Arg)) + 1;
      name = std::string("arg_") + utostr(argNum);
      NameSet::iterator NI = UsedNames.find(name);
      if (NI != UsedNames.end())
        name += std::string("_") + utostr(uniqueNum++);
      UsedNames.insert(name);
      return ValueNames[val] = name;
    } else {
      name = getTypePrefix(val->getType());
    }
  } else {
    name = getTypePrefix(val->getType());
  }
  if (val->hasName())
    name += val->getName();
  else
    name += utostr(uniqueNum++);
  sanitize(name);
  NameSet::iterator NI = UsedNames.find(name);
  if (NI != UsedNames.end())
    name += std::string("_") + utostr(uniqueNum++);
  UsedNames.insert(name);
  return ValueNames[val] = name;
}

void CppWriter::printCppName(const Value* val) {
  printEscapedString(getCppName(val));
}

void CppWriter::printAttributes(const AttributeSet &PAL,
                                const std::string &name) {
  Out << "AttributeSet " << name << "_PAL;";
  nl(Out);
  if (!PAL.isEmpty()) {
    Out << '{'; in(); nl(Out);
    Out << "SmallVector<AttributeSet, 4> Attrs;"; nl(Out);
    Out << "AttributeSet PAS;"; in(); nl(Out);
    for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
      unsigned index = PAL.getSlotIndex(i);
      AttrBuilder attrs(PAL.getSlotAttributes(i), index);
      Out << "{"; in(); nl(Out);
      Out << "AttrBuilder B;"; nl(Out);

#define HANDLE_ATTR(X)                                                  \
      if (attrs.contains(Attribute::X)) {                               \
        Out << "B.addAttribute(Attribute::" #X ");"; nl(Out);           \
        attrs.removeAttribute(Attribute::X);                            \
      }

      HANDLE_ATTR(SExt);
      HANDLE_ATTR(ZExt);
      HANDLE_ATTR(NoReturn);
      HANDLE_ATTR(InReg);
      HANDLE_ATTR(StructRet);
      HANDLE_ATTR(NoUnwind);
      HANDLE_ATTR(NoAlias);
      HANDLE_ATTR(ByVal);
      HANDLE_ATTR(InAlloca);
      HANDLE_ATTR(Nest);
      HANDLE_ATTR(ReadNone);
      HANDLE_ATTR(ReadOnly);
      HANDLE_ATTR(NoInline);
      HANDLE_ATTR(AlwaysInline);
      HANDLE_ATTR(OptimizeNone);
      HANDLE_ATTR(OptimizeForSize);
      HANDLE_ATTR(StackProtect);
      HANDLE_ATTR(StackProtectReq);
      HANDLE_ATTR(StackProtectStrong);
      HANDLE_ATTR(NoCapture);
      HANDLE_ATTR(NoRedZone);
      HANDLE_ATTR(NoImplicitFloat);
      HANDLE_ATTR(Naked);
      HANDLE_ATTR(InlineHint);
      HANDLE_ATTR(ReturnsTwice);
      HANDLE_ATTR(UWTable);
      HANDLE_ATTR(NonLazyBind);
      HANDLE_ATTR(MinSize);
#undef HANDLE_ATTR

      if (attrs.contains(Attribute::StackAlignment)) {
        Out << "B.addStackAlignmentAttr(" << attrs.getStackAlignment()<<')';
        nl(Out);
        attrs.removeAttribute(Attribute::StackAlignment);
      }

      Out << "PAS = AttributeSet::get(mod->getContext(), ";
      if (index == ~0U)
        Out << "~0U,";
      else
        Out << index << "U,";
      Out << " B);"; out(); nl(Out);
      Out << "}"; out(); nl(Out);
      nl(Out);
      Out << "Attrs.push_back(PAS);"; nl(Out);
    }
    Out << name << "_PAL = AttributeSet::get(mod->getContext(), Attrs);";
    nl(Out);
    out(); nl(Out);
    Out << '}'; nl(Out);
  }
}

void CppWriter::printType(Type* Ty) {
  // We don't print definitions for primitive types
  if (Ty->isFloatingPointTy() || Ty->isX86_MMXTy() || Ty->isIntegerTy() ||
      Ty->isLabelTy() || Ty->isMetadataTy() || Ty->isVoidTy())
    return;

  // If we already defined this type, we don't need to define it again.
  if (DefinedTypes.find(Ty) != DefinedTypes.end())
    return;

  // Everything below needs the name for the type so get it now.
  std::string typeName(getCppName(Ty));

  // Print the type definition
  switch (Ty->getTypeID()) {
  case Type::FunctionTyID:  {
    FunctionType* FT = cast<FunctionType>(Ty);
    Out << "std::vector<Type*>" << typeName << "_args;";
    nl(Out);
    FunctionType::param_iterator PI = FT->param_begin();
    FunctionType::param_iterator PE = FT->param_end();
    for (; PI != PE; ++PI) {
      Type* argTy = static_cast<Type*>(*PI);
      printType(argTy);
      std::string argName(getCppName(argTy));
      Out << typeName << "_args.push_back(" << argName;
      Out << ");";
      nl(Out);
    }
    printType(FT->getReturnType());
    std::string retTypeName(getCppName(FT->getReturnType()));
    Out << "FunctionType* " << typeName << " = FunctionType::get(";
    in(); nl(Out) << "/*Result=*/" << retTypeName;
    Out << ",";
    nl(Out) << "/*Params=*/" << typeName << "_args,";
    nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
    out();
    nl(Out);
    break;
  }
  case Type::StructTyID: {
    StructType* ST = cast<StructType>(Ty);
    if (!ST->isLiteral()) {
      Out << "StructType *" << typeName << " = mod->getTypeByName(\"";
      printEscapedString(ST->getName());
      Out << "\");";
      nl(Out);
      Out << "if (!" << typeName << ") {";
      nl(Out);
      Out << typeName << " = ";
      Out << "StructType::create(mod->getContext(), \"";
      printEscapedString(ST->getName());
      Out << "\");";
      nl(Out);
      Out << "}";
      nl(Out);
      // Indicate that this type is now defined.
      DefinedTypes.insert(Ty);
    }

    Out << "std::vector<Type*>" << typeName << "_fields;";
    nl(Out);
    StructType::element_iterator EI = ST->element_begin();
    StructType::element_iterator EE = ST->element_end();
    for (; EI != EE; ++EI) {
      Type* fieldTy = static_cast<Type*>(*EI);
      printType(fieldTy);
      std::string fieldName(getCppName(fieldTy));
      Out << typeName << "_fields.push_back(" << fieldName;
      Out << ");";
      nl(Out);
    }

    if (ST->isLiteral()) {
      Out << "StructType *" << typeName << " = ";
      Out << "StructType::get(" << "mod->getContext(), ";
    } else {
      Out << "if (" << typeName << "->isOpaque()) {";
      nl(Out);
      Out << typeName << "->setBody(";
    }

    Out << typeName << "_fields, /*isPacked=*/"
        << (ST->isPacked() ? "true" : "false") << ");";
    nl(Out);
    if (!ST->isLiteral()) {
      Out << "}";
      nl(Out);
    }
    break;
  }
  case Type::ArrayTyID: {
    ArrayType* AT = cast<ArrayType>(Ty);
    Type* ET = AT->getElementType();
    printType(ET);
    if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
      std::string elemName(getCppName(ET));
      Out << "ArrayType* " << typeName << " = ArrayType::get("
          << elemName
          << ", " << utostr(AT->getNumElements()) << ");";
      nl(Out);
    }
    break;
  }
  case Type::PointerTyID: {
    PointerType* PT = cast<PointerType>(Ty);
    Type* ET = PT->getElementType();
    printType(ET);
    if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
      std::string elemName(getCppName(ET));
      Out << "PointerType* " << typeName << " = PointerType::get("
          << elemName
          << ", " << utostr(PT->getAddressSpace()) << ");";
      nl(Out);
    }
    break;
  }
  case Type::VectorTyID: {
    VectorType* PT = cast<VectorType>(Ty);
    Type* ET = PT->getElementType();
    printType(ET);
    if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
      std::string elemName(getCppName(ET));
      Out << "VectorType* " << typeName << " = VectorType::get("
          << elemName
          << ", " << utostr(PT->getNumElements()) << ");";
      nl(Out);
    }
    break;
  }
  default:
    error("Invalid TypeID");
  }

