//===- AArch64InstrFormats.td - AArch64 Instruction Formats --*- tblgen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Describe AArch64 instructions format here // // Format specifies the encoding used by the instruction. This is part of the // ad-hoc solution used to emit machine instruction encodings by our machine // code emitter. class Format<bits<2> val> { bits<2> Value = val; } def PseudoFrm : Format<0>; def NormalFrm : Format<1>; // Do we need any others? // AArch64 Instruction Format class AArch64Inst<Format f, string cstr> : Instruction { field bits<32> Inst; // Instruction encoding. // Mask of bits that cause an encoding to be UNPREDICTABLE. // If a bit is set, then if the corresponding bit in the // target encoding differs from its value in the "Inst" field, // the instruction is UNPREDICTABLE (SoftFail in abstract parlance). field bits<32> Unpredictable = 0; // SoftFail is the generic name for this field, but we alias it so // as to make it more obvious what it means in ARM-land. field bits<32> SoftFail = Unpredictable; let Namespace = "AArch64"; Format F = f; bits<2> Form = F.Value; let Pattern = []; let Constraints = cstr; } // Pseudo instructions (don't have encoding information) class Pseudo<dag oops, dag iops, list<dag> pattern, string cstr = ""> : AArch64Inst<PseudoFrm, cstr> { dag OutOperandList = oops; dag InOperandList = iops; let Pattern = pattern; let isCodeGenOnly = 1; } // Real instructions (have encoding information) class EncodedI<string cstr, list<dag> pattern> : AArch64Inst<NormalFrm, cstr> { let Pattern = pattern; let Size = 4; } // Normal instructions class I<dag oops, dag iops, string asm, string operands, string cstr, list<dag> pattern> : EncodedI<cstr, pattern> { dag OutOperandList = oops; dag InOperandList = iops; let AsmString = !strconcat(asm, operands); } class TriOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$MHS, node:$RHS), res>; class BinOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$RHS), res>; class UnOpFrag<dag res> : PatFrag<(ops node:$LHS), res>; // Helper fragment for an extract of the high portion of a 128-bit vector. def extract_high_v16i8 : UnOpFrag<(extract_subvector (v16i8 node:$LHS), (i64 8))>; def extract_high_v8i16 : UnOpFrag<(extract_subvector (v8i16 node:$LHS), (i64 4))>; def extract_high_v4i32 : UnOpFrag<(extract_subvector (v4i32 node:$LHS), (i64 2))>; def extract_high_v2i64 : UnOpFrag<(extract_subvector (v2i64 node:$LHS), (i64 1))>; //===----------------------------------------------------------------------===// // Asm Operand Classes. // // Shifter operand for arithmetic shifted encodings. def ShifterOperand : AsmOperandClass { let Name = "Shifter"; } // Shifter operand for mov immediate encodings. def MovImm32ShifterOperand : AsmOperandClass { let SuperClasses = [ShifterOperand]; let Name = "MovImm32Shifter"; let RenderMethod = "addShifterOperands"; let DiagnosticType = "InvalidMovImm32Shift"; } def MovImm64ShifterOperand : AsmOperandClass { let SuperClasses = [ShifterOperand]; let Name = "MovImm64Shifter"; let RenderMethod = "addShifterOperands"; let DiagnosticType = "InvalidMovImm64Shift"; } // Shifter operand for arithmetic register shifted encodings. class ArithmeticShifterOperand<int width> : AsmOperandClass { let SuperClasses = [ShifterOperand]; let Name = "ArithmeticShifter" # width; let PredicateMethod = "isArithmeticShifter<" # width # ">"; let RenderMethod = "addShifterOperands"; let DiagnosticType = "AddSubRegShift" # width; } def ArithmeticShifterOperand32 : ArithmeticShifterOperand<32>; def ArithmeticShifterOperand64 : ArithmeticShifterOperand<64>; // Shifter operand for logical register shifted encodings. class LogicalShifterOperand<int width> : AsmOperandClass { let SuperClasses = [ShifterOperand]; let Name = "LogicalShifter" # width; let PredicateMethod = "isLogicalShifter<" # width # ">"; let RenderMethod = "addShifterOperands"; let DiagnosticType = "AddSubRegShift" # width; } def LogicalShifterOperand32 : LogicalShifterOperand<32>; def LogicalShifterOperand64 : LogicalShifterOperand<64>; // Shifter operand for logical vector 128/64-bit shifted encodings. def LogicalVecShifterOperand : AsmOperandClass { let SuperClasses = [ShifterOperand]; let Name = "LogicalVecShifter"; let RenderMethod = "addShifterOperands"; } def LogicalVecHalfWordShifterOperand : AsmOperandClass { let SuperClasses = [LogicalVecShifterOperand]; let Name = "LogicalVecHalfWordShifter"; let RenderMethod = "addShifterOperands"; } // The "MSL" shifter on the vector MOVI instruction. def MoveVecShifterOperand : AsmOperandClass { let SuperClasses = [ShifterOperand]; let Name = "MoveVecShifter"; let RenderMethod = "addShifterOperands"; } // Extend operand for arithmetic encodings. def ExtendOperand : AsmOperandClass { let Name = "Extend"; let DiagnosticType = "AddSubRegExtendLarge"; } def ExtendOperand64 : AsmOperandClass { let SuperClasses = [ExtendOperand]; let Name = "Extend64"; let DiagnosticType = "AddSubRegExtendSmall"; } // 'extend' that's a lsl of a 64-bit register. def ExtendOperandLSL64 : AsmOperandClass { let SuperClasses = [ExtendOperand]; let Name = "ExtendLSL64"; let RenderMethod = "addExtend64Operands"; let DiagnosticType = "AddSubRegExtendLarge"; } // 8-bit floating-point immediate encodings. def FPImmOperand : AsmOperandClass { let Name = "FPImm"; let ParserMethod = "tryParseFPImm"; let DiagnosticType = "InvalidFPImm"; } def CondCode : AsmOperandClass { let Name = "CondCode"; let DiagnosticType = "InvalidCondCode"; } // A 32-bit register pasrsed as 64-bit def GPR32as64Operand : AsmOperandClass { let Name = "GPR32as64"; } def GPR32as64 : RegisterOperand<GPR32> { let ParserMatchClass = GPR32as64Operand; } // 8-bit immediate for AdvSIMD where 64-bit values of the form: // aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh // are encoded as the eight bit value 'abcdefgh'. def SIMDImmType10Operand : AsmOperandClass { let Name = "SIMDImmType10"; } //===----------------------------------------------------------------------===// // Operand Definitions. // // ADR[P] instruction labels. def AdrpOperand : AsmOperandClass { let Name = "AdrpLabel"; let ParserMethod = "tryParseAdrpLabel"; let DiagnosticType = "InvalidLabel"; } def adrplabel : Operand<i64> { let EncoderMethod = "getAdrLabelOpValue"; let PrintMethod = "printAdrpLabel"; let ParserMatchClass = AdrpOperand; } def AdrOperand : AsmOperandClass { let Name = "AdrLabel"; let ParserMethod = "tryParseAdrLabel"; let DiagnosticType = "InvalidLabel"; } def adrlabel : Operand<i64> { let EncoderMethod = "getAdrLabelOpValue"; let ParserMatchClass = AdrOperand; } // simm9 predicate - True if the immediate is in the range [-256, 255]. def SImm9Operand : AsmOperandClass { let Name = "SImm9"; let DiagnosticType = "InvalidMemoryIndexedSImm9"; } def simm9 : Operand<i64>, ImmLeaf<i64, [{ return Imm >= -256 && Imm < 256; }]> { let ParserMatchClass = SImm9Operand; } // simm7sN predicate - True if the immediate is a multiple of N in the range // [-64 * N, 63 * N]. class SImm7Scaled<int Scale> : AsmOperandClass { let Name = "SImm7s" # Scale; let DiagnosticType = "InvalidMemoryIndexed" # Scale # "SImm7"; } def SImm7s4Operand : SImm7Scaled<4>; def SImm7s8Operand : SImm7Scaled<8>; def SImm7s16Operand : SImm7Scaled<16>; def simm7s4 : Operand<i32> { let ParserMatchClass = SImm7s4Operand; let PrintMethod = "printImmScale<4>"; } def simm7s8 : Operand<i32> { let ParserMatchClass = SImm7s8Operand; let PrintMethod = "printImmScale<8>"; } def simm7s16 : Operand<i32> { let ParserMatchClass = SImm7s16Operand; let PrintMethod = "printImmScale<16>"; } class AsmImmRange<int Low, int High> : AsmOperandClass { let Name = "Imm" # Low # "_" # High; let DiagnosticType = "InvalidImm" # Low # "_" # High; } def Imm1_8Operand : AsmImmRange<1, 8>; def Imm1_16Operand : AsmImmRange<1, 16>; def Imm1_32Operand : AsmImmRange<1, 32>; def Imm1_64Operand : AsmImmRange<1, 64>; def MovZSymbolG3AsmOperand : AsmOperandClass { let Name = "MovZSymbolG3"; let RenderMethod = "addImmOperands"; } def movz_symbol_g3 : Operand<i32> { let ParserMatchClass = MovZSymbolG3AsmOperand; } def MovZSymbolG2AsmOperand : AsmOperandClass { let Name = "MovZSymbolG2"; let RenderMethod = "addImmOperands"; } def movz_symbol_g2 : Operand<i32> { let ParserMatchClass = MovZSymbolG2AsmOperand; } def MovZSymbolG1AsmOperand : AsmOperandClass { let Name = "MovZSymbolG1"; let RenderMethod = "addImmOperands"; } def movz_symbol_g1 : Operand<i32> { let ParserMatchClass = MovZSymbolG1AsmOperand; } def MovZSymbolG0AsmOperand : AsmOperandClass { let Name = "MovZSymbolG0"; let RenderMethod = "addImmOperands"; } def movz_symbol_g0 : Operand<i32> { let ParserMatchClass = MovZSymbolG0AsmOperand; } def MovKSymbolG3AsmOperand : AsmOperandClass { let Name = "MovKSymbolG3"; let RenderMethod = "addImmOperands"; } def movk_symbol_g3 : Operand<i32> { let ParserMatchClass = MovKSymbolG3AsmOperand; } def MovKSymbolG2AsmOperand : AsmOperandClass { let Name = "MovKSymbolG2"; let RenderMethod = "addImmOperands"; } def movk_symbol_g2 : Operand<i32> { let ParserMatchClass = MovKSymbolG2AsmOperand; } def MovKSymbolG1AsmOperand : AsmOperandClass { let Name = "MovKSymbolG1"; let RenderMethod = "addImmOperands"; } def movk_symbol_g1 : Operand<i32> { let ParserMatchClass = MovKSymbolG1AsmOperand; } def MovKSymbolG0AsmOperand : AsmOperandClass { let Name = "MovKSymbolG0"; let RenderMethod = "addImmOperands"; } def movk_symbol_g0 : Operand<i32> { let ParserMatchClass = MovKSymbolG0AsmOperand; } class fixedpoint_i32<ValueType FloatVT> : Operand<FloatVT>, ComplexPattern<FloatVT, 1, "SelectCVTFixedPosOperand<32>", [fpimm, ld]> { let EncoderMethod = "getFixedPointScaleOpValue"; let DecoderMethod = "DecodeFixedPointScaleImm32"; let ParserMatchClass = Imm1_32Operand; } class fixedpoint_i64<ValueType FloatVT> : Operand<FloatVT>, ComplexPattern<FloatVT, 1, "SelectCVTFixedPosOperand<64>", [fpimm, ld]> { let EncoderMethod = "getFixedPointScaleOpValue"; let DecoderMethod = "DecodeFixedPointScaleImm64"; let ParserMatchClass = Imm1_64Operand; } def fixedpoint_f32_i32 : fixedpoint_i32<f32>; def fixedpoint_f64_i32 : fixedpoint_i32<f64>; def fixedpoint_f32_i64 : fixedpoint_i64<f32>; def fixedpoint_f64_i64 : fixedpoint_i64<f64>; def vecshiftR8 : Operand<i32>, ImmLeaf<i32, [{ return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 9); }]> { let EncoderMethod = "getVecShiftR8OpValue"; let DecoderMethod = "DecodeVecShiftR8Imm"; let ParserMatchClass = Imm1_8Operand; } def vecshiftR16 : Operand<i32>, ImmLeaf<i32, [{ return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 17); }]> { let EncoderMethod = "getVecShiftR16OpValue"; let DecoderMethod = "DecodeVecShiftR16Imm"; let ParserMatchClass = Imm1_16Operand; } def vecshiftR16Narrow : Operand<i32>, ImmLeaf<i32, [{ return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 9); }]> { let EncoderMethod = "getVecShiftR16OpValue"; let DecoderMethod = "DecodeVecShiftR16ImmNarrow"; let ParserMatchClass = Imm1_8Operand; } def vecshiftR32 : Operand<i32>, ImmLeaf<i32, [{ return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 33); }]> { let EncoderMethod = "getVecShiftR32OpValue"; let DecoderMethod = "DecodeVecShiftR32Imm"; let ParserMatchClass = Imm1_32Operand; } def vecshiftR32Narrow : Operand<i32>, ImmLeaf<i32, [{ return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 17); }]> { let EncoderMethod = "getVecShiftR32OpValue"; let DecoderMethod = "DecodeVecShiftR32ImmNarrow"; let ParserMatchClass = Imm1_16Operand; } def vecshiftR64 : Operand<i32>, ImmLeaf<i32, [{ return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 65); }]> { let EncoderMethod = "getVecShiftR64OpValue"; let DecoderMethod = "DecodeVecShiftR64Imm"; let ParserMatchClass = Imm1_64Operand; } def vecshiftR64Narrow : Operand<i32>, ImmLeaf<i32, [{ return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 33); }]> { let EncoderMethod = "getVecShiftR64OpValue"; let DecoderMethod = "DecodeVecShiftR64ImmNarrow"; let ParserMatchClass = Imm1_32Operand; } def Imm0_7Operand : AsmImmRange<0, 7>; def Imm0_15Operand : AsmImmRange<0, 15>; def Imm0_31Operand : AsmImmRange<0, 31>; def Imm0_63Operand : AsmImmRange<0, 63>; def vecshiftL8 : Operand<i32>, ImmLeaf<i32, [{ return (((uint32_t)Imm) < 8); }]> { let EncoderMethod = "getVecShiftL8OpValue"; let DecoderMethod = "DecodeVecShiftL8Imm"; let ParserMatchClass = Imm0_7Operand; } def vecshiftL16 : Operand<i32>, ImmLeaf<i32, [{ return (((uint32_t)Imm) < 16); }]> { let EncoderMethod = "getVecShiftL16OpValue"; let DecoderMethod = "DecodeVecShiftL16Imm"; let ParserMatchClass = Imm0_15Operand; } def vecshiftL32 : Operand<i32>, ImmLeaf<i32, [{ return (((uint32_t)Imm) < 32); }]> { let EncoderMethod = "getVecShiftL32OpValue"; let DecoderMethod = "DecodeVecShiftL32Imm"; let ParserMatchClass = Imm0_31Operand; } def vecshiftL64 : Operand<i32>, ImmLeaf<i32, [{ return (((uint32_t)Imm) < 64); }]> { let EncoderMethod = "getVecShiftL64OpValue"; let DecoderMethod = "DecodeVecShiftL64Imm"; let ParserMatchClass = Imm0_63Operand; } // Crazy immediate formats used by 32-bit and 64-bit logical immediate // instructions for splatting repeating bit patterns across the immediate. def logical_imm32_XFORM : SDNodeXForm<imm, [{ uint64_t enc = AArch64_AM::encodeLogicalImmediate(N->getZExtValue(), 32); return CurDAG->getTargetConstant(enc, MVT::i32); }]>; def logical_imm64_XFORM : SDNodeXForm<imm, [{ uint64_t enc = AArch64_AM::encodeLogicalImmediate(N->getZExtValue(), 64); return CurDAG->getTargetConstant(enc, MVT::i32); }]>; let DiagnosticType = "LogicalSecondSource" in { def LogicalImm32Operand : AsmOperandClass { let Name = "LogicalImm32"; } def LogicalImm64Operand : AsmOperandClass { let Name = "LogicalImm64"; } def LogicalImm32NotOperand : AsmOperandClass { let Name = "LogicalImm32Not"; } def LogicalImm64NotOperand : AsmOperandClass { let Name = "LogicalImm64Not"; } } def logical_imm32 : Operand<i32>, PatLeaf<(imm), [{ return AArch64_AM::isLogicalImmediate(N->getZExtValue(), 32); }], logical_imm32_XFORM> { let PrintMethod = "printLogicalImm32"; let ParserMatchClass = LogicalImm32Operand; } def logical_imm64 : Operand<i64>, PatLeaf<(imm), [{ return AArch64_AM::isLogicalImmediate(N->getZExtValue(), 64); }], logical_imm64_XFORM> { let PrintMethod = "printLogicalImm64"; let ParserMatchClass = LogicalImm64Operand; } def logical_imm32_not : Operand<i32> { let ParserMatchClass = LogicalImm32NotOperand; } def logical_imm64_not : Operand<i64> { let ParserMatchClass = LogicalImm64NotOperand; } // imm0_65535 predicate - True if the immediate is in the range [0,65535]. def Imm0_65535Operand : AsmImmRange<0, 65535>; def imm0_65535 : Operand<i32>, ImmLeaf<i32, [{ return ((uint32_t)Imm) < 65536; }]> { let ParserMatchClass = Imm0_65535Operand; let PrintMethod = "printHexImm"; } // imm0_255 predicate - True if the immediate is in the range [0,255]. def Imm0_255Operand : AsmOperandClass { let Name = "Imm0_255"; } def imm0_255 : Operand<i32>, ImmLeaf<i32, [{ return ((uint32_t)Imm) < 256; }]> { let ParserMatchClass = Imm0_255Operand; let PrintMethod = "printHexImm"; } // imm0_127 predicate - True if the immediate is in the range [0,127] def Imm0_127Operand : AsmImmRange<0, 127>; def imm0_127 : Operand<i32>, ImmLeaf<i32, [{ return ((uint32_t)Imm) < 128; }]> { let ParserMatchClass = Imm0_127Operand; let PrintMethod = "printHexImm"; } // NOTE: These imm0_N operands have to be of type i64 because i64 is the size // for all shift-amounts. // imm0_63 predicate - True if the immediate is in the range [0,63] def imm0_63 : Operand<i64>, ImmLeaf<i64, [{ return ((uint64_t)Imm) < 64; }]> { let ParserMatchClass = Imm0_63Operand; } // imm0_31 predicate - True if the immediate is in the range [0,31] def imm0_31 : Operand<i64>, ImmLeaf<i64, [{ return ((uint64_t)Imm) < 32; }]> { let ParserMatchClass = Imm0_31Operand; } // imm0_15 predicate - True if the immediate is in the range [0,15] def imm0_15 : Operand<i64>, ImmLeaf<i64, [{ return ((uint64_t)Imm) < 16; }]> { let ParserMatchClass = Imm0_15Operand; } // imm0_7 predicate - True if the immediate is in the range [0,7] def imm0_7 : Operand<i64>, ImmLeaf<i64, [{ return ((uint64_t)Imm) < 8; }]> { let ParserMatchClass = Imm0_7Operand; } // imm32_0_15 predicate - True if the 32-bit immediate is in the range [0,15] def imm32_0_15 : Operand<i32>, ImmLeaf<i32, [{ return ((uint32_t)Imm) < 16; }]>; // An arithmetic shifter operand: // {7-6} - shift type: 00 = lsl, 01 = lsr, 10 = asr // {5-0} - imm6 class arith_shift<ValueType Ty, int width> : Operand<Ty> { let PrintMethod = "printShifter"; let ParserMatchClass = !cast<AsmOperandClass>( "ArithmeticShifterOperand" # width); } def arith_shift32 : arith_shift<i32, 32>; def arith_shift64 : arith_shift<i64, 64>; class arith_shifted_reg<ValueType Ty, RegisterClass regclass, int width> : Operand<Ty>, ComplexPattern<Ty, 2, "SelectArithShiftedRegister", []> { let PrintMethod = "printShiftedRegister"; let MIOperandInfo = (ops regclass, !cast<Operand>("arith_shift" # width)); } def arith_shifted_reg32 : arith_shifted_reg<i32, GPR32, 32>; def arith_shifted_reg64 : arith_shifted_reg<i64, GPR64, 64>; // An arithmetic shifter operand: // {7-6} - shift type: 00 = lsl, 01 = lsr, 10 = asr, 11 = ror // {5-0} - imm6 class logical_shift<int width> : Operand<i32> { let PrintMethod = "printShifter"; let ParserMatchClass = !cast<AsmOperandClass>( "LogicalShifterOperand" # width); } def logical_shift32 : logical_shift<32>; def logical_shift64 : logical_shift<64>; class logical_shifted_reg<ValueType Ty, RegisterClass regclass, Operand shiftop> : Operand<Ty>, ComplexPattern<Ty, 2, "SelectLogicalShiftedRegister", []> { let PrintMethod = "printShiftedRegister"; let MIOperandInfo = (ops regclass, shiftop); } def logical_shifted_reg32 : logical_shifted_reg<i32, GPR32, logical_shift32>; def logical_shifted_reg64 : logical_shifted_reg<i64, GPR64, logical_shift64>; // A logical vector shifter operand: // {7-6} - shift type: 00 = lsl // {5-0} - imm6: #0, #8, #16, or #24 def logical_vec_shift : Operand<i32> { let PrintMethod = "printShifter"; let EncoderMethod = "getVecShifterOpValue"; let ParserMatchClass = LogicalVecShifterOperand; } // A logical vector half-word shifter operand: // {7-6} - shift type: 00 = lsl // {5-0} - imm6: #0 or #8 def logical_vec_hw_shift : Operand<i32> { let PrintMethod = "printShifter"; let EncoderMethod = "getVecShifterOpValue"; let ParserMatchClass = LogicalVecHalfWordShifterOperand; } // A vector move shifter operand: // {0} - imm1: #8 or #16 def move_vec_shift : Operand<i32> { let PrintMethod = "printShifter"; let EncoderMethod = "getMoveVecShifterOpValue"; let ParserMatchClass = MoveVecShifterOperand; } def AddSubImmOperand : AsmOperandClass { let Name = "AddSubImm"; let ParserMethod = "tryParseAddSubImm"; let DiagnosticType = "AddSubSecondSource"; } // An ADD/SUB immediate shifter operand: // second operand: // {7-6} - shift type: 00 = lsl // {5-0} - imm6: #0 or #12 class addsub_shifted_imm<ValueType Ty> : Operand<Ty>, ComplexPattern<Ty, 2, "SelectArithImmed", [imm]> { let PrintMethod = "printAddSubImm"; let EncoderMethod = "getAddSubImmOpValue"; let ParserMatchClass = AddSubImmOperand; let MIOperandInfo = (ops i32imm, i32imm); } def addsub_shifted_imm32 : addsub_shifted_imm<i32>; def addsub_shifted_imm64 : addsub_shifted_imm<i64>; class neg_addsub_shifted_imm<ValueType Ty> : Operand<Ty>, ComplexPattern<Ty, 2, "SelectNegArithImmed", [imm]> { let PrintMethod = "printAddSubImm"; let EncoderMethod = "getAddSubImmOpValue"; let ParserMatchClass = AddSubImmOperand; let MIOperandInfo = (ops i32imm, i32imm); } def neg_addsub_shifted_imm32 : neg_addsub_shifted_imm<i32>; def neg_addsub_shifted_imm64 : neg_addsub_shifted_imm<i64>; // An extend operand: // {5-3} - extend type // {2-0} - imm3 def arith_extend : Operand<i32> { let PrintMethod = "printArithExtend"; let ParserMatchClass = ExtendOperand; } def arith_extend64 : Operand<i32> { let PrintMethod = "printArithExtend"; let ParserMatchClass = ExtendOperand64; } // 'extend' that's a lsl of a 64-bit register. def arith_extendlsl64 : Operand<i32> { let PrintMethod = "printArithExtend"; let ParserMatchClass = ExtendOperandLSL64; } class arith_extended_reg32<ValueType Ty> : Operand<Ty>, ComplexPattern<Ty, 2, "SelectArithExtendedRegister", []> { let PrintMethod = "printExtendedRegister"; let MIOperandInfo = (ops GPR32, arith_extend); } class arith_extended_reg32to64<ValueType Ty> : Operand<Ty>, ComplexPattern<Ty, 2, "SelectArithExtendedRegister", []> { let PrintMethod = "printExtendedRegister"; let MIOperandInfo = (ops GPR32, arith_extend64); } // Floating-point immediate. def fpimm32 : Operand<f32>, PatLeaf<(f32 fpimm), [{ return AArch64_AM::getFP32Imm(N->getValueAPF()) != -1; }], SDNodeXForm<fpimm, [{ APFloat InVal = N->getValueAPF(); uint32_t enc = AArch64_AM::getFP32Imm(InVal); return CurDAG->getTargetConstant(enc, MVT::i32); }]>> { let ParserMatchClass = FPImmOperand; let PrintMethod = "printFPImmOperand"; } def fpimm64 : Operand<f64>, PatLeaf<(f64 fpimm), [{ return AArch64_AM::getFP64Imm(N->getValueAPF()) != -1; }], SDNodeXForm<fpimm, [{ APFloat InVal = N->getValueAPF(); uint32_t enc = AArch64_AM::getFP64Imm(InVal); return CurDAG->getTargetConstant(enc, MVT::i32); }]>> { let ParserMatchClass = FPImmOperand; let PrintMethod = "printFPImmOperand"; } def fpimm8 : Operand<i32> { let ParserMatchClass = FPImmOperand; let PrintMethod = "printFPImmOperand"; } def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>; // Vector lane operands class AsmVectorIndex<string Suffix> : AsmOperandClass { let Name = "VectorIndex" # Suffix; let DiagnosticType = "InvalidIndex" # Suffix; } def VectorIndex1Operand : AsmVectorIndex<"1">; def VectorIndexBOperand : AsmVectorIndex<"B">; def VectorIndexHOperand : AsmVectorIndex<"H">; def VectorIndexSOperand : AsmVectorIndex<"S">; def VectorIndexDOperand : AsmVectorIndex<"D">; def VectorIndex1 : Operand<i64>, ImmLeaf<i64, [{ return ((uint64_t)Imm) == 1; }]> { let ParserMatchClass = VectorIndex1Operand; let PrintMethod = "printVectorIndex"; let MIOperandInfo = (ops i64imm); } def VectorIndexB : Operand<i64>, ImmLeaf<i64, [{ return ((uint64_t)Imm) < 16; }]> { let ParserMatchClass = VectorIndexBOperand; let PrintMethod = "printVectorIndex"; let MIOperandInfo = (ops i64imm); } def VectorIndexH : Operand<i64>, ImmLeaf<i64, [{ return ((uint64_t)Imm) < 8; }]> { let ParserMatchClass = VectorIndexHOperand; let PrintMethod = "printVectorIndex"; let MIOperandInfo = (ops i64imm); } def VectorIndexS : Operand<i64>, ImmLeaf<i64, [{ return ((uint64_t)Imm) < 4; }]> { let ParserMatchClass = VectorIndexSOperand; let PrintMethod = "printVectorIndex"; let MIOperandInfo = (ops i64imm); } def VectorIndexD : Operand<i64>, ImmLeaf<i64, [{ return ((uint64_t)Imm) < 2; }]> { let ParserMatchClass = VectorIndexDOperand; let PrintMethod = "printVectorIndex"; let MIOperandInfo = (ops i64imm); } // 8-bit immediate for AdvSIMD where 64-bit values of the form: // aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh // are encoded as the eight bit value 'abcdefgh'. def simdimmtype10 : Operand<i32>, PatLeaf<(f64 fpimm), [{ return AArch64_AM::isAdvSIMDModImmType10(N->getValueAPF() .bitcastToAPInt() .getZExtValue()); }], SDNodeXForm<fpimm, [{ APFloat InVal = N->getValueAPF(); uint32_t enc = AArch64_AM::encodeAdvSIMDModImmType10(N->getValueAPF() .bitcastToAPInt() .getZExtValue()); return CurDAG->getTargetConstant(enc, MVT::i32); }]>> { let ParserMatchClass = SIMDImmType10Operand; let PrintMethod = "printSIMDType10Operand"; } //--- // System management //--- // Base encoding for system instruction operands. let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in class BaseSystemI<bit L, dag oops, dag iops, string asm, string operands, list<dag> pattern = []> : I<oops, iops, asm, operands, "", pattern> { let Inst{31-22} = 0b1101010100; let Inst{21} = L; } // System instructions which do not have an Rt register. class SimpleSystemI<bit L, dag iops, string asm, string operands, list<dag> pattern = []> : BaseSystemI<L, (outs), iops, asm, operands, pattern> { let Inst{4-0} = 0b11111; } // System instructions which have an Rt register. class RtSystemI<bit L, dag oops, dag iops, string asm, string operands> : BaseSystemI<L, oops, iops, asm, operands>, Sched<[WriteSys]> { bits<5> Rt; let Inst{4-0} = Rt; } // Hint instructions that take both a CRm and a 3-bit immediate. // NOTE: ideally, this would have mayStore = 0, mayLoad = 0, but we cannot // model patterns with sufficiently fine granularity let mayStore = 1, mayLoad = 1, hasSideEffects = 1 in class HintI<string mnemonic> : SimpleSystemI<0, (ins imm0_127:$imm), mnemonic#" $imm", "", [(int_aarch64_hint imm0_127:$imm)]>, Sched<[WriteHint]> { bits <7> imm; let Inst{20-12} = 0b000110010; let Inst{11-5} = imm; } // System instructions taking a single literal operand which encodes into // CRm. op2 differentiates the opcodes. def BarrierAsmOperand : AsmOperandClass { let Name = "Barrier"; let ParserMethod = "tryParseBarrierOperand"; } def barrier_op : Operand<i32> { let PrintMethod = "printBarrierOption"; let ParserMatchClass = BarrierAsmOperand; } class CRmSystemI<Operand crmtype, bits<3> opc, string asm, list<dag> pattern = []> : SimpleSystemI<0, (ins crmtype:$CRm), asm, "\t$CRm", pattern>, Sched<[WriteBarrier]> { bits<4> CRm; let Inst{20-12} = 0b000110011; let Inst{11-8} = CRm; let Inst{7-5} = opc; } // MRS/MSR system instructions. These have different operand classes because // a different subset of registers can be accessed through each instruction. def MRSSystemRegisterOperand : AsmOperandClass { let Name = "MRSSystemRegister"; let ParserMethod = "tryParseSysReg"; let DiagnosticType = "MRS"; } // concatenation of op0, op1, CRn, CRm, op2. 