  // Indicate that this type is now defined.
  DefinedTypes.insert(Ty);

  // Finally, separate the type definition from other with a newline.
  nl(Out);
}

void CppWriter::printTypes(const Module* M) {
  // Add all of the global variables to the value table.
  for (Module::const_global_iterator I = TheModule->global_begin(),
         E = TheModule->global_end(); I != E; ++I) {
    if (I->hasInitializer())
      printType(I->getInitializer()->getType());
    printType(I->getType());
  }

  // Add all the functions to the table
  for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
       FI != FE; ++FI) {
    printType(FI->getReturnType());
    printType(FI->getFunctionType());
    // Add all the function arguments
    for (Function::const_arg_iterator AI = FI->arg_begin(),
           AE = FI->arg_end(); AI != AE; ++AI) {
      printType(AI->getType());
    }

    // Add all of the basic blocks and instructions
    for (Function::const_iterator BB = FI->begin(),
           E = FI->end(); BB != E; ++BB) {
      printType(BB->getType());
      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
           ++I) {
        printType(I->getType());
        for (unsigned i = 0; i < I->getNumOperands(); ++i)
          printType(I->getOperand(i)->getType());
      }
    }
  }
}


// printConstant - Print out a constant pool entry...
void CppWriter::printConstant(const Constant *CV) {
  // First, if the constant is actually a GlobalValue (variable or function)
  // or its already in the constant list then we've printed it already and we
  // can just return.
  if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
    return;

  std::string constName(getCppName(CV));
  std::string typeName(getCppName(CV->getType()));

  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
    std::string constValue = CI->getValue().toString(10, true);
    Out << "ConstantInt* " << constName
        << " = ConstantInt::get(mod->getContext(), APInt("
        << cast<IntegerType>(CI->getType())->getBitWidth()
        << ", StringRef(\"" <<  constValue << "\"), 10));";
  } else if (isa<ConstantAggregateZero>(CV)) {
    Out << "ConstantAggregateZero* " << constName
        << " = ConstantAggregateZero::get(" << typeName << ");";
  } else if (isa<ConstantPointerNull>(CV)) {
    Out << "ConstantPointerNull* " << constName
        << " = ConstantPointerNull::get(" << typeName << ");";
  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
    Out << "ConstantFP* " << constName << " = ";
    printCFP(CFP);
    Out << ";";
  } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
    Out << "std::vector<Constant*> " << constName << "_elems;";
    nl(Out);
    unsigned N = CA->getNumOperands();
    for (unsigned i = 0; i < N; ++i) {
      printConstant(CA->getOperand(i)); // recurse to print operands
      Out << constName << "_elems.push_back("
          << getCppName(CA->getOperand(i)) << ");";
      nl(Out);
    }
    Out << "Constant* " << constName << " = ConstantArray::get("
        << typeName << ", " << constName << "_elems);";
  } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
    Out << "std::vector<Constant*> " << constName << "_fields;";
    nl(Out);
    unsigned N = CS->getNumOperands();
    for (unsigned i = 0; i < N; i++) {
      printConstant(CS->getOperand(i));
      Out << constName << "_fields.push_back("
          << getCppName(CS->getOperand(i)) << ");";
      nl(Out);
    }
    Out << "Constant* " << constName << " = ConstantStruct::get("
        << typeName << ", " << constName << "_fields);";
  } else if (const ConstantVector *CVec = dyn_cast<ConstantVector>(CV)) {
    Out << "std::vector<Constant*> " << constName << "_elems;";
    nl(Out);
    unsigned N = CVec->getNumOperands();
    for (unsigned i = 0; i < N; ++i) {
      printConstant(CVec->getOperand(i));
      Out << constName << "_elems.push_back("
          << getCppName(CVec->getOperand(i)) << ");";
      nl(Out);
    }
    Out << "Constant* " << constName << " = ConstantVector::get("
        << typeName << ", " << constName << "_elems);";
  } else if (isa<UndefValue>(CV)) {
    Out << "UndefValue* " << constName << " = UndefValue::get("
        << typeName << ");";
  } else if (const ConstantDataSequential *CDS =
               dyn_cast<ConstantDataSequential>(CV)) {
    if (CDS->isString()) {
      Out << "Constant *" << constName <<
      " = ConstantDataArray::getString(mod->getContext(), \"";
      StringRef Str = CDS->getAsString();
      bool nullTerminate = false;
      if (Str.back() == 0) {
        Str = Str.drop_back();
        nullTerminate = true;
      }
      printEscapedString(Str);
      // Determine if we want null termination or not.
      if (nullTerminate)
        Out << "\", true);";
      else
        Out << "\", false);";// No null terminator
    } else {
      // TODO: Could generate more efficient code generating CDS calls instead.
      Out << "std::vector<Constant*> " << constName << "_elems;";
      nl(Out);
      for (unsigned i = 0; i != CDS->getNumElements(); ++i) {
        Constant *Elt = CDS->getElementAsConstant(i);
        printConstant(Elt);
        Out << constName << "_elems.push_back(" << getCppName(Elt) << ");";
        nl(Out);
      }
      Out << "Constant* " << constName;
      