16-bit immediate. def mrs_sysreg_op : Operand<i32> { let ParserMatchClass = MRSSystemRegisterOperand; let DecoderMethod = "DecodeMRSSystemRegister"; let PrintMethod = "printMRSSystemRegister"; } def MSRSystemRegisterOperand : AsmOperandClass { let Name = "MSRSystemRegister"; let ParserMethod = "tryParseSysReg"; let DiagnosticType = "MSR"; } def msr_sysreg_op : Operand<i32> { let ParserMatchClass = MSRSystemRegisterOperand; let DecoderMethod = "DecodeMSRSystemRegister"; let PrintMethod = "printMSRSystemRegister"; } class MRSI : RtSystemI<1, (outs GPR64:$Rt), (ins mrs_sysreg_op:$systemreg), "mrs", "\t$Rt, $systemreg"> { bits<16> systemreg; let Inst{20-5} = systemreg; } // FIXME: Some of these def NZCV, others don't. Best way to model that? // Explicitly modeling each of the system register as a register class // would do it, but feels like overkill at this point. class MSRI : RtSystemI<0, (outs), (ins msr_sysreg_op:$systemreg, GPR64:$Rt), "msr", "\t$systemreg, $Rt"> { bits<16> systemreg; let Inst{20-5} = systemreg; } def SystemPStateFieldOperand : AsmOperandClass { let Name = "SystemPStateField"; let ParserMethod = "tryParseSysReg"; } def pstatefield_op : Operand<i32> { let ParserMatchClass = SystemPStateFieldOperand; let PrintMethod = "printSystemPStateField"; } let Defs = [NZCV] in class MSRpstateI : SimpleSystemI<0, (ins pstatefield_op:$pstate_field, imm0_15:$imm), "msr", "\t$pstate_field, $imm">, Sched<[WriteSys]> { bits<6> pstatefield; bits<4> imm; let Inst{20-19} = 0b00; let Inst{18-16} = pstatefield{5-3}; let Inst{15-12} = 0b0100; let Inst{11-8} = imm; let Inst{7-5} = pstatefield{2-0}; let DecoderMethod = "DecodeSystemPStateInstruction"; } // SYS and SYSL generic system instructions. def SysCRAsmOperand : AsmOperandClass { let Name = "SysCR"; let ParserMethod = "tryParseSysCROperand"; } def sys_cr_op : Operand<i32> { let PrintMethod = "printSysCROperand"; let ParserMatchClass = SysCRAsmOperand; } class SystemXtI<bit L, string asm> : RtSystemI<L, (outs), (ins imm0_7:$op1, sys_cr_op:$Cn, sys_cr_op:$Cm, imm0_7:$op2, GPR64:$Rt), asm, "\t$op1, $Cn, $Cm, $op2, $Rt"> { bits<3> op1; bits<4> Cn; bits<4> Cm; bits<3> op2; let Inst{20-19} = 0b01; let Inst{18-16} = op1; let Inst{15-12} = Cn; let Inst{11-8} = Cm; let Inst{7-5} = op2; } class SystemLXtI<bit L, string asm> : RtSystemI<L, (outs), (ins GPR64:$Rt, imm0_7:$op1, sys_cr_op:$Cn, sys_cr_op:$Cm, imm0_7:$op2), asm, "\t$Rt, $op1, $Cn, $Cm, $op2"> { bits<3> op1; bits<4> Cn; bits<4> Cm; bits<3> op2; let Inst{20-19} = 0b01; let Inst{18-16} = op1; let Inst{15-12} = Cn; let Inst{11-8} = Cm; let Inst{7-5} = op2; } // Branch (register) instructions: // // case opc of // 0001 blr // 0000 br // 0101 dret // 0100 eret // 0010 ret // otherwise UNDEFINED class BaseBranchReg<bits<4> opc, dag oops, dag iops, string asm, string operands, list<dag> pattern> : I<oops, iops, asm, operands, "", pattern>, Sched<[WriteBrReg]> { let Inst{31-25} = 0b1101011; let Inst{24-21} = opc; let Inst{20-16} = 0b11111; let Inst{15-10} = 0b000000; let Inst{4-0} = 0b00000; } class BranchReg<bits<4> opc, string asm, list<dag> pattern> : BaseBranchReg<opc, (outs), (ins GPR64:$Rn), asm, "\t$Rn", pattern> { bits<5> Rn; let Inst{9-5} = Rn; } let mayLoad = 0, mayStore = 0, hasSideEffects = 1, isReturn = 1 in class SpecialReturn<bits<4> opc, string asm> : BaseBranchReg<opc, (outs), (ins), asm, "", []> { let Inst{9-5} = 0b11111; } //--- // Conditional branch instruction. //--- // Condition code. // 4-bit immediate. Pretty-printed as <cc> def ccode : Operand<i32> { let PrintMethod = "printCondCode"; let ParserMatchClass = CondCode; } def inv_ccode : Operand<i32> { // AL and NV are invalid in the aliases which use inv_ccode let PrintMethod = "printInverseCondCode"; let ParserMatchClass = CondCode; let MCOperandPredicate = [{ return MCOp.isImm() && MCOp.getImm() != AArch64CC::AL && MCOp.getImm() != AArch64CC::NV; }]; } // Conditional branch target. 19-bit immediate. The low two bits of the target // offset are implied zero and so are not part of the immediate. def PCRelLabel19Operand : AsmOperandClass { let Name = "PCRelLabel19"; let DiagnosticType = "InvalidLabel"; } def am_brcond : Operand<OtherVT> { let EncoderMethod = "getCondBranchTargetOpValue"; let DecoderMethod = "DecodePCRelLabel19"; let PrintMethod = "printAlignedLabel"; let ParserMatchClass = PCRelLabel19Operand; } class BranchCond : I<(outs), (ins ccode:$cond, am_brcond:$target), "b", ".$cond\t$target", "", [(AArch64brcond bb:$target, imm:$cond, NZCV)]>, Sched<[WriteBr]> { let isBranch = 1; let isTerminator = 1; let Uses = [NZCV]; bits<4> cond; bits<19> target; let Inst{31-24} = 0b01010100; let Inst{23-5} = target; let Inst{4} = 0; let Inst{3-0} = cond; } //--- // Compare-and-branch instructions. //--- class BaseCmpBranch<RegisterClass regtype, bit op, string asm, SDNode node> : I<(outs), (ins regtype:$Rt, am_brcond:$target), asm, "\t$Rt, $target", "", [(node regtype:$Rt, bb:$target)]>, Sched<[WriteBr]> { let isBranch = 1; let isTerminator = 1; bits<5> Rt; bits<19> target; let Inst{30-25} = 0b011010; let Inst{24} = op; let Inst{23-5} = target; let Inst{4-0} = Rt; } multiclass CmpBranch<bit op, string asm, SDNode node> { def W : BaseCmpBranch<GPR32, op, asm, node> { let Inst{31} = 0; } def X : BaseCmpBranch<GPR64, op, asm, node> { let Inst{31} = 1; } } //--- // Test-bit-and-branch instructions. //--- // Test-and-branch target. 14-bit sign-extended immediate. The low two bits of // the target offset are implied zero and so are not part of the immediate. def BranchTarget14Operand : AsmOperandClass { let Name = "BranchTarget14"; } def am_tbrcond : Operand<OtherVT> { let EncoderMethod = "getTestBranchTargetOpValue"; let PrintMethod = "printAlignedLabel"; let ParserMatchClass = BranchTarget14Operand; } // AsmOperand classes to emit (or not) special diagnostics def TBZImm0_31Operand : AsmOperandClass { let Name = "TBZImm0_31"; let PredicateMethod = "isImm0_31"; let RenderMethod = "addImm0_31Operands"; } def TBZImm32_63Operand : AsmOperandClass { let Name = "Imm32_63"; let DiagnosticType = "InvalidImm0_63"; } class tbz_imm0_31<AsmOperandClass matcher> : Operand<i64>, ImmLeaf<i64, [{ return (((uint32_t)Imm) < 32); }]> { let ParserMatchClass = matcher; } def tbz_imm0_31_diag : tbz_imm0_31<Imm0_31Operand>; def tbz_imm0_31_nodiag : tbz_imm0_31<TBZImm0_31Operand>; def tbz_imm32_63 : Operand<i64>, ImmLeaf<i64, [{ return (((uint32_t)Imm) > 31) && (((uint32_t)Imm) < 64); }]> { let ParserMatchClass = TBZImm32_63Operand; } class BaseTestBranch<RegisterClass regtype, Operand immtype, bit op, string asm, SDNode node> : I<(outs), (ins regtype:$Rt, immtype:$bit_off, am_tbrcond:$target), asm, "\t$Rt, $bit_off, $target", "", [(node regtype:$Rt, immtype:$bit_off, bb:$target)]>, Sched<[WriteBr]> { let isBranch = 1; let isTerminator = 1; bits<5> Rt; bits<6> bit_off; bits<14> target; let Inst{30-25} = 0b011011; let Inst{24} = op; let Inst{23-19} = bit_off{4-0}; let Inst{18-5} = target; let Inst{4-0} = Rt; let DecoderMethod = "DecodeTestAndBranch"; } multiclass TestBranch<bit op, string asm, SDNode node> { def W : BaseTestBranch<GPR32, tbz_imm0_31_diag, op, asm, node> { let Inst{31} = 0; } def X : BaseTestBranch<GPR64, tbz_imm32_63, op, asm, node> { let Inst{31} = 1; } // Alias X-reg with 0-31 imm to W-Reg. def : InstAlias<asm # "\t$Rd, $imm, $target", (!cast<Instruction>(NAME#"W") GPR32as64:$Rd, tbz_imm0_31_nodiag:$imm, am_tbrcond:$target), 0>; def : Pat<(node GPR64:$Rn, tbz_imm0_31_diag:$imm, bb:$target), (!cast<Instruction>(NAME#"W") (EXTRACT_SUBREG GPR64:$Rn, sub_32), tbz_imm0_31_diag:$imm, bb:$target)>; } //--- // Unconditional branch (immediate) instructions. //--- def BranchTarget26Operand : AsmOperandClass { let Name = "BranchTarget26"; let DiagnosticType = "InvalidLabel"; } def am_b_target : Operand<OtherVT> { let EncoderMethod = "getBranchTargetOpValue"; let PrintMethod = "printAlignedLabel"; let ParserMatchClass = BranchTarget26Operand; } def am_bl_target : Operand<i64> { let EncoderMethod = "getBranchTargetOpValue"; let PrintMethod = "printAlignedLabel"; let ParserMatchClass = BranchTarget26Operand; } class BImm<bit op, dag iops, string asm, list<dag> pattern> : I<(outs), iops, asm, "\t$addr", "", pattern>, Sched<[WriteBr]> { bits<26> addr; let Inst{31} = op; let Inst{30-26} = 0b00101; let Inst{25-0} = addr; let DecoderMethod = "DecodeUnconditionalBranch"; } class BranchImm<bit op, string asm, list<dag> pattern> : BImm<op, (ins am_b_target:$addr), asm, pattern>; class CallImm<bit op, string asm, list<dag> pattern> : BImm<op, (ins am_bl_target:$addr), asm, pattern>; //--- // Basic one-operand data processing instructions. //--- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseOneOperandData<bits<3> opc, RegisterClass regtype, string asm, SDPatternOperator node> : I<(outs regtype:$Rd), (ins regtype:$Rn), asm, "\t$Rd, $Rn", "", [(set regtype:$Rd, (node regtype:$Rn))]>, Sched<[WriteI, ReadI]> { bits<5> Rd; bits<5> Rn; let Inst{30-13} = 0b101101011000000000; let Inst{12-10} = opc; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in multiclass OneOperandData<bits<3> opc, string asm, SDPatternOperator node = null_frag> { def Wr : BaseOneOperandData<opc, GPR32, asm, node> { let Inst{31} = 0; } def Xr : BaseOneOperandData<opc, GPR64, asm, node> { let Inst{31} = 1; } } class OneWRegData<bits<3> opc, string asm, SDPatternOperator node> : BaseOneOperandData<opc, GPR32, asm, node> { let Inst{31} = 0; } class OneXRegData<bits<3> opc, string asm, SDPatternOperator node> : BaseOneOperandData<opc, GPR64, asm, node> { let Inst{31} = 1; } //--- // Basic two-operand data processing instructions. //--- class BaseBaseAddSubCarry<bit isSub, RegisterClass regtype, string asm, list<dag> pattern> : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm), asm, "\t$Rd, $Rn, $Rm", "", pattern>, Sched<[WriteI, ReadI, ReadI]> { let Uses = [NZCV]; bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{30} = isSub; let Inst{28-21} = 0b11010000; let Inst{20-16} = Rm; let Inst{15-10} = 0; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } class BaseAddSubCarry<bit isSub, RegisterClass regtype, string asm, SDNode OpNode> : BaseBaseAddSubCarry<isSub, regtype, asm, [(set regtype:$Rd, (OpNode regtype:$Rn, regtype:$Rm, NZCV))]>; class BaseAddSubCarrySetFlags<bit isSub, RegisterClass regtype, string asm, SDNode OpNode> : BaseBaseAddSubCarry<isSub, regtype, asm, [(set regtype:$Rd, (OpNode regtype:$Rn, regtype:$Rm, NZCV)), (implicit NZCV)]> { let Defs = [NZCV]; } multiclass AddSubCarry<bit isSub, string asm, string asm_setflags, SDNode OpNode, SDNode OpNode_setflags> { def Wr : BaseAddSubCarry<isSub, GPR32, asm, OpNode> { let Inst{31} = 0; let Inst{29} = 0; } def Xr : BaseAddSubCarry<isSub, GPR64, asm, OpNode> { let Inst{31} = 1; let Inst{29} = 0; } // Sets flags. def SWr : BaseAddSubCarrySetFlags<isSub, GPR32, asm_setflags, OpNode_setflags> { let Inst{31} = 0; let Inst{29} = 1; } def SXr : BaseAddSubCarrySetFlags<isSub, GPR64, asm_setflags, OpNode_setflags> { let Inst{31} = 1; let Inst{29} = 1; } } class BaseTwoOperand<bits<4> opc, RegisterClass regtype, string asm, SDPatternOperator OpNode> : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm), asm, "\t$Rd, $Rn, $Rm", "", [(set regtype:$Rd, (OpNode regtype:$Rn, regtype:$Rm))]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{30-21} = 0b0011010110; let Inst{20-16} = Rm; let Inst{15-14} = 0b00; let Inst{13-10} = opc; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } class BaseDiv<bit isSigned, RegisterClass regtype, string asm, SDPatternOperator OpNode> : BaseTwoOperand<{0,0,1,?}, regtype, asm, OpNode> { let Inst{10} = isSigned; } multiclass Div<bit isSigned, string asm, SDPatternOperator OpNode> { def Wr : BaseDiv<isSigned, GPR32, asm, OpNode>, Sched<[WriteID32, ReadID, ReadID]> { let Inst{31} = 0; } def Xr : BaseDiv<isSigned, GPR64, asm, OpNode>, Sched<[WriteID64, ReadID, ReadID]> { let Inst{31} = 1; } } class BaseShift<bits<2> shift_type, RegisterClass regtype, string asm, SDPatternOperator OpNode = null_frag> : BaseTwoOperand<{1,0,?,?}, regtype, asm, OpNode>, Sched<[WriteIS, ReadI]> { let Inst{11-10} = shift_type; } multiclass Shift<bits<2> shift_type, string asm, SDNode OpNode> { def Wr : BaseShift<shift_type, GPR32, asm> { let Inst{31} = 0; } def Xr : BaseShift<shift_type, GPR64, asm, OpNode> { let Inst{31} = 1; } def : Pat<(i32 (OpNode GPR32:$Rn, i64:$Rm)), (!cast<Instruction>(NAME # "Wr") GPR32:$Rn, (EXTRACT_SUBREG i64:$Rm, sub_32))>; def : Pat<(i32 (OpNode GPR32:$Rn, (i64 (zext GPR32:$Rm)))), (!cast<Instruction>(NAME # "Wr") GPR32:$Rn, GPR32:$Rm)>; def : Pat<(i32 (OpNode GPR32:$Rn, (i64 (anyext GPR32:$Rm)))), (!cast<Instruction>(NAME # "Wr") GPR32:$Rn, GPR32:$Rm)>; def : Pat<(i32 (OpNode GPR32:$Rn, (i64 (sext GPR32:$Rm)))), (!cast<Instruction>(NAME # "Wr") GPR32:$Rn, GPR32:$Rm)>; } class ShiftAlias<string asm, Instruction inst, RegisterClass regtype> : InstAlias<asm#" $dst, $src1, $src2", (inst regtype:$dst, regtype:$src1, regtype:$src2), 0>; class BaseMulAccum<bit isSub, bits<3> opc, RegisterClass multype, RegisterClass addtype, string asm, list<dag> pattern> : I<(outs addtype:$Rd), (ins multype:$Rn, multype:$Rm, addtype:$Ra), asm, "\t$Rd, $Rn, $Rm, $Ra", "", pattern> { bits<5> Rd; bits<5> Rn; bits<5> Rm; bits<5> Ra; let Inst{30-24} = 0b0011011; let Inst{23-21} = opc; let Inst{20-16} = Rm; let Inst{15} = isSub; let Inst{14-10} = Ra; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass MulAccum<bit isSub, string asm, SDNode AccNode> { // MADD/MSUB generation is decided by MachineCombiner.cpp def Wrrr : BaseMulAccum<isSub, 0b000, GPR32, GPR32, asm, [/*(set GPR32:$Rd, (AccNode GPR32:$Ra, (mul GPR32:$Rn, GPR32:$Rm)))*/]>, Sched<[WriteIM32, ReadIM, ReadIM, ReadIMA]> { let Inst{31} = 0; } def Xrrr : BaseMulAccum<isSub, 0b000, GPR64, GPR64, asm, [/*(set GPR64:$Rd, (AccNode GPR64:$Ra, (mul GPR64:$Rn, GPR64:$Rm)))*/]>, Sched<[WriteIM64, ReadIM, ReadIM, ReadIMA]> { let Inst{31} = 1; } } class WideMulAccum<bit isSub, bits<3> opc, string asm, SDNode AccNode, SDNode ExtNode> : BaseMulAccum<isSub, opc, GPR32, GPR64, asm, [(set GPR64:$Rd, (AccNode GPR64:$Ra, (mul (ExtNode GPR32:$Rn), (ExtNode GPR32:$Rm))))]>, Sched<[WriteIM32, ReadIM, ReadIM, ReadIMA]> { let Inst{31} = 1; } class MulHi<bits<3> opc, string asm, SDNode OpNode> : I<(outs GPR64:$Rd), (ins GPR64:$Rn, GPR64:$Rm), asm, "\t$Rd, $Rn, $Rm", "", [(set GPR64:$Rd, (OpNode GPR64:$Rn, GPR64:$Rm))]>, Sched<[WriteIM64, ReadIM, ReadIM]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31-24} = 