      if (isa<ArrayType>(CDS->getType()))
        Out << " = ConstantArray::get(";
      else
        Out << " = ConstantVector::get(";
      Out << typeName << ", " << constName << "_elems);";
    }
  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
    if (CE->getOpcode() == Instruction::GetElementPtr) {
      Out << "std::vector<Constant*> " << constName << "_indices;";
      nl(Out);
      printConstant(CE->getOperand(0));
      for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
        printConstant(CE->getOperand(i));
        Out << constName << "_indices.push_back("
            << getCppName(CE->getOperand(i)) << ");";
        nl(Out);
      }
      Out << "Constant* " << constName
          << " = ConstantExpr::getGetElementPtr("
          << getCppName(CE->getOperand(0)) << ", "
          << constName << "_indices);";
    } else if (CE->isCast()) {
      printConstant(CE->getOperand(0));
      Out << "Constant* " << constName << " = ConstantExpr::getCast(";
      switch (CE->getOpcode()) {
      default: llvm_unreachable("Invalid cast opcode");
      case Instruction::Trunc: Out << "Instruction::Trunc"; break;
      case Instruction::ZExt:  Out << "Instruction::ZExt"; break;
      case Instruction::SExt:  Out << "Instruction::SExt"; break;
      case Instruction::FPTrunc:  Out << "Instruction::FPTrunc"; break;
      case Instruction::FPExt:  Out << "Instruction::FPExt"; break;
      case Instruction::FPToUI:  Out << "Instruction::FPToUI"; break;
      case Instruction::FPToSI:  Out << "Instruction::FPToSI"; break;
      case Instruction::UIToFP:  Out << "Instruction::UIToFP"; break;
      case Instruction::SIToFP:  Out << "Instruction::SIToFP"; break;
      case Instruction::PtrToInt:  Out << "Instruction::PtrToInt"; break;
      case Instruction::IntToPtr:  Out << "Instruction::IntToPtr"; break;
      case Instruction::BitCast:  Out << "Instruction::BitCast"; break;
      }
      Out << ", " << getCppName(CE->getOperand(0)) << ", "
          << getCppName(CE->getType()) << ");";
    } else {
      unsigned N = CE->getNumOperands();
      for (unsigned i = 0; i < N; ++i ) {
        printConstant(CE->getOperand(i));
      }
      Out << "Constant* " << constName << " = ConstantExpr::";
      switch (CE->getOpcode()) {
      case Instruction::Add:    Out << "getAdd(";  break;
      case Instruction::FAdd:   Out << "getFAdd(";  break;
      case Instruction::Sub:    Out << "getSub("; break;
      case Instruction::FSub:   Out << "getFSub("; break;
      case Instruction::Mul:    Out << "getMul("; break;
      case Instruction::FMul:   Out << "getFMul("; break;
      case Instruction::UDiv:   Out << "getUDiv("; break;
      case Instruction::SDiv:   Out << "getSDiv("; break;
      case Instruction::FDiv:   Out << "getFDiv("; break;
      case Instruction::URem:   Out << "getURem("; break;
      case Instruction::SRem:   Out << "getSRem("; break;
      case Instruction::FRem:   Out << "getFRem("; break;
      case Instruction::And:    Out << "getAnd("; break;
      case Instruction::Or:     Out << "getOr("; break;
      case Instruction::Xor:    Out << "getXor("; break;
      case Instruction::ICmp:
        Out << "getICmp(ICmpInst::ICMP_";
        switch (CE->getPredicate()) {
        case ICmpInst::ICMP_EQ:  Out << "EQ"; break;
        case ICmpInst::ICMP_NE:  Out << "NE"; break;
        case ICmpInst::ICMP_SLT: Out << "SLT"; break;
        case ICmpInst::ICMP_ULT: Out << "ULT"; break;
        case ICmpInst::ICMP_SGT: Out << "SGT"; break;
        case ICmpInst::ICMP_UGT: Out << "UGT"; break;
        case ICmpInst::ICMP_SLE: Out << "SLE"; break;
        case ICmpInst::ICMP_ULE: Out << "ULE"; break;
        case ICmpInst::ICMP_SGE: Out << "SGE"; break;
        case ICmpInst::ICMP_UGE: Out << "UGE"; break;
        default: error("Invalid ICmp Predicate");
        }
        break;
      case Instruction::FCmp:
        Out << "getFCmp(FCmpInst::FCMP_";
        switch (CE->getPredicate()) {
        case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
        case FCmpInst::FCMP_ORD:   Out << "ORD"; break;
        case FCmpInst::FCMP_UNO:   Out << "UNO"; break;
        case FCmpInst::FCMP_OEQ:   Out << "OEQ"; break;
        case FCmpInst::FCMP_UEQ:   Out << "UEQ"; break;
        case FCmpInst::FCMP_ONE:   Out << "ONE"; break;
        case FCmpInst::FCMP_UNE:   Out << "UNE"; break;
        case FCmpInst::FCMP_OLT:   Out << "OLT"; break;
        case FCmpInst::FCMP_ULT:   Out << "ULT"; break;
        case FCmpInst::FCMP_OGT:   Out << "OGT"; break;
        case FCmpInst::FCMP_UGT:   Out << "UGT"; break;
        case FCmpInst::FCMP_OLE:   Out << "OLE"; break;
        case FCmpInst::FCMP_ULE:   Out << "ULE"; break;
        case FCmpInst::FCMP_OGE:   Out << "OGE"; break;
        case FCmpInst::FCMP_UGE:   Out << "UGE"; break;
        case FCmpInst::FCMP_TRUE:  Out << "TRUE"; break;
        default: error("Invalid FCmp Predicate");
        }
        break;
      case Instruction::Shl:     Out << "getShl("; break;
      case Instruction::LShr:    Out << "getLShr("; break;
      case Instruction::AShr:    Out << "getAShr("; break;
      case Instruction::Select:  Out << "getSelect("; break;
      case Instruction::ExtractElement: Out << "getExtractElement("; break;
      case Instruction::InsertElement:  Out << "getInsertElement("; break;
      case Instruction::ShuffleVector:  Out << "getShuffleVector("; break;
      default:
        error("Invalid constant expression");
        break;
      }
      Out << getCppName(CE->getOperand(0));
      for (unsigned i = 1; i < CE->getNumOperands(); ++i)
        Out << ", " << getCppName(CE->getOperand(i));
      Out << ");";
    }
  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
    Out << "Constant* " << constName << " = ";
    Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");";
  } else {
    error("Bad Constant");
    Out << "Constant* " << constName << " = 0; ";
  }
  nl(Out);
}

void CppWriter::printConstants(const Module* M) {
  // Traverse all the global variables looking for constant initializers
  for (Module::const_global_iterator I = TheModule->global_begin(),
         E = TheModule->global_end(); I != E; ++I)
    if (I->hasInitializer())
      printConstant(I->getInitializer());

  // Traverse the LLVM functions looking for constants
  for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
       FI != FE; ++FI) {
    // Add all of the basic blocks and instructions
    for (Function::const_iterator BB = FI->begin(),
           E = FI->end(); BB != E; ++BB) {
      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
           ++I) {
        for (unsigned i = 0; i < I->getNumOperands(); ++i) {
          if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
            printConstant(C);
          }
        }
      }
    }
  }
}

void CppWriter::printVariableUses(const GlobalVariable *GV) {
  nl(Out) << "// Type Definitions";
  nl(Out);
  printType(GV->getType());
  if (GV->hasInitializer()) {
    const Constant *Init = GV->getInitializer();
    printType(Init->getType());
    if (const Function *F = dyn_cast<Function>(Init)) {
      nl(Out)<< "/ Function Declarations"; nl(Out);
      printFunctionHead(F);
    } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
      nl(Out) << "// Global Variable Declarations"; nl(Out);
      printVariableHead(gv);
      
      nl(Out) << "// Global Variable Definitions"; nl(Out);
      printVariableBody(gv);
    } else  {
      nl(Out) << "// Constant Definitions"; nl(Out);
      printConstant(Init);
    }
  }
}

void CppWriter::printVariableHead(const GlobalVariable *GV) {
  nl(Out) << "GlobalVariable* " << getCppName(GV);
  if (is_inline) {
    Out << " = mod->getGlobalVariable(mod->getContext(), ";
    printEscapedString(GV->getName());
    Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
    nl(Out) << "if (!" << getCppName(GV) << ") {";
    in(); nl(Out) << getCppName(GV);
  }
  Out << " = new GlobalVariable(/*Module=*/*mod, ";
  nl(Out) << "/*Type=*/";
  printCppName(GV->getType()->getElementType());
  Out << ",";
  nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
  Out << ",";
  nl(Out) << "/*Linkage=*/";
  printLinkageType(GV->getLinkage());
  Out << ",";
  nl(Out) << "/*Initializer=*/0, ";
  if (GV->hasInitializer()) {
    Out << "// has initializer, specified below";
  }
  nl(Out) << "/*Name=*/\"";
  printEscapedString(GV->getName());
  Out << "\");";
  nl(Out);

  if (GV->hasSection()) {
    printCppName(GV);
    Out << "->setSection(\"";
    printEscapedString(GV->getSection());
    Out << "\");";
    nl(Out);
  }
  if (GV->getAlignment()) {
    printCppName(GV);
    Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
    nl(Out);
  }
  if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
    printCppName(GV);
    Out << "->setVisibility(";
    printVisibilityType(GV->getVisibility());
    Out << ");";
    nl(Out);
  }
  if (GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) {
    printCppName(GV);
    Out << "->setDLLStorageClass(";
    printDLLStorageClassType(GV->getDLLStorageClass());
    Out << ");";
    nl(Out);
  }
  if (GV->isThreadLocal()) {
    printCppName(GV);
    Out << "->setThreadLocalMode(";
    printThreadLocalMode(GV->getThreadLocalMode());
    Out << ");";
    nl(Out);
  }
  if (is_inline) {
    out(); Out << "}"; nl(Out);
  }
}

void CppWriter::printVariableBody(const GlobalVariable *GV) {
  if (GV->hasInitializer()) {
    printCppName(GV);
    Out << "->setInitializer(";
    Out << getCppName(GV->getInitializer()) << ");";
    nl(Out);
  }
}

std::string CppWriter::getOpName(const Value* V) {
  if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
    return getCppName(V);

  // See if its alread in the map of forward references, if so just return the
  // name we already set up for it
  ForwardRefMap::const_iterator I = ForwardRefs.find(V);
  if (I != ForwardRefs.end())
    return I->second;

  // This is a new forward reference. Generate a unique name for it
  std::string result(std::string("fwdref_") + utostr(uniqueNum++));

  // Yes, this is a hack. An Argument is the smallest instantiable value that
  // we can make as a placeholder for the real value. We'll replace these
  // Argument instances later.
  Out << "Argument* " << result << " = new Argument("
      << getCppName(V->getType()) << ");";
  nl(Out);
  ForwardRefs[V] = result;
  return result;
}

static StringRef ConvertAtomicOrdering(AtomicOrdering Ordering) {
  switch (Ordering) {
    case NotAtomic: return "NotAtomic";
    case Unordered: return "Unordered";
    case Monotonic: return "Monotonic";
    case Acquire: return "Acquire";
    case Release: return "Release";
    case AcquireRelease: return "AcquireRelease";
    case SequentiallyConsistent: return "SequentiallyConsistent";
  }
  llvm_unreachable("Unknown ordering");
}

static StringRef ConvertAtomicSynchScope(SynchronizationScope SynchScope) {
  switch (SynchScope) {
    case SingleThread: return "SingleThread";
    case CrossThread: return "CrossThread";
  }
  llvm_unreachable("Unknown synch scope");
}

// printInstruction - This member is called for each Instruction in a function.
void CppWriter::printInstruction(const Instruction *I,
                                 const std::string& bbname) {
  std::string iName(getCppName(I));

  // Before we emit this instruction, we need to take care of generating any
  // forward references. So, we get the names of all the operands in advance
  const unsigned Ops(I->getNumOperands());
  std::string* opNames = new std::string[Ops];
  for (unsigned i = 0; i < Ops; i++)
    opNames[i] = getOpName(I->getOperand(i));

  switch (I->getOpcode()) {
  default:
    error("Invalid instruction");
    break;

  case Instruction::Ret: {
    const ReturnInst* ret =  cast<ReturnInst>(I);
    Out << "ReturnInst::Create(mod->getContext(), "
        << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
    break;
  }
  case Instruction::Br: {
    const BranchInst* br = cast<BranchInst>(I);
    Out << "BranchInst::Create(" ;
    if (br->getNumOperands() == 3) {
      Out << opNames[2] << ", "
          << opNames[1] << ", "
          << opNames[0] << ", ";

    } else if (br->getNumOperands() == 1) {
      Out << opNames[0] << ", ";
    } else {
      error("Branch with 2 operands?");
    }
    Out << bbname << ");";
    break;
  }
  case Instruction::Switch: {
    const SwitchInst *SI = cast<SwitchInst>(I);
    Out << "SwitchInst* " << iName << " = SwitchInst::Create("
        << getOpName(SI->getCondition()) << ", "
        << getOpName(SI->getDefaultDest()) << ", "
        << SI->getNumCases() << ", " << bbname << ");";
    nl(Out);
    for (SwitchInst::ConstCaseIt i = SI->case_begin(), e = SI->case_end();
         i != e; ++i) {
      const ConstantInt* CaseVal = i.getCaseValue();
      const BasicBlock *BB = i.getCaseSuccessor();
      Out << iName << "->addCase("
          << getOpName(CaseVal) << ", "
          << getOpName(BB) << ");";
      nl(Out);
    }
    break;
  }
  case Instruction::IndirectBr: {
    const IndirectBrInst *IBI = cast<IndirectBrInst>(I);
    Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create("
        << opNames[0] << ", " << IBI->getNumDestinations() << ");";
    nl(Out);
    for (unsigned i = 1; i != IBI->getNumOperands(); ++i) {
      Out << iName << "->addDestination(" << opNames[i] << ");";
      nl(Out);
    }
    break;
  }
  case Instruction::Resume: {
    Out << "ResumeInst::Create(" << opNames[0] << ", " << bbname << ");";
    break;
  }
  case Instruction::Invoke: {
    const InvokeInst* inv = cast<InvokeInst>(I);
    Out << "std::vector<Value*> " << iName << "_params;";
    nl(Out);
    for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) {
      Out << iName << "_params.push_back("
          << getOpName(inv->getArgOperand(i)) << ");";
      nl(Out);
    }
    // FIXME: This shouldn't use magic numbers -3, -2, and -1.
    Out << "InvokeInst *" << iName << " = InvokeInst::Create("
        << getOpName(inv->getCalledValue()) << ", "
        << getOpName(inv->getNormalDest()) << ", "
        << getOpName(inv->getUnwindDest()) << ", "
        << iName << "_params, \"";
    printEscapedString(inv->getName());
    Out << "\", " << bbname << ");";
    nl(Out) << iName << "->setCallingConv(";
    printCallingConv(inv->getCallingConv());
    Out << ");";
    printAttributes(inv->getAttributes(), iName);
    Out << iName << "->setAttributes(" << iName << "_PAL);";
    nl(Out);
    break;
  }
  case Instruction::Unreachable: {
    Out << "new UnreachableInst("
        << "mod->getContext(), "
        << bbname << ");";
    break;
  }
  case Instruction::Add:
  case Instruction::FAdd:
  case Instruction::Sub:
  case Instruction::FSub:
  case Instruction::Mul:
  case Instruction::FMul:
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::FDiv:
  case Instruction::URem:
  case Instruction::SRem:
  case Instruction::FRem:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:{
    Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
    switch (I->getOpcode()) {
    case Instruction::Add: Out << "Instruction::Add"; break;
    case Instruction::FAdd: Out << "Instruction::FAdd"; break;
    case Instruction::Sub: Out << "Instruction::Sub"; break;
    case Instruction::FSub: Out << "Instruction::FSub"; break;
    case Instruction::Mul: Out << "Instruction::Mul"; break;
    case Instruction::FMul: Out << "Instruction::FMul"; break;
    case Instruction::UDiv:Out << "Instruction::UDiv"; break;
    case Instruction::SDiv:Out << "Instruction::SDiv"; break;
    case Instruction::FDiv:Out << "Instruction::FDiv"; break;