0b10011011; let Inst{23-21} = opc; let Inst{20-16} = Rm; let Inst{15} = 0; let Inst{9-5} = Rn; let Inst{4-0} = Rd; // The Ra field of SMULH and UMULH is unused: it should be assembled as 31 // (i.e. all bits 1) but is ignored by the processor. let PostEncoderMethod = "fixMulHigh"; } class MulAccumWAlias<string asm, Instruction inst> : InstAlias<asm#" $dst, $src1, $src2", (inst GPR32:$dst, GPR32:$src1, GPR32:$src2, WZR)>; class MulAccumXAlias<string asm, Instruction inst> : InstAlias<asm#" $dst, $src1, $src2", (inst GPR64:$dst, GPR64:$src1, GPR64:$src2, XZR)>; class WideMulAccumAlias<string asm, Instruction inst> : InstAlias<asm#" $dst, $src1, $src2", (inst GPR64:$dst, GPR32:$src1, GPR32:$src2, XZR)>; class BaseCRC32<bit sf, bits<2> sz, bit C, RegisterClass StreamReg, SDPatternOperator OpNode, string asm> : I<(outs GPR32:$Rd), (ins GPR32:$Rn, StreamReg:$Rm), asm, "\t$Rd, $Rn, $Rm", "", [(set GPR32:$Rd, (OpNode GPR32:$Rn, StreamReg:$Rm))]>, Sched<[WriteISReg, ReadI, ReadISReg]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31} = sf; let Inst{30-21} = 0b0011010110; let Inst{20-16} = Rm; let Inst{15-13} = 0b010; let Inst{12} = C; let Inst{11-10} = sz; let Inst{9-5} = Rn; let Inst{4-0} = Rd; let Predicates = [HasCRC]; } //--- // Address generation. //--- class ADRI<bit page, string asm, Operand adr, list<dag> pattern> : I<(outs GPR64:$Xd), (ins adr:$label), asm, "\t$Xd, $label", "", pattern>, Sched<[WriteI]> { bits<5> Xd; bits<21> label; let Inst{31} = page; let Inst{30-29} = label{1-0}; let Inst{28-24} = 0b10000; let Inst{23-5} = label{20-2}; let Inst{4-0} = Xd; let DecoderMethod = "DecodeAdrInstruction"; } //--- // Move immediate. //--- def movimm32_imm : Operand<i32> { let ParserMatchClass = Imm0_65535Operand; let EncoderMethod = "getMoveWideImmOpValue"; let PrintMethod = "printHexImm"; } def movimm32_shift : Operand<i32> { let PrintMethod = "printShifter"; let ParserMatchClass = MovImm32ShifterOperand; } def movimm64_shift : Operand<i32> { let PrintMethod = "printShifter"; let ParserMatchClass = MovImm64ShifterOperand; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseMoveImmediate<bits<2> opc, RegisterClass regtype, Operand shifter, string asm> : I<(outs regtype:$Rd), (ins movimm32_imm:$imm, shifter:$shift), asm, "\t$Rd, $imm$shift", "", []>, Sched<[WriteImm]> { bits<5> Rd; bits<16> imm; bits<6> shift; let Inst{30-29} = opc; let Inst{28-23} = 0b100101; let Inst{22-21} = shift{5-4}; let Inst{20-5} = imm; let Inst{4-0} = Rd; let DecoderMethod = "DecodeMoveImmInstruction"; } multiclass MoveImmediate<bits<2> opc, string asm> { def Wi : BaseMoveImmediate<opc, GPR32, movimm32_shift, asm> { let Inst{31} = 0; } def Xi : BaseMoveImmediate<opc, GPR64, movimm64_shift, asm> { let Inst{31} = 1; } } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseInsertImmediate<bits<2> opc, RegisterClass regtype, Operand shifter, string asm> : I<(outs regtype:$Rd), (ins regtype:$src, movimm32_imm:$imm, shifter:$shift), asm, "\t$Rd, $imm$shift", "$src = $Rd", []>, Sched<[WriteI, ReadI]> { bits<5> Rd; bits<16> imm; bits<6> shift; let Inst{30-29} = opc; let Inst{28-23} = 0b100101; let Inst{22-21} = shift{5-4}; let Inst{20-5} = imm; let Inst{4-0} = Rd; let DecoderMethod = "DecodeMoveImmInstruction"; } multiclass InsertImmediate<bits<2> opc, string asm> { def Wi : BaseInsertImmediate<opc, GPR32, movimm32_shift, asm> { let Inst{31} = 0; } def Xi : BaseInsertImmediate<opc, GPR64, movimm64_shift, asm> { let Inst{31} = 1; } } //--- // Add/Subtract //--- class BaseAddSubImm<bit isSub, bit setFlags, RegisterClass dstRegtype, RegisterClass srcRegtype, addsub_shifted_imm immtype, string asm, SDPatternOperator OpNode> : I<(outs dstRegtype:$Rd), (ins srcRegtype:$Rn, immtype:$imm), asm, "\t$Rd, $Rn, $imm", "", [(set dstRegtype:$Rd, (OpNode srcRegtype:$Rn, immtype:$imm))]>, Sched<[WriteI, ReadI]> { bits<5> Rd; bits<5> Rn; bits<14> imm; let Inst{30} = isSub; let Inst{29} = setFlags; let Inst{28-24} = 0b10001; let Inst{23-22} = imm{13-12}; // '00' => lsl #0, '01' => lsl #12 let Inst{21-10} = imm{11-0}; let Inst{9-5} = Rn; let Inst{4-0} = Rd; let DecoderMethod = "DecodeBaseAddSubImm"; } class BaseAddSubRegPseudo<RegisterClass regtype, SDPatternOperator OpNode> : Pseudo<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm), [(set regtype:$Rd, (OpNode regtype:$Rn, regtype:$Rm))]>, Sched<[WriteI, ReadI, ReadI]>; class BaseAddSubSReg<bit isSub, bit setFlags, RegisterClass regtype, arith_shifted_reg shifted_regtype, string asm, SDPatternOperator OpNode> : I<(outs regtype:$Rd), (ins regtype:$Rn, shifted_regtype:$Rm), asm, "\t$Rd, $Rn, $Rm", "", [(set regtype:$Rd, (OpNode regtype:$Rn, shifted_regtype:$Rm))]>, Sched<[WriteISReg, ReadI, ReadISReg]> { // The operands are in order to match the 'addr' MI operands, so we // don't need an encoder method and by-name matching. Just use the default // in-order handling. Since we're using by-order, make sure the names // do not match. bits<5> dst; bits<5> src1; bits<5> src2; bits<8> shift; let Inst{30} = isSub; let Inst{29} = setFlags; let Inst{28-24} = 0b01011; let Inst{23-22} = shift{7-6}; let Inst{21} = 0; let Inst{20-16} = src2; let Inst{15-10} = shift{5-0}; let Inst{9-5} = src1; let Inst{4-0} = dst; let DecoderMethod = "DecodeThreeAddrSRegInstruction"; } class BaseAddSubEReg<bit isSub, bit setFlags, RegisterClass dstRegtype, RegisterClass src1Regtype, Operand src2Regtype, string asm, SDPatternOperator OpNode> : I<(outs dstRegtype:$R1), (ins src1Regtype:$R2, src2Regtype:$R3), asm, "\t$R1, $R2, $R3", "", [(set dstRegtype:$R1, (OpNode src1Regtype:$R2, src2Regtype:$R3))]>, Sched<[WriteIEReg, ReadI, ReadIEReg]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; bits<6> ext; let Inst{30} = isSub; let Inst{29} = setFlags; let Inst{28-24} = 0b01011; let Inst{23-21} = 0b001; let Inst{20-16} = Rm; let Inst{15-13} = ext{5-3}; let Inst{12-10} = ext{2-0}; let Inst{9-5} = Rn; let Inst{4-0} = Rd; let DecoderMethod = "DecodeAddSubERegInstruction"; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseAddSubEReg64<bit isSub, bit setFlags, RegisterClass dstRegtype, RegisterClass src1Regtype, RegisterClass src2Regtype, Operand ext_op, string asm> : I<(outs dstRegtype:$Rd), (ins src1Regtype:$Rn, src2Regtype:$Rm, ext_op:$ext), asm, "\t$Rd, $Rn, $Rm$ext", "", []>, Sched<[WriteIEReg, ReadI, ReadIEReg]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; bits<6> ext; let Inst{30} = isSub; let Inst{29} = setFlags; let Inst{28-24} = 0b01011; let Inst{23-21} = 0b001; let Inst{20-16} = Rm; let Inst{15} = ext{5}; let Inst{12-10} = ext{2-0}; let Inst{9-5} = Rn; let Inst{4-0} = Rd; let DecoderMethod = "DecodeAddSubERegInstruction"; } // Aliases for register+register add/subtract. class AddSubRegAlias<string asm, Instruction inst, RegisterClass dstRegtype, RegisterClass src1Regtype, RegisterClass src2Regtype, int shiftExt> : InstAlias<asm#" $dst, $src1, $src2", (inst dstRegtype:$dst, src1Regtype:$src1, src2Regtype:$src2, shiftExt)>; multiclass AddSub<bit isSub, string mnemonic, SDPatternOperator OpNode = null_frag> { let hasSideEffects = 0, isReMaterializable = 1, isAsCheapAsAMove = 1 in { // Add/Subtract immediate // Increase the weight of the immediate variant to try to match it before // the extended register variant. // We used to match the register variant before the immediate when the // register argument could be implicitly zero-extended. let AddedComplexity = 6 in def Wri : BaseAddSubImm<isSub, 0, GPR32sp, GPR32sp, addsub_shifted_imm32, mnemonic, OpNode> { let Inst{31} = 0; } let AddedComplexity = 6 in def Xri : BaseAddSubImm<isSub, 0, GPR64sp, GPR64sp, addsub_shifted_imm64, mnemonic, OpNode> { let Inst{31} = 1; } // Add/Subtract register - Only used for CodeGen def Wrr : BaseAddSubRegPseudo<GPR32, OpNode>; def Xrr : BaseAddSubRegPseudo<GPR64, OpNode>; // Add/Subtract shifted register def Wrs : BaseAddSubSReg<isSub, 0, GPR32, arith_shifted_reg32, mnemonic, OpNode> { let Inst{31} = 0; } def Xrs : BaseAddSubSReg<isSub, 0, GPR64, arith_shifted_reg64, mnemonic, OpNode> { let Inst{31} = 1; } } // Add/Subtract extended register let AddedComplexity = 1, hasSideEffects = 0 in { def Wrx : BaseAddSubEReg<isSub, 0, GPR32sp, GPR32sp, arith_extended_reg32<i32>, mnemonic, OpNode> { let Inst{31} = 0; } def Xrx : BaseAddSubEReg<isSub, 0, GPR64sp, GPR64sp, arith_extended_reg32to64<i64>, mnemonic, OpNode> { let Inst{31} = 1; } } def Xrx64 : BaseAddSubEReg64<isSub, 0, GPR64sp, GPR64sp, GPR64, arith_extendlsl64, mnemonic> { // UXTX and SXTX only. let Inst{14-13} = 0b11; let Inst{31} = 1; } // Register/register aliases with no shift when SP is not used. def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Wrs"), GPR32, GPR32, GPR32, 0>; def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Xrs"), GPR64, GPR64, GPR64, 0>; // Register/register aliases with no shift when either the destination or // first source register is SP. def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Wrx"), GPR32sponly, GPR32sp, GPR32, 16>; // UXTW #0 def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Wrx"), GPR32sp, GPR32sponly, GPR32, 16>; // UXTW #0 def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Xrx64"), GPR64sponly, GPR64sp, GPR64, 24>; // UXTX #0 def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Xrx64"), GPR64sp, GPR64sponly, GPR64, 24>; // UXTX #0 } multiclass AddSubS<bit isSub, string mnemonic, SDNode OpNode, string cmp> { let isCompare = 1, Defs = [NZCV] in { // Add/Subtract immediate def Wri : BaseAddSubImm<isSub, 1, GPR32, GPR32sp, addsub_shifted_imm32, mnemonic, OpNode> { let Inst{31} = 0; } def Xri : BaseAddSubImm<isSub, 1, GPR64, GPR64sp, addsub_shifted_imm64, mnemonic, OpNode> { let Inst{31} = 1; } // Add/Subtract register def Wrr : BaseAddSubRegPseudo<GPR32, OpNode>; def Xrr : BaseAddSubRegPseudo<GPR64, OpNode>; // Add/Subtract shifted register def Wrs : BaseAddSubSReg<isSub, 1, GPR32, arith_shifted_reg32, mnemonic, OpNode> { let Inst{31} = 0; } def Xrs : BaseAddSubSReg<isSub, 1, GPR64, arith_shifted_reg64, mnemonic, OpNode> { let Inst{31} = 1; } // Add/Subtract extended register let AddedComplexity = 1 in { def Wrx : BaseAddSubEReg<isSub, 1, GPR32, GPR32sp, arith_extended_reg32<i32>, mnemonic, OpNode> { let Inst{31} = 0; } def Xrx : BaseAddSubEReg<isSub, 1, GPR64, GPR64sp, arith_extended_reg32<i64>, mnemonic, OpNode> { let Inst{31} = 1; } } def Xrx64 : BaseAddSubEReg64<isSub, 1, GPR64, GPR64sp, GPR64, arith_extendlsl64, mnemonic> { // UXTX and SXTX only. let Inst{14-13} = 0b11; let Inst{31} = 1; } } // Defs = [NZCV] // Compare aliases def : InstAlias<cmp#" $src, $imm", (!cast<Instruction>(NAME#"Wri") WZR, GPR32sp:$src, addsub_shifted_imm32:$imm), 5>; def : InstAlias<cmp#" $src, $imm", (!cast<Instruction>(NAME#"Xri") XZR, GPR64sp:$src, addsub_shifted_imm64:$imm), 5>; def : InstAlias<cmp#" $src1, $src2$sh", (!cast<Instruction>(NAME#"Wrx") WZR, GPR32sp:$src1, GPR32:$src2, arith_extend:$sh), 4>; def : InstAlias<cmp#" $src1, $src2$sh", (!cast<Instruction>(NAME#"Xrx") XZR, GPR64sp:$src1, GPR32:$src2, arith_extend:$sh), 4>; def : InstAlias<cmp#" $src1, $src2$sh", (!cast<Instruction>(NAME#"Xrx64") XZR, GPR64sp:$src1, GPR64:$src2, arith_extendlsl64:$sh), 4>; def : InstAlias<cmp#" $src1, $src2$sh", (!cast<Instruction>(NAME#"Wrs") WZR, GPR32:$src1, GPR32:$src2, arith_shift32:$sh), 4>; def : InstAlias<cmp#" $src1, $src2$sh", (!cast<Instruction>(NAME#"Xrs") XZR, GPR64:$src1, GPR64:$src2, arith_shift64:$sh), 4>; // Compare shorthands def : InstAlias<cmp#" $src1, $src2", (!cast<Instruction>(NAME#"Wrs") WZR, GPR32:$src1, GPR32:$src2, 0), 5>; def : InstAlias<cmp#" $src1, $src2", (!cast<Instruction>(NAME#"Xrs") XZR, GPR64:$src1, GPR64:$src2, 0), 5>; def : InstAlias<cmp#" $src1, $src2", (!cast<Instruction>(NAME#"Wrx") WZR, GPR32sponly:$src1, GPR32:$src2, 16), 5>; def : InstAlias<cmp#" $src1, $src2", (!cast<Instruction>(NAME#"Xrx64") XZR, GPR64sponly:$src1, GPR64:$src2, 24), 5>; // Register/register aliases with no shift when SP is not used. def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Wrs"), GPR32, GPR32, GPR32, 0>; def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Xrs"), GPR64, GPR64, GPR64, 0>; // Register/register aliases with no shift when the first source register // is SP. def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Wrx"), GPR32, GPR32sponly, GPR32, 16>; // UXTW #0 def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Xrx64"), GPR64, GPR64sponly, GPR64, 24>; // UXTX #0 } //--- // Extract //--- def SDTA64EXTR : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisPtrTy<3>]>; def AArch64Extr : SDNode<"AArch64ISD::EXTR", SDTA64EXTR>; class BaseExtractImm<RegisterClass regtype, Operand imm_type, string asm, list<dag> patterns> : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, imm_type:$imm), asm, "\t$Rd, $Rn, $Rm, $imm", "", patterns>, Sched<[WriteExtr, ReadExtrHi]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; bits<6> imm; let Inst{30-23} = 0b00100111; let Inst{21} = 0; let Inst{20-16} = Rm; let Inst{15-10} = imm; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass ExtractImm<string asm> { def Wrri : BaseExtractImm<GPR32, imm0_31, asm, [(set GPR32:$Rd, (AArch64Extr GPR32:$Rn, GPR32:$Rm, imm0_31:$imm))]> { let Inst{31} = 0; let Inst{22} = 0; // imm<5> must be zero. let imm{5} = 0; } def Xrri : BaseExtractImm<GPR64, imm0_63, asm, [(set GPR64:$Rd, (AArch64Extr