    case Instruction::URem:Out << "Instruction::URem"; break;
    case Instruction::SRem:Out << "Instruction::SRem"; break;
    case Instruction::FRem:Out << "Instruction::FRem"; break;
    case Instruction::And: Out << "Instruction::And"; break;
    case Instruction::Or:  Out << "Instruction::Or";  break;
    case Instruction::Xor: Out << "Instruction::Xor"; break;
    case Instruction::Shl: Out << "Instruction::Shl"; break;
    case Instruction::LShr:Out << "Instruction::LShr"; break;
    case Instruction::AShr:Out << "Instruction::AShr"; break;
    default: Out << "Instruction::BadOpCode"; break;
    }
    Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
    printEscapedString(I->getName());
    Out << "\", " << bbname << ");";
    break;
  }
  case Instruction::FCmp: {
    Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", ";
    switch (cast<FCmpInst>(I)->getPredicate()) {
    case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
    case FCmpInst::FCMP_OEQ  : Out << "FCmpInst::FCMP_OEQ"; break;
    case FCmpInst::FCMP_OGT  : Out << "FCmpInst::FCMP_OGT"; break;
    case FCmpInst::FCMP_OGE  : Out << "FCmpInst::FCMP_OGE"; break;
    case FCmpInst::FCMP_OLT  : Out << "FCmpInst::FCMP_OLT"; break;
    case FCmpInst::FCMP_OLE  : Out << "FCmpInst::FCMP_OLE"; break;
    case FCmpInst::FCMP_ONE  : Out << "FCmpInst::FCMP_ONE"; break;
    case FCmpInst::FCMP_ORD  : Out << "FCmpInst::FCMP_ORD"; break;
    case FCmpInst::FCMP_UNO  : Out << "FCmpInst::FCMP_UNO"; break;
    case FCmpInst::FCMP_UEQ  : Out << "FCmpInst::FCMP_UEQ"; break;
    case FCmpInst::FCMP_UGT  : Out << "FCmpInst::FCMP_UGT"; break;
    case FCmpInst::FCMP_UGE  : Out << "FCmpInst::FCMP_UGE"; break;
    case FCmpInst::FCMP_ULT  : Out << "FCmpInst::FCMP_ULT"; break;
    case FCmpInst::FCMP_ULE  : Out << "FCmpInst::FCMP_ULE"; break;
    case FCmpInst::FCMP_UNE  : Out << "FCmpInst::FCMP_UNE"; break;
    case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
    default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
    }
    Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
    printEscapedString(I->getName());
    Out << "\");";
    break;
  }
  case Instruction::ICmp: {
    Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", ";
    switch (cast<ICmpInst>(I)->getPredicate()) {
    case ICmpInst::ICMP_EQ:  Out << "ICmpInst::ICMP_EQ";  break;
    case ICmpInst::ICMP_NE:  Out << "ICmpInst::ICMP_NE";  break;
    case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
    case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
    case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
    case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
    case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
    case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
    case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
    case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
    default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
    }
    Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
    printEscapedString(I->getName());
    Out << "\");";
    break;
  }
  case Instruction::Alloca: {
    const AllocaInst* allocaI = cast<AllocaInst>(I);
    Out << "AllocaInst* " << iName << " = new AllocaInst("
        << getCppName(allocaI->getAllocatedType()) << ", ";
    if (allocaI->isArrayAllocation())
      Out << opNames[0] << ", ";
    Out << "\"";
    printEscapedString(allocaI->getName());
    Out << "\", " << bbname << ");";
    if (allocaI->getAlignment())
      nl(Out) << iName << "->setAlignment("
          << allocaI->getAlignment() << ");";
    break;
  }
  case Instruction::Load: {
    const LoadInst* load = cast<LoadInst>(I);
    Out << "LoadInst* " << iName << " = new LoadInst("
        << opNames[0] << ", \"";
    printEscapedString(load->getName());
    Out << "\", " << (load->isVolatile() ? "true" : "false" )
        << ", " << bbname << ");";
    if (load->getAlignment())
      nl(Out) << iName << "->setAlignment("
              << load->getAlignment() << ");";
    if (load->isAtomic()) {
      StringRef Ordering = ConvertAtomicOrdering(load->getOrdering());
      StringRef CrossThread = ConvertAtomicSynchScope(load->getSynchScope());
      nl(Out) << iName << "->setAtomic("
              << Ordering << ", " << CrossThread << ");";
    }
    break;
  }
  case Instruction::Store: {
    const StoreInst* store = cast<StoreInst>(I);
    Out << "StoreInst* " << iName << " = new StoreInst("
        << opNames[0] << ", "
        << opNames[1] << ", "
        << (store->isVolatile() ? "true" : "false")
        << ", " << bbname << ");";
    if (store->getAlignment())
      nl(Out) << iName << "->setAlignment("
              << store->getAlignment() << ");";
    if (store->isAtomic()) {
      StringRef Ordering = ConvertAtomicOrdering(store->getOrdering());
      StringRef CrossThread = ConvertAtomicSynchScope(store->getSynchScope());
      nl(Out) << iName << "->setAtomic("
              << Ordering << ", " << CrossThread << ");";
    }
    break;
  }
  case Instruction::GetElementPtr: {
    const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
    if (gep->getNumOperands() <= 2) {
      Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
          << opNames[0];
      if (gep->getNumOperands() == 2)
        Out << ", " << opNames[1];
    } else {
      Out << "std::vector<Value*> " << iName << "_indices;";
      nl(Out);
      for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
        Out << iName << "_indices.push_back("
            << opNames[i] << ");";
        nl(Out);
      }
      Out << "Instruction* " << iName << " = GetElementPtrInst::Create("
          << opNames[0] << ", " << iName << "_indices";
    }
    Out << ", \"";
    printEscapedString(gep->getName());
    Out << "\", " << bbname << ");";
    break;
  }
  case Instruction::PHI: {
    const PHINode* phi = cast<PHINode>(I);