GPR64:$Rn, GPR64:$Rm, imm0_63:$imm))]> { let Inst{31} = 1; let Inst{22} = 1; } } //--- // Bitfield //--- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseBitfieldImm<bits<2> opc, RegisterClass regtype, Operand imm_type, string asm> : I<(outs regtype:$Rd), (ins regtype:$Rn, imm_type:$immr, imm_type:$imms), asm, "\t$Rd, $Rn, $immr, $imms", "", []>, Sched<[WriteIS, ReadI]> { bits<5> Rd; bits<5> Rn; bits<6> immr; bits<6> imms; let Inst{30-29} = opc; let Inst{28-23} = 0b100110; let Inst{21-16} = immr; let Inst{15-10} = imms; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass BitfieldImm<bits<2> opc, string asm> { def Wri : BaseBitfieldImm<opc, GPR32, imm0_31, asm> { let Inst{31} = 0; let Inst{22} = 0; // imms<5> and immr<5> must be zero, else ReservedValue(). let Inst{21} = 0; let Inst{15} = 0; } def Xri : BaseBitfieldImm<opc, GPR64, imm0_63, asm> { let Inst{31} = 1; let Inst{22} = 1; } } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseBitfieldImmWith2RegArgs<bits<2> opc, RegisterClass regtype, Operand imm_type, string asm> : I<(outs regtype:$Rd), (ins regtype:$src, regtype:$Rn, imm_type:$immr, imm_type:$imms), asm, "\t$Rd, $Rn, $immr, $imms", "$src = $Rd", []>, Sched<[WriteIS, ReadI]> { bits<5> Rd; bits<5> Rn; bits<6> immr; bits<6> imms; let Inst{30-29} = opc; let Inst{28-23} = 0b100110; let Inst{21-16} = immr; let Inst{15-10} = imms; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass BitfieldImmWith2RegArgs<bits<2> opc, string asm> { def Wri : BaseBitfieldImmWith2RegArgs<opc, GPR32, imm0_31, asm> { let Inst{31} = 0; let Inst{22} = 0; // imms<5> and immr<5> must be zero, else ReservedValue(). let Inst{21} = 0; let Inst{15} = 0; } def Xri : BaseBitfieldImmWith2RegArgs<opc, GPR64, imm0_63, asm> { let Inst{31} = 1; let Inst{22} = 1; } } //--- // Logical //--- // Logical (immediate) class BaseLogicalImm<bits<2> opc, RegisterClass dregtype, RegisterClass sregtype, Operand imm_type, string asm, list<dag> pattern> : I<(outs dregtype:$Rd), (ins sregtype:$Rn, imm_type:$imm), asm, "\t$Rd, $Rn, $imm", "", pattern>, Sched<[WriteI, ReadI]> { bits<5> Rd; bits<5> Rn; bits<13> imm; let Inst{30-29} = opc; let Inst{28-23} = 0b100100; let Inst{22} = imm{12}; let Inst{21-16} = imm{11-6}; let Inst{15-10} = imm{5-0}; let Inst{9-5} = Rn; let Inst{4-0} = Rd; let DecoderMethod = "DecodeLogicalImmInstruction"; } // Logical (shifted register) class BaseLogicalSReg<bits<2> opc, bit N, RegisterClass regtype, logical_shifted_reg shifted_regtype, string asm, list<dag> pattern> : I<(outs regtype:$Rd), (ins regtype:$Rn, shifted_regtype:$Rm), asm, "\t$Rd, $Rn, $Rm", "", pattern>, Sched<[WriteISReg, ReadI, ReadISReg]> { // The operands are in order to match the 'addr' MI operands, so we // don't need an encoder method and by-name matching. Just use the default // in-order handling. Since we're using by-order, make sure the names // do not match. bits<5> dst; bits<5> src1; bits<5> src2; bits<8> shift; let Inst{30-29} = opc; let Inst{28-24} = 0b01010; let Inst{23-22} = shift{7-6}; let Inst{21} = N; let Inst{20-16} = src2; let Inst{15-10} = shift{5-0}; let Inst{9-5} = src1; let Inst{4-0} = dst; let DecoderMethod = "DecodeThreeAddrSRegInstruction"; } // Aliases for register+register logical instructions. class LogicalRegAlias<string asm, Instruction inst, RegisterClass regtype> : InstAlias<asm#" $dst, $src1, $src2", (inst regtype:$dst, regtype:$src1, regtype:$src2, 0)>; multiclass LogicalImm<bits<2> opc, string mnemonic, SDNode OpNode, string Alias> { let AddedComplexity = 6, isReMaterializable = 1, isAsCheapAsAMove = 1 in def Wri : BaseLogicalImm<opc, GPR32sp, GPR32, logical_imm32, mnemonic, [(set GPR32sp:$Rd, (OpNode GPR32:$Rn, logical_imm32:$imm))]> { let Inst{31} = 0; let Inst{22} = 0; // 64-bit version has an additional bit of immediate. } let AddedComplexity = 6, isReMaterializable = 1, isAsCheapAsAMove = 1 in def Xri : BaseLogicalImm<opc, GPR64sp, GPR64, logical_imm64, mnemonic, [(set GPR64sp:$Rd, (OpNode GPR64:$Rn, logical_imm64:$imm))]> { let Inst{31} = 1; } def : InstAlias<Alias # " $Rd, $Rn, $imm", (!cast<Instruction>(NAME # "Wri") GPR32sp:$Rd, GPR32:$Rn, logical_imm32_not:$imm), 0>; def : InstAlias<Alias # " $Rd, $Rn, $imm", (!cast<Instruction>(NAME # "Xri") GPR64sp:$Rd, GPR64:$Rn, logical_imm64_not:$imm), 0>; } multiclass LogicalImmS<bits<2> opc, string mnemonic, SDNode OpNode, string Alias> { let isCompare = 1, Defs = [NZCV] in { def Wri : BaseLogicalImm<opc, GPR32, GPR32, logical_imm32, mnemonic, [(set GPR32:$Rd, (OpNode GPR32:$Rn, logical_imm32:$imm))]> { let Inst{31} = 0; let Inst{22} = 0; // 64-bit version has an additional bit of immediate. } def Xri : BaseLogicalImm<opc, GPR64, GPR64, logical_imm64, mnemonic, [(set GPR64:$Rd, (OpNode GPR64:$Rn, logical_imm64:$imm))]> { let Inst{31} = 1; } } // end Defs = [NZCV] def : InstAlias<Alias # " $Rd, $Rn, $imm", (!cast<Instruction>(NAME # "Wri") GPR32:$Rd, GPR32:$Rn, logical_imm32_not:$imm), 0>; def : InstAlias<Alias # " $Rd, $Rn, $imm", (!cast<Instruction>(NAME # "Xri") GPR64:$Rd, GPR64:$Rn, logical_imm64_not:$imm), 0>; } class BaseLogicalRegPseudo<RegisterClass regtype, SDPatternOperator OpNode> : Pseudo<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm), [(set regtype:$Rd, (OpNode regtype:$Rn, regtype:$Rm))]>, Sched<[WriteI, ReadI, ReadI]>; // Split from LogicalImm as not all instructions have both. multiclass LogicalReg<bits<2> opc, bit N, string mnemonic, SDPatternOperator OpNode> { let isReMaterializable = 1, isAsCheapAsAMove = 1 in { def Wrr : BaseLogicalRegPseudo<GPR32, OpNode>; def Xrr : BaseLogicalRegPseudo<GPR64, OpNode>; } def Wrs : BaseLogicalSReg<opc, N, GPR32, logical_shifted_reg32, mnemonic, [(set GPR32:$Rd, (OpNode GPR32:$Rn, logical_shifted_reg32:$Rm))]> { let Inst{31} = 0; } def Xrs : BaseLogicalSReg<opc, N, GPR64, logical_shifted_reg64, mnemonic, [(set GPR64:$Rd, (OpNode GPR64:$Rn, logical_shifted_reg64:$Rm))]> { let Inst{31} = 1; } def : LogicalRegAlias<mnemonic, !cast<Instruction>(NAME#"Wrs"), GPR32>; def : LogicalRegAlias<mnemonic, !cast<Instruction>(NAME#"Xrs"), GPR64>; } // Split from LogicalReg to allow setting NZCV Defs multiclass LogicalRegS<bits<2> opc, bit N, string mnemonic, SDPatternOperator OpNode = null_frag> { let Defs = [NZCV], mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { def Wrr : BaseLogicalRegPseudo<GPR32, OpNode>; def Xrr : BaseLogicalRegPseudo<GPR64, OpNode>; def Wrs : BaseLogicalSReg<opc, N, GPR32, logical_shifted_reg32, mnemonic, [(set GPR32:$Rd, (OpNode GPR32:$Rn, logical_shifted_reg32:$Rm))]> { let Inst{31} = 0; } def Xrs : BaseLogicalSReg<opc, N, GPR64, logical_shifted_reg64, mnemonic, [(set GPR64:$Rd, (OpNode GPR64:$Rn, logical_shifted_reg64:$Rm))]> { let Inst{31} = 1; } } // Defs = [NZCV] def : LogicalRegAlias<mnemonic, !cast<Instruction>(NAME#"Wrs"), GPR32>; def : LogicalRegAlias<mnemonic, !cast<Instruction>(NAME#"Xrs"), GPR64>; } //--- // Conditionally set flags //--- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseCondSetFlagsImm<bit op, RegisterClass regtype, string asm> : I<(outs), (ins regtype:$Rn, imm0_31:$imm, imm0_15:$nzcv, ccode:$cond), asm, "\t$Rn, $imm, $nzcv, $cond", "", []>, Sched<[WriteI, ReadI]> { let Uses = [NZCV]; let Defs = [NZCV]; bits<5> Rn; bits<5> imm; bits<4> nzcv; bits<4> cond; let Inst{30} = op; let Inst{29-21} = 0b111010010; let Inst{20-16} = imm; let Inst{15-12} = cond; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4} = 0b0; let Inst{3-0} = nzcv; } multiclass CondSetFlagsImm<bit op, string asm> { def Wi : BaseCondSetFlagsImm<op, GPR32, asm> { let Inst{31} = 0; } def Xi : BaseCondSetFlagsImm<op, GPR64, asm> { let Inst{31} = 1; } } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseCondSetFlagsReg<bit op, RegisterClass regtype, string asm> : I<(outs), (ins regtype:$Rn, regtype:$Rm, imm0_15:$nzcv, ccode:$cond), asm, "\t$Rn, $Rm, $nzcv, $cond", "", []>, Sched<[WriteI, ReadI, ReadI]> { let Uses = [NZCV]; let Defs = [NZCV]; bits<5> Rn; bits<5> Rm; bits<4> nzcv; bits<4> cond; let Inst{30} = op; let Inst{29-21} = 0b111010010; let Inst{20-16} = Rm; let Inst{15-12} = cond; let Inst{11-10} = 0b00; let Inst{9-5} = Rn; let Inst{4} = 0b0; let Inst{3-0} = nzcv; } multiclass CondSetFlagsReg<bit op, string asm> { def Wr : BaseCondSetFlagsReg<op, GPR32, asm> { let Inst{31} = 0; } def Xr : BaseCondSetFlagsReg<op, GPR64, asm> { let Inst{31} = 1; } } //--- // Conditional select //--- class BaseCondSelect<bit op, bits<2> op2, RegisterClass regtype, string asm> : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, ccode:$cond), asm, "\t$Rd, $Rn, $Rm, $cond", "", [(set regtype:$Rd, (AArch64csel regtype:$Rn, regtype:$Rm, (i32 imm:$cond), NZCV))]>, Sched<[WriteI, ReadI, ReadI]> { let Uses = [NZCV]; bits<5> Rd; bits<5> Rn; bits<5> Rm; bits<4> cond; let Inst{30} = op; let Inst{29-21} = 0b011010100; let Inst{20-16} = Rm; let Inst{15-12} = cond; let Inst{11-10} = op2; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass CondSelect<bit op, bits<2> op2, string asm> { def Wr : BaseCondSelect<op, op2, GPR32, asm> { let Inst{31} = 0; } def Xr : BaseCondSelect<op, op2, GPR64, asm> { let Inst{31} = 1; } } class BaseCondSelectOp<bit op, bits<2> op2, RegisterClass regtype, string asm, PatFrag frag> : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, ccode:$cond), asm, "\t$Rd, $Rn, $Rm, $cond", "", [(set regtype:$Rd, (AArch64csel regtype:$Rn, (frag regtype:$Rm), (i32 imm:$cond), NZCV))]>, Sched<[WriteI, ReadI, ReadI]> { let Uses = [NZCV]; bits<5> Rd; bits<5> Rn; bits<5> Rm; bits<4> cond; let Inst{30} = op; let Inst{29-21} = 0b011010100; let Inst{20-16} = Rm; let Inst{15-12} = cond; let Inst{11-10} = op2; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } def inv_cond_XFORM : SDNodeXForm<imm, [{ AArch64CC::CondCode CC = static_cast<AArch64CC::CondCode>(N->getZExtValue()); return CurDAG->getTargetConstant(AArch64CC::getInvertedCondCode(CC), MVT::i32); }]>; multiclass CondSelectOp<bit op, bits<2> op2, string asm, PatFrag frag> { def Wr : BaseCondSelectOp<op, op2, GPR32, asm, frag> { let Inst{31} = 0; } def Xr : BaseCondSelectOp<op, op2, GPR64, asm, frag> { let Inst{31} = 1; } def : Pat<(AArch64csel (frag GPR32:$Rm), GPR32:$Rn, (i32 imm:$cond), NZCV), (!cast<Instruction>(NAME # Wr) GPR32:$Rn, GPR32:$Rm, (inv_cond_XFORM imm:$cond))>; def : Pat<(AArch64csel (frag GPR64:$Rm), GPR64:$Rn, (i32 imm:$cond), NZCV), (!cast<Instruction>(NAME # Xr) GPR64:$Rn, GPR64:$Rm, (inv_cond_XFORM imm:$cond))>; } //--- // Special Mask Value //--- def maski8_or_more : Operand<i32>, ImmLeaf<i32, [{ return (Imm & 0xff) == 0xff; }]> { } def maski16_or_more : Operand<i32>, ImmLeaf<i32, [{ return (Imm & 0xffff) == 0xffff; }]> { } //--- // Load/store //--- // (unsigned immediate) // Indexed for 8-bit registers. offset is in range [0,4095]. def am_indexed8 : ComplexPattern<i64, 2, "SelectAddrModeIndexed8", []>; def am_indexed16 : ComplexPattern<i64, 2, "SelectAddrModeIndexed16", []>; def am_indexed32 : ComplexPattern<i64, 2, "SelectAddrModeIndexed32", []>; def am_indexed64 : ComplexPattern<i64, 2, "SelectAddrModeIndexed64", []>; def am_indexed128 : ComplexPattern<i64, 2, "SelectAddrModeIndexed128", []>; class UImm12OffsetOperand<int Scale> : AsmOperandClass { let Name = "UImm12Offset" # Scale; let RenderMethod = "addUImm12OffsetOperands<" # Scale # ">"; let PredicateMethod = "isUImm12Offset<" # Scale # ">"; let DiagnosticType = "InvalidMemoryIndexed" # Scale; } def UImm12OffsetScale1Operand : UImm12OffsetOperand<1>; def UImm12OffsetScale2Operand : UImm12OffsetOperand<2>; def UImm12OffsetScale4Operand : UImm12OffsetOperand<4>; def UImm12OffsetScale8Operand : UImm12OffsetOperand<8>; def UImm12OffsetScale16Operand : UImm12OffsetOperand<16>; class uimm12_scaled<int Scale> : Operand<i64> { let ParserMatchClass = !cast<AsmOperandClass>("UImm12OffsetScale" # Scale # "Operand"); let EncoderMethod = "getLdStUImm12OpValue<AArch64::fixup_aarch64_ldst_imm12_scale" # Scale # ">"; let PrintMethod = "printUImm12Offset<" # Scale # ">"; } def uimm12s1 : uimm12_scaled<1>; def uimm12s2 : uimm12_scaled<2>; def uimm12s4 : uimm12_scaled<4>; def uimm12s8 : uimm12_scaled<8>; def uimm12s16 : uimm12_scaled<16>; class BaseLoadStoreUI<bits<2> sz, bit V, bits<2> opc, dag oops, dag iops, string asm, list<dag> pattern> : I<oops, iops, asm, "\t$Rt, [$Rn, $offset]", "", pattern> { bits<5> Rt; bits<5> Rn; bits<12> offset; let Inst{31-30} = sz; let Inst{29-27} = 0b111; let Inst{26} = V; let Inst{25-24} = 0b01; let Inst{23-22} = opc; let Inst{21-10} = offset; let Inst{9-5} = Rn; let Inst{4-0} = Rt; let DecoderMethod = "DecodeUnsignedLdStInstruction"; } multiclass LoadUI<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, Operand indextype, string asm, list<dag> pattern> { let AddedComplexity = 10, mayLoad = 1, mayStore = 0, hasSideEffects = 0 in def ui : BaseLoadStoreUI<sz, V, opc, (outs regtype:$Rt), (ins GPR64sp:$Rn, indextype:$offset), asm, pattern>, Sched<[WriteLD]>; def : InstAlias<asm # " $Rt, [$Rn]", (!cast<Instruction>(NAME # "ui") regtype:$Rt, GPR64sp:$Rn, 0)>; } multiclass StoreUI<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, Operand indextype, string asm, list<dag> pattern> { let AddedComplexity = 10, mayLoad = 0, mayStore = 1, hasSideEffects = 0 in def ui : BaseLoadStoreUI<sz, V, opc, (outs), (ins regtype:$Rt, GPR64sp:$Rn, indextype:$offset), asm, pattern>, Sched<[WriteST]>; def : InstAlias<asm # " $Rt, [$Rn]", (!cast<Instruction>(NAME # "ui") regtype:$Rt, GPR64sp:$Rn, 0)>; } def PrefetchOperand : AsmOperandClass { let Name = "Prefetch"; let ParserMethod = "tryParsePrefetch"; } def prfop : Operand<i32> { let PrintMethod = "printPrefetchOp"; let ParserMatchClass = PrefetchOperand; } let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in class PrefetchUI<bits<2> sz, bit V, bits<2> opc, string asm, list<dag> pat> : BaseLoadStoreUI<sz, V, opc, (outs), (ins prfop:$Rt, GPR64sp:$Rn, uimm12s8:$offset), asm, pat>, Sched<[WriteLD]>; //--- // Load literal //--- // Load literal address: 19-bit immediate. The low two bits of the target // offset are implied zero and so are not part of the immediate. def am_ldrlit : Operand<OtherVT> { let EncoderMethod = "getLoadLiteralOpValue"; let DecoderMethod = "DecodePCRelLabel19"; let PrintMethod = "printAlignedLabel"; let ParserMatchClass = PCRelLabel19Operand; } let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in class LoadLiteral<bits<2> opc, bit V, RegisterClass regtype, string asm> : I<(outs regtype:$Rt), (ins am_ldrlit:$label), asm, "\t$Rt, $label", "", []>, Sched<[WriteLD]> { bits<5> Rt; bits<19> label; let Inst{31-30} = opc; let Inst{29-27} = 0b011; let Inst{26} = V; let Inst{25-24} = 0b00; let Inst{23-5} = label; let Inst{4-0} = Rt; } let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in class PrefetchLiteral<bits<2> opc, bit V, string asm, list<dag> pat> : I<(outs), (ins prfop:$Rt, am_ldrlit:$label), asm, "\t$Rt, $label", "", pat>, Sched<[WriteLD]> { bits<5> Rt; bits<19> label; let Inst{31-30} = opc; let Inst{29-27} = 0b011; let Inst{26} = V; let Inst{25-24} = 0b00; let Inst{23-5} = label; let Inst{4-0} = Rt; } //--- // Load/store register offset //--- def ro_Xindexed8 : ComplexPattern<i64, 4, "SelectAddrModeXRO<8>", []>; def ro_Xindexed16 : ComplexPattern<i64, 4, "SelectAddrModeXRO<16>", []>; def ro_Xindexed32 : ComplexPattern<i64, 4, "SelectAddrModeXRO<32>", []>; def ro_Xindexed64 : ComplexPattern<i64, 4, "SelectAddrModeXRO<64>", []>; def ro_Xindexed128 : ComplexPattern<i64, 4, "SelectAddrModeXRO<128>", []>; def ro_Windexed8 : ComplexPattern<i64, 4, "SelectAddrModeWRO<8>", []>; def ro_Windexed16 : ComplexPattern<i64, 4, "SelectAddrModeWRO<16>", []>; def ro_Windexed32 : ComplexPattern<i64, 4, "SelectAddrModeWRO<32>", []>; def ro_Windexed64 : ComplexPattern<i64, 4, "SelectAddrModeWRO<64>", []>; def ro_Windexed128 : ComplexPattern<i64, 4, "SelectAddrModeWRO<128>", []>; class MemExtendOperand<string Reg, int Width> : AsmOperandClass { let Name = "Mem" # Reg # "Extend" # Width; let PredicateMethod = "isMem" # Reg # "Extend<" # Width # ">"; let RenderMethod = "addMemExtendOperands"; let DiagnosticType = "InvalidMemory" # Reg # "Extend" # Width; } def MemWExtend8Operand : MemExtendOperand<"W", 8> { // The address "[x0, x1, lsl #0]" actually maps to the variant which performs // the trivial shift. let RenderMethod = "addMemExtend8Operands"; } def MemWExtend16Operand : MemExtendOperand<"W", 16>; def MemWExtend32Operand : MemExtendOperand<"W", 32>; def MemWExtend64Operand : MemExtendOperand<"W", 64>; def MemWExtend128Operand : MemExtendOperand<"W", 128>; def MemXExtend8Operand : MemExtendOperand<"X", 8> { // The address "[x0, x1, lsl #0]" actually maps to the variant which performs // the trivial shift. let RenderMethod = "addMemExtend8Operands"; } def MemXExtend16Operand : MemExtendOperand<"X", 16>; def MemXExtend32Operand : MemExtendOperand<"X", 32>; def MemXExtend64Operand : MemExtendOperand<"X", 64>; def MemXExtend128Operand : MemExtendOperand<"X", 128>; class ro_extend<AsmOperandClass ParserClass, string Reg, int Width> : Operand<i32> { let ParserMatchClass = ParserClass; let PrintMethod = "printMemExtend<'" # Reg # "', " # Width # ">"; let DecoderMethod = "DecodeMemExtend"; let EncoderMethod = "getMemExtendOpValue"; let MIOperandInfo = (ops i32imm:$signed, i32imm:$doshift); } def ro_Wextend8 : ro_extend<MemWExtend8Operand, "w", 8>; def ro_Wextend16 : ro_extend<MemWExtend16Operand, "w", 16>; def ro_Wextend32 : ro_extend<MemWExtend32Operand, "w", 32>; def ro_Wextend64 : ro_extend<MemWExtend64Operand, "w", 64>; def ro_Wextend128 : ro_extend<MemWExtend128Operand, "w", 128>; def ro_Xextend8 : ro_extend<MemXExtend8Operand, "x", 8>; def ro_Xextend16 : ro_extend<MemXExtend16Operand, "x", 16>; def ro_Xextend32 : ro_extend<MemXExtend32Operand, "x", 32>; def ro_Xextend64 : ro_extend<MemXExtend64Operand, "x", 64>; def ro_Xextend128 : ro_extend<MemXExtend128Operand, "x", 128>; class ROAddrMode<ComplexPattern windex, ComplexPattern xindex, Operand wextend, Operand xextend> { // CodeGen-level pattern covering the entire addressing mode. ComplexPattern Wpat = windex; ComplexPattern Xpat = xindex; // Asm-level Operand covering the valid "uxtw #3" style syntax. Operand Wext = wextend; Operand Xext = xextend; } def ro8 : ROAddrMode<ro_Windexed8, ro_Xindexed8, ro_Wextend8, ro_Xextend8>; def ro16 : ROAddrMode<ro_Windexed16, ro_Xindexed16, ro_Wextend16, ro_Xextend16>; def ro32 : ROAddrMode<ro_Windexed32, ro_Xindexed32, ro_Wextend32, ro_Xextend32>; def ro64 : ROAddrMode<ro_Windexed64, ro_Xindexed64, ro_Wextend64, ro_Xextend64>; def ro128 : ROAddrMode<ro_Windexed128, ro_Xindexed128, ro_Wextend128, ro_Xextend128>; class LoadStore8RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, string asm, dag ins, dag outs, list<dag> pat> : I<ins, outs, asm, "\t$Rt, [$Rn, $Rm, $extend]", "", pat> { bits<5> Rt; bits<5> Rn; bits<5> Rm; bits<2> extend; let Inst{31-30} = sz; let Inst{29-27} = 0b111; let Inst{26} = V; let Inst{25-24} = 0b00; let Inst{23-22} = opc; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15} = extend{1}; // sign extend Rm? let Inst{14} = 1; let Inst{12} = extend{0}; // do shift? let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rt; } class ROInstAlias<string asm, RegisterClass regtype, Instruction INST> : InstAlias<asm # " $Rt, [$Rn, $Rm]", (INST regtype:$Rt, GPR64sp:$Rn, GPR64:$Rm, 0, 0)>; multiclass Load8RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, string asm, ValueType Ty, SDPatternOperator loadop> { let AddedComplexity = 10 in def roW : LoadStore8RO<sz, V, opc, regtype, asm, (outs regtype:$Rt), (ins GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend), [(set (Ty regtype:$Rt), (loadop (ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend)))]>, Sched<[WriteLDIdx, ReadAdrBase]> { let Inst{13} = 0b0; } let AddedComplexity = 10 in def roX : LoadStore8RO<sz, V, opc, regtype, asm, (outs regtype:$Rt), (ins GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend), [(set (Ty regtype:$Rt), (loadop (ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend)))]>, Sched<[WriteLDIdx, ReadAdrBase]> { let Inst{13} = 0b1; } def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>; } multiclass Store8RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, string asm, ValueType Ty, SDPatternOperator storeop> { let AddedComplexity = 10 in def roW : LoadStore8RO<sz, V, opc, regtype, asm, (outs), (ins regtype:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend), [(storeop (Ty regtype:$Rt), (ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend))]>, Sched<[WriteSTIdx, ReadAdrBase]> { let Inst{13} = 0b0; } let AddedComplexity = 10 in def roX : LoadStore8RO<sz, V, opc, regtype, asm, (outs), (ins regtype:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend), [(storeop (Ty regtype:$Rt), (ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend))]>, Sched<[WriteSTIdx, ReadAdrBase]> { let Inst{13} = 0b1; } def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>; } class LoadStore16RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, string asm, dag ins, dag outs, list<dag> pat> : I<ins, outs, asm, "\t$Rt, [$Rn, $Rm, $extend]", "", pat> { bits<5> Rt; bits<5> Rn; bits<5> Rm; bits<2> extend; let Inst{31-30} = sz; let Inst{29-27} = 0b111; let Inst{26} = V; let Inst{25-24} = 0b00; let Inst{23-22} = opc; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15} = extend{1}; // sign extend Rm? let Inst{14} = 1; let Inst{12} = extend{0}; // do shift? let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rt; } multiclass Load16RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, string asm, ValueType Ty, SDPatternOperator loadop> { let AddedComplexity = 10 in def roW : LoadStore16RO<sz, V, opc, regtype, asm, (outs regtype:$Rt), (ins GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend), [(set (Ty regtype:$Rt), (loadop (ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend)))]>, Sched<[WriteLDIdx, ReadAdrBase]> { let Inst{13} = 0b0; } let AddedComplexity = 10 in def roX : LoadStore16RO<sz, V, opc, regtype, asm, (outs regtype:$Rt), (ins GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend), [(set (Ty regtype:$Rt), (loadop (ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend)))]>, Sched<[WriteLDIdx, ReadAdrBase]> { let Inst{13} = 0b1; } def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>; } multiclass Store16RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, string asm, ValueType Ty, SDPatternOperator storeop> { let AddedComplexity = 10 in def roW : LoadStore16RO<sz, V, opc, regtype, asm, (outs), (ins regtype:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend), [(storeop (Ty regtype:$Rt), (ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend))]>, Sched<[WriteSTIdx, ReadAdrBase]> { let Inst{13} = 0b0; } let AddedComplexity = 10 in def roX : LoadStore16RO<sz, V, opc, regtype, asm, (outs), (ins regtype:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend), [(storeop (Ty regtype:$Rt), (ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend))]>, Sched<[WriteSTIdx, ReadAdrBase]> { let Inst{13} = 0b1; } def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>; } class LoadStore32RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, string asm, dag ins, dag outs, list<dag> pat> : I<ins, outs, asm, "\t$Rt, [$Rn, $Rm, $extend]", "", pat> { bits<5> Rt; bits<5> Rn; bits<5> Rm; bits<2> extend; let Inst{31-30} = sz; let Inst{29-27} = 0b111; let Inst{26} = V; let Inst{25-24} = 0b00; let Inst{23-22} = opc; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15} = extend{1}; // sign extend Rm? let Inst{14} = 1; let Inst{12} = extend{0}; // do shift? let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rt; } multiclass Load32RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, string asm, ValueType Ty, SDPatternOperator loadop> { let AddedComplexity = 10 in def roW : LoadStore32RO<sz, V, opc, regtype, asm, (outs regtype:$Rt), (ins GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend), [(set (Ty regtype:$Rt), (loadop (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend)))]>, Sched<[WriteLDIdx, ReadAdrBase]> { let Inst{13} = 0b0; } let AddedComplexity = 10 in def roX : LoadStore32RO<sz, V, opc, regtype, asm, (outs regtype:$Rt), (ins GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend), [(set (Ty regtype:$Rt), (loadop (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend)))]>, Sched<[WriteLDIdx, ReadAdrBase]> { let Inst{13} = 0b1; } def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>; } multiclass Store32RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, string asm, ValueType Ty, SDPatternOperator storeop> { let AddedComplexity = 10 in def roW : LoadStore32RO<sz, V, opc, regtype, asm, (outs), (ins regtype:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend), [(storeop (Ty regtype:$Rt), (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend))]>, Sched<[WriteSTIdx, ReadAdrBase]> { let Inst{13} = 0b0; } let AddedComplexity = 10 in def roX : LoadStore32RO<sz, V, opc, regtype, asm, (outs), (ins regtype:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend), [(storeop (Ty regtype:$Rt), (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend))]>, Sched<[WriteSTIdx, ReadAdrBase]> { let Inst{13} = 0b1; } def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>; } class LoadStore64RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, string asm, dag ins, dag outs, list<dag> pat> : I<ins, outs, asm, "\t$Rt, [$Rn, $Rm, $extend]", "", pat> { bits<5> Rt; bits<5> Rn; bits<5> Rm; bits<2> extend; let Inst{31-30} = sz; let Inst{29-27} = 0b111; let Inst{26} = V; let Inst{25-24} = 0b00; let Inst{23-22} = opc; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15} = extend{1}; // sign extend Rm? let Inst{14} = 1; let Inst{12} = extend{0}; // do shift? let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rt; } multiclass Load64RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, string asm, ValueType Ty, SDPatternOperator loadop> { let AddedComplexity = 10, mayLoad = 1, mayStore = 0, hasSideEffects = 0 in def roW : LoadStore64RO<sz, V, opc, regtype, asm, (outs regtype:$Rt), (ins GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend), [(set (Ty regtype:$Rt), (loadop (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)))]>, Sched<[WriteLDIdx, ReadAdrBase]> { let Inst{13} = 0b0; } let AddedComplexity = 10, mayLoad = 1, mayStore = 0, hasSideEffects = 0 in def roX : LoadStore64RO<sz, V, opc, regtype, asm, (outs regtype:$Rt), (ins GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend), [(set (Ty regtype:$Rt), (loadop (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)))]>, Sched<[WriteLDIdx, ReadAdrBase]> { let Inst{13} = 0b1; } def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>; } multiclass