    Out << "PHINode* " << iName << " = PHINode::Create("
        << getCppName(phi->getType()) << ", "
        << phi->getNumIncomingValues() << ", \"";
    printEscapedString(phi->getName());
    Out << "\", " << bbname << ");";
    nl(Out);
    for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) {
      Out << iName << "->addIncoming("
          << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", "
          << getOpName(phi->getIncomingBlock(i)) << ");";
      nl(Out);
    }
    break;
  }
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::FPTrunc:
  case Instruction::FPExt:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
  case Instruction::UIToFP:
  case Instruction::SIToFP:
  case Instruction::PtrToInt:
  case Instruction::IntToPtr:
  case Instruction::BitCast: {
    const CastInst* cst = cast<CastInst>(I);
    Out << "CastInst* " << iName << " = new ";
    switch (I->getOpcode()) {
    case Instruction::Trunc:    Out << "TruncInst"; break;
    case Instruction::ZExt:     Out << "ZExtInst"; break;
    case Instruction::SExt:     Out << "SExtInst"; break;
    case Instruction::FPTrunc:  Out << "FPTruncInst"; break;
    case Instruction::FPExt:    Out << "FPExtInst"; break;
    case Instruction::FPToUI:   Out << "FPToUIInst"; break;
    case Instruction::FPToSI:   Out << "FPToSIInst"; break;
    case Instruction::UIToFP:   Out << "UIToFPInst"; break;
    case Instruction::SIToFP:   Out << "SIToFPInst"; break;
    case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
    case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
    case Instruction::BitCast:  Out << "BitCastInst"; break;
    default: llvm_unreachable("Unreachable");
    }
    Out << "(" << opNames[0] << ", "
        << getCppName(cst->getType()) << ", \"";
    printEscapedString(cst->getName());
    Out << "\", " << bbname << ");";
    break;
  }
  case Instruction::Call: {
    const CallInst* call = cast<CallInst>(I);
    if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) {
      Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
          << getCppName(ila->getFunctionType()) << ", \""
          << ila->getAsmString() << "\", \""
          << ila->getConstraintString() << "\","
          << (ila->hasSideEffects() ? "true" : "false") << ");";
      nl(Out);
    }
    if (call->getNumArgOperands() > 1) {
      Out << "std::vector<Value*> " << iName << "_params;";
      nl(Out);
      for (unsigned i = 0; i < call->getNumArgOperands(); ++i) {
        Out << iName << "_params.push_back(" << opNames[i] << ");";
        nl(Out);
      }
      Out << "CallInst* " << iName << " = CallInst::Create("
          << opNames[call->getNumArgOperands()] << ", "
          << iName << "_params, \"";
    } else if (call->getNumArgOperands() == 1) {
      Out << "CallInst* " << iName << " = CallInst::Create("
          << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \"";
    } else {
      Out << "CallInst* " << iName << " = CallInst::Create("
          << opNames[call->getNumArgOperands()] << ", \"";
    }
    printEscapedString(call->getName());
    Out << "\", " << bbname << ");";
    nl(Out) << iName << "->setCallingConv(";
    printCallingConv(call->getCallingConv());
    Out << ");";
    nl(Out) << iName << "->setTailCall("
        << (call->isTailCall() ? "true" : "false");
    Out << ");";
    nl(Out);
    printAttributes(call->getAttributes(), iName);
    Out << iName << "->setAttributes(" << iName << "_PAL);";
    nl(Out);
    break;
  }
  case Instruction::Select: {
    const SelectInst* sel = cast<SelectInst>(I);
    Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
    Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
    printEscapedString(sel->getName());
    Out << "\", " << bbname << ");";
    break;
  }
  case Instruction::UserOp1:
    /// FALL THROUGH
  case Instruction::UserOp2: {
    /// FIXME: What should be done here?
    break;
  }
  case Instruction::VAArg: {
    const VAArgInst* va = cast<VAArgInst>(I);
    Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
        << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
    printEscapedString(va->getName());
    Out << "\", " << bbname << ");";
    break;
  }
  case Instruction::ExtractElement: {
    const ExtractElementInst* eei = cast<ExtractElementInst>(I);
    Out << "ExtractElementInst* " << getCppName(eei)
        << " = new ExtractElementInst(" << opNames[0]
        << ", " << opNames[1] << ", \"";
    printEscapedString(eei->getName());
    Out << "\", " << bbname << ");";
    break;
  }
  case Instruction::InsertElement: {
    const InsertElementInst* iei = cast<InsertElementInst>(I);
    Out << "InsertElementInst* " << getCppName(iei)
        << " = InsertElementInst::Create(" << opNames[0]
        << ", " << opNames[1] << ", " << opNames[2] << ", \"";
    printEscapedString(iei->getName());
    Out << "\", " << bbname << ");";
    break;
  }
  case Instruction::ShuffleVector: {
    const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
    Out << "ShuffleVectorInst* " << getCppName(svi)
        << " = new ShuffleVectorInst(" << opNames[0]
        << ", " << opNames[1] << ", " << opNames[2] << ", \"";
    printEscapedString(svi->getName());
    Out << "\", " << bbname << ");";
    break;
  }
  case Instruction::ExtractValue: {
    const ExtractValueInst *evi = cast<ExtractValueInst>(I);
    Out << "std::vector<unsigned> " << iName << "_indices;";
    nl(Out);
    for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
      Out << iName << "_indices.push_back("
          << evi->idx_begin()[i] << ");";
      nl(Out);
    }
    Out << "ExtractValueInst* " << getCppName(evi)
        << " = ExtractValueInst::Create(" << opNames[0]
        << ", "
        << iName << "_indices, \"";
    printEscapedString(evi->getName());
    Out << "\", " << bbname << ");";
    break;
  }
  case Instruction::InsertValue: {
    const InsertValueInst *ivi = cast<InsertValueInst>(I);
    Out << "std::vector<unsigned> " << iName << "_indices;";
    nl(Out);
    for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
      Out << iName << "_indices.push_back("
          << ivi->idx_begin()[i] << ");";
      nl(Out);
    }
    Out << "InsertValueInst* " << getCppName(ivi)
        << " = InsertValueInst::Create(" << opNames[0]
        << ", " << opNames[1] << ", "
        << iName << "_indices, \"";
    printEscapedString(ivi->getName());
    Out << "\", " << bbname << ");";
    break;
  }
  case Instruction::Fence: {
    const FenceInst *fi = cast<FenceInst>(I);
    StringRef Ordering = ConvertAtomicOrdering(fi->getOrdering());
    StringRef CrossThread = ConvertAtomicSynchScope(fi->getSynchScope());
    Out << "FenceInst* " << iName
        << " = new FenceInst(mod->getContext(), "
        << Ordering << ", " << CrossThread << ", " << bbname
        << ");";
    break;
  }
  case Instruction::AtomicCmpXchg: {
    const AtomicCmpXchgInst *cxi = cast<AtomicCmpXchgInst>(I);
    StringRef SuccessOrdering =
        ConvertAtomicOrdering(cxi->getSuccessOrdering());
    StringRef FailureOrdering =
        ConvertAtomicOrdering(cxi->getFailureOrdering());
    StringRef CrossThread = ConvertAtomicSynchScope(cxi->getSynchScope());
    Out << "AtomicCmpXchgInst* " << iName
        << " = new AtomicCmpXchgInst("
        << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", "
        << SuccessOrdering << ", " << FailureOrdering << ", "
        << CrossThread << ", " << bbname
        << ");";
    nl(Out) << iName << "->setName(\"";
    printEscapedString(cxi->getName());
    Out << "\");";
    nl(Out) << iName << "->setVolatile("
            << (cxi->isVolatile() ? "true" : "false") << ");";
    nl(Out) << iName << "->setWeak("
            << (cxi->isWeak() ? "true" : "false") << ");";
    break;
  }
  case Instruction::AtomicRMW: {
    const AtomicRMWInst *rmwi = cast<AtomicRMWInst>(I);
    StringRef Ordering = ConvertAtomicOrdering(rmwi->getOrdering());
    StringRef CrossThread = ConvertAtomicSynchScope(rmwi->getSynchScope());
    StringRef Operation;
    switch (rmwi->getOperation()) {
      case AtomicRMWInst::Xchg: Operation = "AtomicRMWInst::Xchg"; break;
      case AtomicRMWInst::Add:  Operation = "AtomicRMWInst::Add"; break;
      case AtomicRMWInst::Sub:  Operation = "AtomicRMWInst::Sub"; break;
      case AtomicRMWInst::And:  Operation = "AtomicRMWInst::And"; break;
      case AtomicRMWInst::Nand: Operation = "AtomicRMWInst::Nand"; break;
      case AtomicRMWInst::Or:   Operation = "AtomicRMWInst::Or"; break;
      case AtomicRMWInst::Xor:  Operation = "AtomicRMWInst::Xor"; break;
      case AtomicRMWInst::Max:  Operation = "AtomicRMWInst::Max"; break;
      case AtomicRMWInst::Min:  Operation = "AtomicRMWInst::Min"; break;
      case AtomicRMWInst::UMax: Operation = "AtomicRMWInst::UMax"; break;
      case AtomicRMWInst::UMin: Operation = "AtomicRMWInst::UMin"; break;
      case AtomicRMWInst::BAD_BINOP: llvm_unreachable("Bad atomic operation");
    }
    Out << "AtomicRMWInst* " << iName
        << " = new AtomicRMWInst("
        << Operation << ", "
        << opNames[0] << ", " << opNames[1] << ", "
        << Ordering << ", " << CrossThread << ", " << bbname
        << ");";
    nl(Out) << iName << "->setName(\"";
    printEscapedString(rmwi->getName());
    Out << "\");";
    nl(Out) << iName << "->setVolatile("
            << (rmwi->isVolatile() ? "true" : "false") << ");";
    break;
  }
  case Instruction::LandingPad: {
    const LandingPadInst *lpi = cast<LandingPadInst>(I);
    Out << "LandingPadInst* " << iName << " = LandingPadInst::Create(";
    printCppName(lpi->getType());
    Out << ", " << opNames[0] << ", " << lpi->getNumClauses() << ", \"";
    printEscapedString(lpi->getName());
    Out << "\", " << bbname << ");";
    nl(Out) << iName << "->setCleanup("
            << (lpi->isCleanup() ? "true" : "false")
            << ");";
    for (unsigned i = 0, e = lpi->getNumClauses(); i != e; ++i)
      nl(Out) << iName << "->addClause(" << opNames[i+1] << ");";
    break;
  }
  }
  DefinedValues.insert(I);
  nl(Out);
  delete [] opNames;
}

// Print out the types, constants and declarations needed by one function
void CppWriter::printFunctionUses(const Function* F) {
  nl(Out) << "// Type Definitions"; nl(Out);
  if (!is_inline) {
    // Print the function's return type
    printType(F->getReturnType());

    // Print the function's function type
    printType(F->getFunctionType());

    // Print the types of each of the function's arguments
    for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
         AI != AE; ++AI) {
      printType(AI->getType());
    }
  }

  // Print type definitions for every type referenced by an instruction and
  // make a note of any global values or constants that are referenced
  SmallPtrSet<GlobalValue*,64> gvs;
  SmallPtrSet<Constant*,64> consts;
  for (Function::const_iterator BB = F->begin(), BE = F->end();
       BB != BE; ++BB){
    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
         I != E; ++I) {
      // Print the type of the instruction itself
      printType(I->getType());

      // Print the type of each of the instruction's operands
      for (unsigned i = 0; i < I->getNumOperands(); ++i) {
        Value* operand = I->getOperand(i);
        printType(operand->getType());

        // If the operand references a GVal or Constant, make a note of it
        if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
          gvs.insert(GV);
          if (GenerationType != GenFunction)
            if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
              if (GVar->hasInitializer())
                consts.insert(GVar->getInitializer());
        } else if (Constant* C = dyn_cast<Constant>(operand)) {
          consts.insert(C);
          for (unsigned j = 0; j < C->getNumOperands(); ++j) {
            // If the operand references a GVal or Constant, make a note of it
            Value* operand = C->getOperand(j);
            printType(operand->getType());
            if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
              gvs.insert(GV);
              if (GenerationType != GenFunction)
                if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
                  if (GVar->hasInitializer())
                    consts.insert(GVar->getInitializer());
            }
          }
        }
      }
    }
  }

  // Print the function declarations for any functions encountered
  nl(Out) << "// Function Declarations"; nl(Out);
  for (auto *GV : gvs) {
    if (Function *Fun = dyn_cast<Function>(GV)) {
      if (!is_inline || Fun != F)
        printFunctionHead(Fun);
    }
  }

  // Print the global variable declarations for any variables encountered
  nl(Out) << "// Global Variable Declarations"; nl(Out);
  for (auto *GV : gvs) {
    if (GlobalVariable *F = dyn_cast<GlobalVariable>(GV))
      printVariableHead(F);
  }

  // Print the constants found
  nl(Out) << "// Constant Definitions"; nl(Out);
  for (const auto *C : consts) {
    printConstant(C);
  }

  // Process the global variables definitions now that all the constants have
  // been emitted. These definitions just couple the gvars with their constant
  // initializers.
  if (GenerationType != GenFunction) {
    nl(Out) << "// Global Variable Definitions"; nl(Out);
    for (auto *GV : gvs) {
      if (GlobalVariable *Var = dyn_cast<GlobalVariable>(GV))
        printVariableBody(Var);
    }
  }
}

void CppWriter::printFunctionHead(const Function* F) {
  nl(Out) << "Function* " << getCppName(F);
  Out << " = mod->getFunction(\"";
  printEscapedString(F->getName());
  Out << "\");";
  nl(Out) << "if (!" << getCppName(F) << ") {";
  nl(Out) << getCppName(F);

  Out<< " = Function::Create(";
  nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
  nl(Out) << "/*Linkage=*/";
  printLinkageType(F->getLinkage());
  Out << ",";
  nl(Out) << "/*Name=*/\"";
  printEscapedString(F->getName());
  Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
  nl(Out,-1);
  printCppName(F);
  Out << "->setCallingConv(";
  printCallingConv(F->getCallingConv());
  Out << ");";
  nl(Out);
  if (F->hasSection()) {
    printCppName(F);
    Out << "->setSection(\"" << F->getSection() << "\");";
    nl(Out);
  }
  if (F->getAlignment()) {
    printCppName(F);
    Out << "->setAlignment(" << F->getAlignment() << ");";
    nl(Out);
  }
  if (F->getVisibility() != GlobalValue::DefaultVisibility) {
    printCppName(F);
    Out << "->setVisibility(";
    printVisibilityType(F->getVisibility());
    Out << ");";
    nl(Out);
  }
  if (F->getDLLStorageClass() != GlobalValue::DefaultStorageClass) {
    printCppName(F);
    Out << "->setDLLStorageClass(";
    printDLLStorageClassType(F->getDLLStorageClass());
    Out << ");";
    nl(Out);
  }
  if (F->hasGC()) {
    printCppName(F);
    Out << "->setGC(\"" << F->getGC() << "\");";
    nl(Out);
  }
  Out << "}";
  nl(Out);
  printAttributes(F->getAttributes(), getCppName(F));
  printCppName(F);
  Out << "->setAttributes(" << getCppName(F) << "_PAL);";
  nl(Out);
}

void CppWriter::printFunctionBody(const Function *F) {
  if (F->isDeclaration())
    return; // external functions have no bodies.

  // Clear the DefinedValues and ForwardRefs maps because we can't have
  // cross-function forward refs
  ForwardRefs.clear();
  DefinedValues.clear();

  // Create all the argument values
  if (!is_inline) {
    if (!F->arg_empty()) {
      Out << "Function::arg_iterator args = " << getCppName(F)
          << "->arg_begin();";
      nl(Out);
    }
    for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
         AI != AE; ++AI) {
      Out << "Value* " << getCppName(AI) << " = args++;";
      nl(Out);
      if (AI->hasName()) {
        Out << getCppName(AI) << "->setName(\"";
        printEscapedString(AI->getName());
        Out << "\");";
        nl(Out);
      }
    }
  }

  // Create all the basic blocks
  nl(Out);
  for (Function::const_iterator BI = F->begin(), BE = F->end();
       BI != BE; ++BI) {
    std::string bbname(getCppName(BI));
    Out << "BasicBlock* " << bbname <<
           " = BasicBlock::Create(mod->getContext(), \"";
    if (BI->hasName())
      printEscapedString(BI->getName());
    Out << "\"," << getCppName(BI->getParent()) << ",0);";
    nl(Out);
  }

  // Output all of its basic blocks... for the function
  for (Function::const_iterator BI = F->begin(), BE = F->end();
       BI != BE; ++BI) {
    std::string bbname(getCppName(BI));
    nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
    nl(Out);

    // Output all of the instructions in the basic block...
    for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
         I != E; ++I) {
      printInstruction(I,bbname);
    }
  }

  // Loop over the ForwardRefs and resolve them now that all instructions
  // are generated.
  if (!ForwardRefs.empty()) {
    nl(Out) << "// Resolve Forward References";
    nl(Out);
  }

  while (!ForwardRefs.empty()) {
    ForwardRefMap::iterator I = ForwardRefs.begin();
    Out << I->second << "->replaceAllUsesWith("
        << getCppName(I->first) << "); delete " << I->second << ";";
    nl(Out);
    ForwardRefs.erase(I);
  }
}

void CppWriter::printInline(const std::string& fname,
                            const std::string& func) {
  const Function* F = TheModule->getFunction(func);
  if (!F) {
    error(std::string("Function '") + func + "' not found in input module");
    return;
  }
  if (F->isDeclaration()) {
    error(std::string("Function '") + func + "' is external!");
    return;
  }
  nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
          << getCppName(F);
  unsigned arg_count = 1;
  for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
       AI != AE; ++AI) {
    Out << ", Value* arg_" << arg_count++;
  }
  Out << ") {";
  nl(Out);
  is_inline = true;
  printFunctionUses(F);
  printFunctionBody(F);
  is_inline = false;
  Out << "return " << getCppName(F->begin()) << ";";
  nl(Out) << "}";
  nl(Out);
}

void CppWriter::printModuleBody() {
  // Print out all the type definitions
  nl(Out) << "// Type Definitions"; nl(Out);
  printTypes(TheModule);

  // Functions can call each other and global variables can reference them so
  // define all the functions first before emitting their function bodies.
  nl(Out) << "// Function Declarations"; nl(Out);
  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
       I != E; ++I)
    printFunctionHead(I);

  // Process the global variables declarations. We can't initialze them until
  // after the constants are printed so just print a header for each global
  nl(Out) << "// Global Variable Declarations\n"; nl(Out);
  for (Module::const_global_iterator I = TheModule->global_begin(),
         E = TheModule->global_end(); I != E; ++I) {
    printVariableHead(I);
  }

  // Print out all the constants definitions. Constants don't recurse except
  // through GlobalValues. All GlobalValues have been declared at this point
  // so we can proceed to generate the constants.
  nl(Out) << "// Constant Definitions"; nl(Out);
  printConstants(TheModule);