Store64RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, string asm, ValueType Ty, SDPatternOperator storeop> { let AddedComplexity = 10, mayLoad = 0, mayStore = 1, hasSideEffects = 0 in def roW : LoadStore64RO<sz, V, opc, regtype, asm, (outs), (ins regtype:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend), [(storeop (Ty regtype:$Rt), (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend))]>, Sched<[WriteSTIdx, ReadAdrBase]> { let Inst{13} = 0b0; } let AddedComplexity = 10, mayLoad = 0, mayStore = 1, hasSideEffects = 0 in def roX : LoadStore64RO<sz, V, opc, regtype, asm, (outs), (ins regtype:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend), [(storeop (Ty regtype:$Rt), (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend))]>, Sched<[WriteSTIdx, ReadAdrBase]> { let Inst{13} = 0b1; } def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>; } class LoadStore128RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, string asm, dag ins, dag outs, list<dag> pat> : I<ins, outs, asm, "\t$Rt, [$Rn, $Rm, $extend]", "", pat> { bits<5> Rt; bits<5> Rn; bits<5> Rm; bits<2> extend; let Inst{31-30} = sz; let Inst{29-27} = 0b111; let Inst{26} = V; let Inst{25-24} = 0b00; let Inst{23-22} = opc; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15} = extend{1}; // sign extend Rm? let Inst{14} = 1; let Inst{12} = extend{0}; // do shift? let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rt; } multiclass Load128RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, string asm, ValueType Ty, SDPatternOperator loadop> { let AddedComplexity = 10, mayLoad = 1, mayStore = 0, hasSideEffects = 0 in def roW : LoadStore128RO<sz, V, opc, regtype, asm, (outs regtype:$Rt), (ins GPR64sp:$Rn, GPR32:$Rm, ro_Wextend128:$extend), [(set (Ty regtype:$Rt), (loadop (ro_Windexed128 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend128:$extend)))]>, Sched<[WriteLDIdx, ReadAdrBase]> { let Inst{13} = 0b0; } let AddedComplexity = 10, mayLoad = 1, mayStore = 0, hasSideEffects = 0 in def roX : LoadStore128RO<sz, V, opc, regtype, asm, (outs regtype:$Rt), (ins GPR64sp:$Rn, GPR64:$Rm, ro_Xextend128:$extend), [(set (Ty regtype:$Rt), (loadop (ro_Xindexed128 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend128:$extend)))]>, Sched<[WriteLDIdx, ReadAdrBase]> { let Inst{13} = 0b1; } def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>; } multiclass Store128RO<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, string asm, ValueType Ty, SDPatternOperator storeop> { let AddedComplexity = 10, mayLoad = 0, mayStore = 1, hasSideEffects = 0 in def roW : LoadStore128RO<sz, V, opc, regtype, asm, (outs), (ins regtype:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend128:$extend), [(storeop (Ty regtype:$Rt), (ro_Windexed128 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend128:$extend))]>, Sched<[WriteSTIdx, ReadAdrBase]> { let Inst{13} = 0b0; } let AddedComplexity = 10, mayLoad = 0, mayStore = 1, hasSideEffects = 0 in def roX : LoadStore128RO<sz, V, opc, regtype, asm, (outs), (ins regtype:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend128:$extend), [(storeop (Ty regtype:$Rt), (ro_Xindexed128 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend128:$extend))]>, Sched<[WriteSTIdx, ReadAdrBase]> { let Inst{13} = 0b1; } def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>; } let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in class BasePrefetchRO<bits<2> sz, bit V, bits<2> opc, dag outs, dag ins, string asm, list<dag> pat> : I<outs, ins, asm, "\t$Rt, [$Rn, $Rm, $extend]", "", pat>, Sched<[WriteLD]> { bits<5> Rt; bits<5> Rn; bits<5> Rm; bits<2> extend; let Inst{31-30} = sz; let Inst{29-27} = 0b111; let Inst{26} = V; let Inst{25-24} = 0b00; let Inst{23-22} = opc; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15} = extend{1}; // sign extend Rm? let Inst{14} = 1; let Inst{12} = extend{0}; // do shift? let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rt; } multiclass PrefetchRO<bits<2> sz, bit V, bits<2> opc, string asm> { def roW : BasePrefetchRO<sz, V, opc, (outs), (ins prfop:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend), asm, [(AArch64Prefetch imm:$Rt, (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend))]> { let Inst{13} = 0b0; } def roX : BasePrefetchRO<sz, V, opc, (outs), (ins prfop:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend), asm, [(AArch64Prefetch imm:$Rt, (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend))]> { let Inst{13} = 0b1; } def : InstAlias<"prfm $Rt, [$Rn, $Rm]", (!cast<Instruction>(NAME # "roX") prfop:$Rt, GPR64sp:$Rn, GPR64:$Rm, 0, 0)>; } //--- // Load/store unscaled immediate //--- def am_unscaled8 : ComplexPattern<i64, 2, "SelectAddrModeUnscaled8", []>; def am_unscaled16 : ComplexPattern<i64, 2, "SelectAddrModeUnscaled16", []>; def am_unscaled32 : ComplexPattern<i64, 2, "SelectAddrModeUnscaled32", []>; def am_unscaled64 : ComplexPattern<i64, 2, "SelectAddrModeUnscaled64", []>; def am_unscaled128 :ComplexPattern<i64, 2, "SelectAddrModeUnscaled128", []>; class BaseLoadStoreUnscale<bits<2> sz, bit V, bits<2> opc, dag oops, dag iops, string asm, list<dag> pattern> : I<oops, iops, asm, "\t$Rt, [$Rn, $offset]", "", pattern> { bits<5> Rt; bits<5> Rn; bits<9> offset; let Inst{31-30} = sz; let Inst{29-27} = 0b111; let Inst{26} = V; let Inst{25-24} = 0b00; let Inst{23-22} = opc; let Inst{21} = 0; let Inst{20-12} = offset; let Inst{11-10} = 0b00; let Inst{9-5} = Rn; let Inst{4-0} = Rt; let DecoderMethod = "DecodeSignedLdStInstruction"; } multiclass LoadUnscaled<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, string asm, list<dag> pattern> { let AddedComplexity = 1 in // try this before LoadUI def i : BaseLoadStoreUnscale<sz, V, opc, (outs regtype:$Rt), (ins GPR64sp:$Rn, simm9:$offset), asm, pattern>, Sched<[WriteLD]>; def : InstAlias<asm # " $Rt, [$Rn]", (!cast<Instruction>(NAME # "i") regtype:$Rt, GPR64sp:$Rn, 0)>; } multiclass StoreUnscaled<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, string asm, list<dag> pattern> { let AddedComplexity = 1 in // try this before StoreUI def i : BaseLoadStoreUnscale<sz, V, opc, (outs), (ins regtype:$Rt, GPR64sp:$Rn, simm9:$offset), asm, pattern>, Sched<[WriteST]>; def : InstAlias<asm # " $Rt, [$Rn]", (!cast<Instruction>(NAME # "i") regtype:$Rt, GPR64sp:$Rn, 0)>; } multiclass PrefetchUnscaled<bits<2> sz, bit V, bits<2> opc, string asm, list<dag> pat> { let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in def i : BaseLoadStoreUnscale<sz, V, opc, (outs), (ins prfop:$Rt, GPR64sp:$Rn, simm9:$offset), asm, pat>, Sched<[WriteLD]>; def : InstAlias<asm # " $Rt, [$Rn]", (!cast<Instruction>(NAME # "i") prfop:$Rt, GPR64sp:$Rn, 0)>; } //--- // Load/store unscaled immediate, unprivileged //--- class BaseLoadStoreUnprivileged<bits<2> sz, bit V, bits<2> opc, dag oops, dag iops, string asm> : I<oops, iops, asm, "\t$Rt, [$Rn, $offset]", "", []> { bits<5> Rt; bits<5> Rn; bits<9> offset; let Inst{31-30} = sz; let Inst{29-27} = 0b111; let Inst{26} = V; let Inst{25-24} = 0b00; let Inst{23-22} = opc; let Inst{21} = 0; let Inst{20-12} = offset; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rt; let DecoderMethod = "DecodeSignedLdStInstruction"; } multiclass LoadUnprivileged<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, string asm> { let mayStore = 0, mayLoad = 1, hasSideEffects = 0 in def i : BaseLoadStoreUnprivileged<sz, V, opc, (outs regtype:$Rt), (ins GPR64sp:$Rn, simm9:$offset), asm>, Sched<[WriteLD]>; def : InstAlias<asm # " $Rt, [$Rn]", (!cast<Instruction>(NAME # "i") regtype:$Rt, GPR64sp:$Rn, 0)>; } multiclass StoreUnprivileged<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, string asm> { let mayStore = 1, mayLoad = 0, hasSideEffects = 0 in def i : BaseLoadStoreUnprivileged<sz, V, opc, (outs), (ins regtype:$Rt, GPR64sp:$Rn, simm9:$offset), asm>, Sched<[WriteST]>; def : InstAlias<asm # " $Rt, [$Rn]", (!cast<Instruction>(NAME # "i") regtype:$Rt, GPR64sp:$Rn, 0)>; } //--- // Load/store pre-indexed //--- class BaseLoadStorePreIdx<bits<2> sz, bit V, bits<2> opc, dag oops, dag iops, string asm, string cstr, list<dag> pat> : I<oops, iops, asm, "\t$Rt, [$Rn, $offset]!", cstr, pat> { bits<5> Rt; bits<5> Rn; bits<9> offset; let Inst{31-30} = sz; let Inst{29-27} = 0b111; let Inst{26} = V; let Inst{25-24} = 0; let Inst{23-22} = opc; let Inst{21} = 0; let Inst{20-12} = offset; let Inst{11-10} = 0b11; let Inst{9-5} = Rn; let Inst{4-0} = Rt; let DecoderMethod = "DecodeSignedLdStInstruction"; } let hasSideEffects = 0 in { let mayStore = 0, mayLoad = 1 in class LoadPreIdx<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, string asm> : BaseLoadStorePreIdx<sz, V, opc, (outs GPR64sp:$wback, regtype:$Rt), (ins GPR64sp:$Rn, simm9:$offset), asm, "$Rn = $wback,@earlyclobber $wback", []>, Sched<[WriteLD, WriteAdr]>; let mayStore = 1, mayLoad = 0 in class StorePreIdx<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, string asm, SDPatternOperator storeop, ValueType Ty> : BaseLoadStorePreIdx<sz, V, opc, (outs GPR64sp:$wback), (ins regtype:$Rt, GPR64sp:$Rn, simm9:$offset), asm, "$Rn = $wback,@earlyclobber $wback", [(set GPR64sp:$wback, (storeop (Ty regtype:$Rt), GPR64sp:$Rn, simm9:$offset))]>, Sched<[WriteAdr, WriteST]>; } // hasSideEffects = 0 //--- // Load/store post-indexed //--- class BaseLoadStorePostIdx<bits<2> sz, bit V, bits<2> opc, dag oops, dag iops, string asm, string cstr, list<dag> pat> : I<oops, iops, asm, "\t$Rt, [$Rn], $offset", cstr, pat> { bits<5> Rt; bits<5> Rn; bits<9> offset; let Inst{31-30} = sz; let Inst{29-27} = 0b111; let Inst{26} = V; let Inst{25-24} = 0b00; let Inst{23-22} = opc; let Inst{21} = 0b0; let Inst{20-12} = offset; let Inst{11-10} = 0b01; let Inst{9-5} = Rn; let Inst{4-0} = Rt; let DecoderMethod = "DecodeSignedLdStInstruction"; } let hasSideEffects = 0 in { let mayStore = 0, mayLoad = 1 in class LoadPostIdx<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, string asm> : BaseLoadStorePostIdx<sz, V, opc, (outs GPR64sp:$wback, regtype:$Rt), (ins GPR64sp:$Rn, simm9:$offset), asm, "$Rn = $wback,@earlyclobber $wback", []>, Sched<[WriteLD, WriteI]>; let mayStore = 1, mayLoad = 0 in class StorePostIdx<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype, string asm, SDPatternOperator storeop, ValueType Ty> : BaseLoadStorePostIdx<sz, V, opc, (outs GPR64sp:$wback), (ins regtype:$Rt, GPR64sp:$Rn, simm9:$offset), asm, "$Rn = $wback,@earlyclobber $wback", [(set GPR64sp:$wback, (storeop (Ty regtype:$Rt), GPR64sp:$Rn, simm9:$offset))]>, Sched<[WriteAdr, WriteST, ReadAdrBase]>; } // hasSideEffects = 0 //--- // Load/store pair //--- // (indexed, offset) class BaseLoadStorePairOffset<bits<2> opc, bit V, bit L, dag oops, dag iops, string asm> : I<oops, iops, asm, "\t$Rt, $Rt2, [$Rn, $offset]", "", []> { bits<5> Rt; bits<5> Rt2; bits<5> Rn; bits<7> offset; let Inst{31-30} = opc; let Inst{29-27} = 0b101; let Inst{26} = V; let Inst{25-23} = 0b010; let Inst{22} = L; let Inst{21-15} = offset; let Inst{14-10} = Rt2; let Inst{9-5} = Rn; let Inst{4-0} = Rt; let DecoderMethod = "DecodePairLdStInstruction"; } multiclass LoadPairOffset<bits<2> opc, bit V, RegisterClass regtype, Operand indextype, string asm> { let hasSideEffects = 0, mayStore = 0, mayLoad = 1 in def i : BaseLoadStorePairOffset<opc, V, 1, (outs regtype:$Rt, regtype:$Rt2), (ins GPR64sp:$Rn, indextype:$offset), asm>, Sched<[WriteLD, WriteLDHi]>; def : InstAlias<asm # " $Rt, $Rt2, [$Rn]", (!cast<Instruction>(NAME # "i") regtype:$Rt, regtype:$Rt2, GPR64sp:$Rn, 0)>; } multiclass StorePairOffset<bits<2> opc, bit V, RegisterClass regtype, Operand indextype, string asm> { let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in def i : BaseLoadStorePairOffset<opc, V, 0, (outs), (ins regtype:$Rt, regtype:$Rt2, GPR64sp:$Rn, indextype:$offset), asm>, Sched<[WriteSTP]>; def : InstAlias<asm # " $Rt, $Rt2, [$Rn]", (!cast<Instruction>(NAME # "i") regtype:$Rt, regtype:$Rt2, GPR64sp:$Rn, 0)>; } // (pre-indexed) class BaseLoadStorePairPreIdx<bits<2> opc, bit V, bit L, dag oops, dag iops, string asm> : I<oops, iops, asm, "\t$Rt, $Rt2, [$Rn, $offset]!", "$Rn = $wback,@earlyclobber $wback", []> { bits<5> Rt; bits<5> Rt2; bits<5> Rn; bits<7> offset; let Inst{31-30} = opc; let Inst{29-27} = 0b101; let Inst{26} = V; let Inst{25-23} = 0b011; let Inst{22} = L; let Inst{21-15} = offset; let Inst{14-10} = Rt2; let Inst{9-5} = Rn; let Inst{4-0} = Rt; let DecoderMethod = "DecodePairLdStInstruction"; } let hasSideEffects = 0 in { let mayStore = 0, mayLoad = 1 in class LoadPairPreIdx<bits<2> opc, bit V, RegisterClass regtype, Operand indextype, string asm> : BaseLoadStorePairPreIdx<opc, V, 1, (outs GPR64sp:$wback, regtype:$Rt, regtype:$Rt2), (ins GPR64sp:$Rn, indextype:$offset), asm>, Sched<[WriteLD, WriteLDHi, WriteAdr]>; let mayStore = 1, mayLoad = 0 in class StorePairPreIdx<bits<2> opc, bit V, RegisterClass regtype, Operand indextype, string asm> : BaseLoadStorePairPreIdx<opc, V, 0, (outs GPR64sp:$wback), (ins regtype:$Rt, regtype:$Rt2, GPR64sp:$Rn, indextype:$offset), asm>, Sched<[WriteAdr, WriteSTP]>; } // hasSideEffects = 0 // (post-indexed) class BaseLoadStorePairPostIdx<bits<2> opc, bit V, bit L, dag oops, dag iops, string asm> : I<oops, iops, asm, "\t$Rt, $Rt2, [$Rn], $offset", "$Rn = $wback,@earlyclobber $wback", []> { bits<5> Rt; bits<5> Rt2; bits<5> Rn; bits<7> offset; let Inst{31-30} = opc; let Inst{29-27} = 0b101; let Inst{26} = V; let Inst{25-23} = 0b001; let