  // Process the global variables definitions now that all the constants have
  // been emitted. These definitions just couple the gvars with their constant
  // initializers.
  nl(Out) << "// Global Variable Definitions"; nl(Out);
  for (Module::const_global_iterator I = TheModule->global_begin(),
         E = TheModule->global_end(); I != E; ++I) {
    printVariableBody(I);
  }

  // Finally, we can safely put out all of the function bodies.
  nl(Out) << "// Function Definitions"; nl(Out);
  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
       I != E; ++I) {
    if (!I->isDeclaration()) {
      nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
              << ")";
      nl(Out) << "{";
      nl(Out,1);
      printFunctionBody(I);
      nl(Out,-1) << "}";
      nl(Out);
    }
  }
}

void CppWriter::printProgram(const std::string& fname,
                             const std::string& mName) {
  Out << "#include <llvm/Pass.h>\n";

  Out << "#include <llvm/ADT/SmallVector.h>\n";
  Out << "#include <llvm/Analysis/Verifier.h>\n";
  Out << "#include <llvm/IR/BasicBlock.h>\n";
  Out << "#include <llvm/IR/CallingConv.h>\n";
  Out << "#include <llvm/IR/Constants.h>\n";
  Out << "#include <llvm/IR/DerivedTypes.h>\n";
  Out << "#include <llvm/IR/Function.h>\n";
  Out << "#include <llvm/IR/GlobalVariable.h>\n";
  Out << "#include <llvm/IR/IRPrintingPasses.h>\n";
  Out << "#include <llvm/IR/InlineAsm.h>\n";
  Out << "#include <llvm/IR/Instructions.h>\n";
  Out << "#include <llvm/IR/LLVMContext.h>\n";
  Out << "#include <llvm/IR/LegacyPassManager.h>\n";
  Out << "#include <llvm/IR/Module.h>\n";
  Out << "#include <llvm/Support/FormattedStream.h>\n";
  Out << "#include <llvm/Support/MathExtras.h>\n";
  Out << "#include <algorithm>\n";
  Out << "using namespace llvm;\n\n";
  Out << "Module* " << fname << "();\n\n";
  Out << "int main(int argc, char**argv) {\n";
  Out << "  Module* Mod = " << fname << "();\n";
  Out << "  verifyModule(*Mod, PrintMessageAction);\n";
  Out << "  PassManager PM;\n";
  Out << "  PM.add(createPrintModulePass(&outs()));\n";
  Out << "  PM.run(*Mod);\n";
  Out << "  return 0;\n";
  Out << "}\n\n";
  printModule(fname,mName);
}

void CppWriter::printModule(const std::string& fname,
                            const std::string& mName) {
  nl(Out) << "Module* " << fname << "() {";
  nl(Out,1) << "// Module Construction";
  nl(Out) << "Module* mod = new Module(\"";
  printEscapedString(mName);
  Out << "\", getGlobalContext());";
  if (!TheModule->getTargetTriple().empty()) {
    nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayoutStr()
            << "\");";
  }
  if (!TheModule->getTargetTriple().empty()) {
    nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
            << "\");";
  }

  if (!TheModule->getModuleInlineAsm().empty()) {
    nl(Out) << "mod->setModuleInlineAsm(\"";
    printEscapedString(TheModule->getModuleInlineAsm());
    Out << "\");";
  }
  nl(Out);

  printModuleBody();
  nl(Out) << "return mod;";
  nl(Out,-1) << "}";
  nl(Out);
}

void CppWriter::printContents(const std::string& fname,
                              const std::string& mName) {
  Out << "\nModule* " << fname << "(Module *mod) {\n";
  Out << "\nmod->setModuleIdentifier(\"";
  printEscapedString(mName);
  Out << "\");\n";
  printModuleBody();
  Out << "\nreturn mod;\n";
  Out << "\n}\n";
}

void CppWriter::printFunction(const std::string& fname,
                              const std::string& funcName) {
  const Function* F = TheModule->getFunction(funcName);
  if (!F) {
    error(std::string("Function '") + funcName + "' not found in input module");
    return;
  }
  Out << "\nFunction* " << fname << "(Module *mod) {\n";
  printFunctionUses(F);
  printFunctionHead(F);
  printFunctionBody(F);
  Out << "return " << getCppName(F) << ";\n";
  Out << "}\n";
}

void CppWriter::printFunctions() {
  const Module::FunctionListType &funcs = TheModule->getFunctionList();
  Module::const_iterator I  = funcs.begin();
  Module::const_iterator IE = funcs.end();

  for (; I != IE; ++I) {
    const Function &func = *I;
    if (!func.isDeclaration()) {
      std::string name("define_");
      name += func.getName();
      printFunction(name, func.getName());
    }
  }
}

void CppWriter::printVariable(const std::string& fname,
                              const std::string& varName) {
  const GlobalVariable* GV = TheModule->getNamedGlobal(varName);

  if (!GV) {
    error(std::string("Variable '") + varName + "' not found in input module");
    return;
  }
  Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
  printVariableUses(GV);
  printVariableHead(GV);
  printVariableBody(GV);
  Out << "return " << getCppName(GV) << ";\n";
  Out << "}\n";
}

void CppWriter::printType(const std::string &fname,
                          const std::string &typeName) {
  Type* Ty = TheModule->getTypeByName(typeName);
  if (!Ty) {
    error(std::string("Type '") + typeName + "' not found in input module");
    return;
  }
  Out << "\nType* " << fname << "(Module *mod) {\n";
  printType(Ty);
  Out << "return " << getCppName(Ty) << ";\n";
  Out << "}\n";
}

bool CppWriter::runOnModule(Module &M) {
  TheModule = &M;

  // Emit a header
  Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";

  // Get the name of the function we're supposed to generate
  std::string fname = FuncName.getValue();

  // Get the name of the thing we are to generate
  std::string tgtname = NameToGenerate.getValue();
  if (GenerationType == GenModule ||
      GenerationType == GenContents ||
      GenerationType == GenProgram ||
      GenerationType == GenFunctions) {
    if (tgtname == "!bad!") {
      if (M.getModuleIdentifier() == "-")
        tgtname = "<stdin>";
      else
        tgtname = M.getModuleIdentifier();
    }
  } else if (tgtname == "!bad!")
    error("You must use the -for option with -gen-{function,variable,type}");

  switch (WhatToGenerate(GenerationType)) {
   case GenProgram:
    if (fname.empty())
      fname = "makeLLVMModule";
    printProgram(fname,tgtname);
    break;
   case GenModule:
    if (fname.empty())
      fname = "makeLLVMModule";
    printModule(fname,tgtname);
    break;
   case GenContents:
    if (fname.empty())
      fname = "makeLLVMModuleContents";
    printContents(fname,tgtname);
    break;
   case GenFunction:
    if (fname.empty())
      fname = "makeLLVMFunction";
    printFunction(fname,tgtname);
    break;
   case GenFunctions:
    printFunctions();
    break;
   case GenInline:
    if (fname.empty())
      fname = "makeLLVMInline";
    printInline(fname,tgtname);
    break;
   case GenVariable:
    if (fname.empty())
      fname = "makeLLVMVariable";
    printVariable(fname,tgtname);
    break;
   case GenType:
    if (fname.empty())
      fname = "makeLLVMType";
    printType(fname,tgtname);
    break;
  }

  return false;
}

char CppWriter::ID = 0;

//===----------------------------------------------------------------------===//
//                       External Interface declaration
//===----------------------------------------------------------------------===//

bool CPPTargetMachine::addPassesToEmitFile(
    PassManagerBase &PM, raw_pwrite_stream &o, CodeGenFileType FileType,
    bool DisableVerify, AnalysisID StartAfter, AnalysisID StopAfter) {
  if (FileType != TargetMachine::CGFT_AssemblyFile)
    return true;
  auto FOut = llvm::make_unique<formatted_raw_ostream>(o);
  PM.add(new CppWriter(std::move(FOut)));
  return false;
}