Inst{22} = L; let Inst{21-15} = offset; let Inst{14-10} = Rt2; let Inst{9-5} = Rn; let Inst{4-0} = Rt; let DecoderMethod = "DecodePairLdStInstruction"; } let hasSideEffects = 0 in { let mayStore = 0, mayLoad = 1 in class LoadPairPostIdx<bits<2> opc, bit V, RegisterClass regtype, Operand idxtype, string asm> : BaseLoadStorePairPostIdx<opc, V, 1, (outs GPR64sp:$wback, regtype:$Rt, regtype:$Rt2), (ins GPR64sp:$Rn, idxtype:$offset), asm>, Sched<[WriteLD, WriteLDHi, WriteAdr]>; let mayStore = 1, mayLoad = 0 in class StorePairPostIdx<bits<2> opc, bit V, RegisterClass regtype, Operand idxtype, string asm> : BaseLoadStorePairPostIdx<opc, V, 0, (outs), (ins GPR64sp:$wback, regtype:$Rt, regtype:$Rt2, GPR64sp:$Rn, idxtype:$offset), asm>, Sched<[WriteAdr, WriteSTP]>; } // hasSideEffects = 0 // (no-allocate) class BaseLoadStorePairNoAlloc<bits<2> opc, bit V, bit L, dag oops, dag iops, string asm> : I<oops, iops, asm, "\t$Rt, $Rt2, [$Rn, $offset]", "", []> { bits<5> Rt; bits<5> Rt2; bits<5> Rn; bits<7> offset; let Inst{31-30} = opc; let Inst{29-27} = 0b101; let Inst{26} = V; let Inst{25-23} = 0b000; let Inst{22} = L; let Inst{21-15} = offset; let Inst{14-10} = Rt2; let Inst{9-5} = Rn; let Inst{4-0} = Rt; let DecoderMethod = "DecodePairLdStInstruction"; } multiclass LoadPairNoAlloc<bits<2> opc, bit V, RegisterClass regtype, Operand indextype, string asm> { let hasSideEffects = 0, mayStore = 0, mayLoad = 1 in def i : BaseLoadStorePairNoAlloc<opc, V, 1, (outs regtype:$Rt, regtype:$Rt2), (ins GPR64sp:$Rn, indextype:$offset), asm>, Sched<[WriteLD, WriteLDHi]>; def : InstAlias<asm # "\t$Rt, $Rt2, [$Rn]", (!cast<Instruction>(NAME # "i") regtype:$Rt, regtype:$Rt2, GPR64sp:$Rn, 0)>; } multiclass StorePairNoAlloc<bits<2> opc, bit V, RegisterClass regtype, Operand indextype, string asm> { let hasSideEffects = 0, mayStore = 1, mayLoad = 0 in def i : BaseLoadStorePairNoAlloc<opc, V, 0, (outs), (ins regtype:$Rt, regtype:$Rt2, GPR64sp:$Rn, indextype:$offset), asm>, Sched<[WriteSTP]>; def : InstAlias<asm # "\t$Rt, $Rt2, [$Rn]", (!cast<Instruction>(NAME # "i") regtype:$Rt, regtype:$Rt2, GPR64sp:$Rn, 0)>; } //--- // Load/store exclusive //--- // True exclusive operations write to and/or read from the system's exclusive // monitors, which as far as a compiler is concerned can be modelled as a // random shared memory address. Hence LoadExclusive mayStore. // // Since these instructions have the undefined register bits set to 1 in // their canonical form, we need a post encoder method to set those bits // to 1 when encoding these instructions. We do this using the // fixLoadStoreExclusive function. This function has template parameters: // // fixLoadStoreExclusive<int hasRs, int hasRt2> // // hasRs indicates that the instruction uses the Rs field, so we won't set // it to 1 (and the same for Rt2). We don't need template parameters for // the other register fields since Rt and Rn are always used. // let hasSideEffects = 1, mayLoad = 1, mayStore = 1 in class BaseLoadStoreExclusive<bits<2> sz, bit o2, bit L, bit o1, bit o0, dag oops, dag iops, string asm, string operands> : I<oops, iops, asm, operands, "", []> { let Inst{31-30} = sz; let Inst{29-24} = 0b001000; let Inst{23} = o2; let Inst{22} = L; let Inst{21} = o1; let Inst{15} = o0; let DecoderMethod = "DecodeExclusiveLdStInstruction"; } // Neither Rs nor Rt2 operands. class LoadStoreExclusiveSimple<bits<2> sz, bit o2, bit L, bit o1, bit o0, dag oops, dag iops, string asm, string operands> : BaseLoadStoreExclusive<sz, o2, L, o1, o0, oops, iops, asm, operands> { bits<5> Rt; bits<5> Rn; let Inst{20-16} = 0b11111; let Unpredictable{20-16} = 0b11111; let Inst{14-10} = 0b11111; let Unpredictable{14-10} = 0b11111; let Inst{9-5} = Rn; let Inst{4-0} = Rt; let PostEncoderMethod = "fixLoadStoreExclusive<0,0>"; } // Simple load acquires don't set the exclusive monitor let mayLoad = 1, mayStore = 0 in class LoadAcquire<bits<2> sz, bit o2, bit L, bit o1, bit o0, RegisterClass regtype, string asm> : LoadStoreExclusiveSimple<sz, o2, L, o1, o0, (outs regtype:$Rt), (ins GPR64sp0:$Rn), asm, "\t$Rt, [$Rn]">, Sched<[WriteLD]>; class LoadExclusive<bits<2> sz, bit o2, bit L, bit o1, bit o0, RegisterClass regtype, string asm> : LoadStoreExclusiveSimple<sz, o2, L, o1, o0, (outs regtype:$Rt), (ins GPR64sp0:$Rn), asm, "\t$Rt, [$Rn]">, Sched<[WriteLD]>; class LoadExclusivePair<bits<2> sz, bit o2, bit L, bit o1, bit o0, RegisterClass regtype, string asm> : BaseLoadStoreExclusive<sz, o2, L, o1, o0, (outs regtype:$Rt, regtype:$Rt2), (ins GPR64sp0:$Rn), asm, "\t$Rt, $Rt2, [$Rn]">, Sched<[WriteLD, WriteLDHi]> { bits<5> Rt; bits<5> Rt2; bits<5> Rn; let Inst{14-10} = Rt2; let Inst{9-5} = Rn; let Inst{4-0} = Rt; let PostEncoderMethod = "fixLoadStoreExclusive<0,1>"; } // Simple store release operations do not check the exclusive monitor. let mayLoad = 0, mayStore = 1 in class StoreRelease<bits<2> sz, bit o2, bit L, bit o1, bit o0, RegisterClass regtype, string asm> : LoadStoreExclusiveSimple<sz, o2, L, o1, o0, (outs), (ins regtype:$Rt, GPR64sp0:$Rn), asm, "\t$Rt, [$Rn]">, Sched<[WriteST]>; let mayLoad = 1, mayStore = 1 in class StoreExclusive<bits<2> sz, bit o2, bit L, bit o1, bit o0, RegisterClass regtype, string asm> : BaseLoadStoreExclusive<sz, o2, L, o1, o0, (outs GPR32:$Ws), (ins regtype:$Rt, GPR64sp0:$Rn), asm, "\t$Ws, $Rt, [$Rn]">, Sched<[WriteSTX]> { bits<5> Ws; bits<5> Rt; bits<5> Rn; let Inst{20-16} = Ws; let Inst{9-5} = Rn; let Inst{4-0} = Rt; let Constraints = "@earlyclobber $Ws"; let PostEncoderMethod = "fixLoadStoreExclusive<1,0>"; } class StoreExclusivePair<bits<2> sz, bit o2, bit L, bit o1, bit o0, RegisterClass regtype, string asm> : BaseLoadStoreExclusive<sz, o2, L, o1, o0, (outs GPR32:$Ws), (ins regtype:$Rt, regtype:$Rt2, GPR64sp0:$Rn), asm, "\t$Ws, $Rt, $Rt2, [$Rn]">, Sched<[WriteSTX]> { bits<5> Ws; bits<5> Rt; bits<5> Rt2; bits<5> Rn; let Inst{20-16} = Ws; let Inst{14-10} = Rt2; let Inst{9-5} = Rn; let Inst{4-0} = Rt; let Constraints = "@earlyclobber $Ws"; } //--- // Exception generation //--- let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in class ExceptionGeneration<bits<3> op1, bits<2> ll, string asm> : I<(outs), (ins imm0_65535:$imm), asm, "\t$imm", "", []>, Sched<[WriteSys]> { bits<16> imm; let Inst{31-24} = 0b11010100; let Inst{23-21} = op1; let Inst{20-5} = imm; let Inst{4-2} = 0b000; let Inst{1-0} = ll; } let Predicates = [HasFPARMv8] in { //--- // Floating point to integer conversion //--- class BaseFPToIntegerUnscaled<bits<2> type, bits<2> rmode, bits<3> opcode, RegisterClass srcType, RegisterClass dstType, string asm, list<dag> pattern> : I<(outs dstType:$Rd), (ins srcType:$Rn), asm, "\t$Rd, $Rn", "", pattern>, Sched<[WriteFCvt]> { bits<5> Rd; bits<5> Rn; let Inst{30-29} = 0b00; let Inst{28-24} = 0b11110; let Inst{23-22} = type; let Inst{21} = 1; let Inst{20-19} = rmode; let Inst{18-16} = opcode; let Inst{15-10} = 0; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseFPToInteger<bits<2> type, bits<2> rmode, bits<3> opcode, RegisterClass srcType, RegisterClass dstType, Operand immType, string asm, list<dag> pattern> : I<(outs dstType:$Rd), (ins srcType:$Rn, immType:$scale), asm, "\t$Rd, $Rn, $scale", "", pattern>, Sched<[WriteFCvt]> { bits<5> Rd; bits<5> Rn; bits<6> scale; let Inst{30-29} = 0b00; let Inst{28-24} = 0b11110; let Inst{23-22} = type; let Inst{21} = 0; let Inst{20-19} = rmode; let Inst{18-16} = opcode; let Inst{15-10} = scale; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass FPToIntegerUnscaled<bits<2> rmode, bits<3> opcode, string asm, SDPatternOperator OpN> { // Unscaled single-precision to 32-bit def UWSr : BaseFPToIntegerUnscaled<0b00, rmode, opcode, FPR32, GPR32, asm, [(set GPR32:$Rd, (OpN FPR32:$Rn))]> { let Inst{31} = 0; // 32-bit GPR flag } // Unscaled single-precision to 64-bit def UXSr : BaseFPToIntegerUnscaled<0b00, rmode, opcode, FPR32, GPR64, asm, [(set GPR64:$Rd, (OpN FPR32:$Rn))]> { let Inst{31} = 1; // 64-bit GPR flag } // Unscaled double-precision to 32-bit def UWDr : BaseFPToIntegerUnscaled<0b01, rmode, opcode, FPR64, GPR32, asm, [(set GPR32:$Rd, (OpN (f64 FPR64:$Rn)))]> { let Inst{31} = 0; // 32-bit GPR flag } // Unscaled double-precision to 64-bit def UXDr : BaseFPToIntegerUnscaled<0b01, rmode, opcode, FPR64, GPR64, asm, [(set GPR64:$Rd, (OpN (f64 FPR64:$Rn)))]> { let Inst{31} = 1; // 64-bit GPR flag } } multiclass FPToIntegerScaled<bits<2> rmode, bits<3> opcode, string asm, SDPatternOperator OpN> { // Scaled single-precision to 32-bit def SWSri : BaseFPToInteger<0b00, rmode, opcode, FPR32, GPR32, fixedpoint_f32_i32, asm, [(set GPR32:$Rd, (OpN (fmul FPR32:$Rn, fixedpoint_f32_i32:$scale)))]> { let Inst{31} = 0; // 32-bit GPR flag let scale{5} = 1; } // Scaled single-precision to 64-bit def SXSri : BaseFPToInteger<0b00, rmode, opcode, FPR32, GPR64, fixedpoint_f32_i64, asm, [(set GPR64:$Rd, (OpN (fmul FPR32:$Rn, fixedpoint_f32_i64:$scale)))]> { let Inst{31} = 1; // 64-bit GPR flag } // Scaled double-precision to 32-bit def SWDri : BaseFPToInteger<0b01, rmode, opcode, FPR64, GPR32, fixedpoint_f64_i32, asm, [(set GPR32:$Rd, (OpN (fmul FPR64:$Rn, fixedpoint_f64_i32:$scale)))]> { let Inst{31} = 0; // 32-bit GPR flag let scale{5} = 1; } // Scaled double-precision to 64-bit def SXDri : BaseFPToInteger<0b01, rmode, opcode, FPR64, GPR64, fixedpoint_f64_i64, asm, [(set GPR64:$Rd, (OpN (fmul FPR64:$Rn, fixedpoint_f64_i64:$scale)))]> { let Inst{31} = 1; // 64-bit GPR flag } } //--- // Integer to floating point conversion //--- let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in class BaseIntegerToFP<bit isUnsigned, RegisterClass srcType, RegisterClass dstType, Operand immType, string asm, list<dag> pattern> : I<(outs dstType:$Rd), (ins srcType:$Rn, immType:$scale), asm, "\t$Rd, $Rn, $scale", "", pattern>, Sched<[WriteFCvt]> { bits<5> Rd; bits<5> Rn; bits<6> scale; let Inst{30-23} = 0b00111100; let Inst{21-17} = 0b00001; let Inst{16} = isUnsigned; let Inst{15-10} = scale; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } class BaseIntegerToFPUnscaled<bit isUnsigned, RegisterClass srcType, RegisterClass dstType, ValueType dvt, string asm, SDNode node> : I<(outs dstType:$Rd), (ins srcType:$Rn), asm, "\t$Rd, $Rn", "", [(set (dvt dstType:$Rd), (node srcType:$Rn))]>, Sched<[WriteFCvt]> { bits<5> Rd; bits<5> Rn; bits<6> scale; let Inst{30-23} = 0b00111100; let Inst{21-17} = 0b10001; let Inst{16} = isUnsigned; let Inst{15-10} = 0b000000; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass IntegerToFP<bit isUnsigned, string asm, SDNode node> { // Unscaled def UWSri: BaseIntegerToFPUnscaled<isUnsigned, GPR32, FPR32, f32, asm, node> { let Inst{31} = 0; // 32-bit GPR flag let Inst{22} = 0; // 32-bit FPR flag } def UWDri: BaseIntegerToFPUnscaled<isUnsigned, GPR32, FPR64, f64, asm, node> { let Inst{31} = 0; // 32-bit GPR flag let Inst{22} = 1; // 64-bit FPR flag } def UXSri: BaseIntegerToFPUnscaled<isUnsigned, GPR64, FPR32, f32, asm, node> { let Inst{31} = 1; // 64-bit GPR flag let Inst{22} = 0; // 32-bit FPR flag } def UXDri: BaseIntegerToFPUnscaled<isUnsigned, GPR64, FPR64, f64, asm, node> { let Inst{31} = 1; // 64-bit GPR flag let Inst{22} = 1; // 64-bit FPR flag } // Scaled def SWSri: BaseIntegerToFP<isUnsigned, GPR32, FPR32, fixedpoint_f32_i32, asm, [(set FPR32:$Rd, (fdiv (node GPR32:$Rn), fixedpoint_f32_i32:$scale))]> { let Inst{31} = 0; // 32-bit GPR flag let Inst{22} = 0; // 32-bit FPR flag let scale{5} = 1; } def SWDri: BaseIntegerToFP<isUnsigned, GPR32, FPR64, fixedpoint_f64_i32, asm, [(set FPR64:$Rd, (fdiv (node GPR32:$Rn), fixedpoint_f64_i32:$scale))]> { let Inst{31} = 0; // 32-bit GPR flag let Inst{22} = 1; // 64-bit FPR flag let scale{5} = 1; } def SXSri: BaseIntegerToFP<isUnsigned, GPR64, FPR32, fixedpoint_f32_i64, asm, [(set FPR32:$Rd, (fdiv (node GPR64:$Rn), fixedpoint_f32_i64:$scale))]> { let Inst{31} = 1; // 64-bit GPR flag let Inst{22} = 0; // 32-bit FPR flag } def SXDri: BaseIntegerToFP<isUnsigned, GPR64, FPR64, fixedpoint_f64_i64, asm, [(set FPR64:$Rd, (fdiv (node GPR64:$Rn), fixedpoint_f64_i64:$scale))]> { let Inst{31} = 1; // 64-bit GPR flag let Inst{22} = 1; // 64-bit FPR flag } } //--- // Unscaled integer <-> floating point conversion (i.e. FMOV) //--- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseUnscaledConversion<bits<2> rmode, bits<3> opcode, RegisterClass srcType, RegisterClass dstType, string asm> : I<(outs dstType:$Rd), (ins srcType:$Rn), asm, "\t$Rd, $Rn", "", // We use COPY_TO_REGCLASS for these bitconvert operations. // copyPhysReg() expands the resultant COPY instructions after // regalloc is done. This gives greater freedom for the allocator // and related passes (coalescing, copy propagation, et. al.) to // be more effective. [/*(set (dvt dstType:$Rd), (bitconvert (svt srcType:$Rn)))*/]>, Sched<[WriteFCopy]> { bits<5> Rd; bits<5> Rn; let Inst{30-23} = 0b00111100; let Inst{21} = 1; let Inst{20-19} = rmode; let Inst{18-16} = opcode; let Inst{15-10} = 0b000000; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseUnscaledConversionToHigh<bits<2> rmode, bits<3> opcode, RegisterClass srcType, RegisterOperand dstType, string asm, string kind> : I<(outs dstType:$Rd), (ins srcType:$Rn, VectorIndex1:$idx), asm, "{\t$Rd"#kind#"$idx, $Rn|"#kind#"\t$Rd$idx, $Rn}", "", []>, Sched<[WriteFCopy]> { bits<5> Rd; bits<5> Rn; let Inst{30-23} = 0b00111101; let Inst{21} = 1; let Inst{20-19} = rmode; let Inst{18-16} = opcode; let Inst{15-10} = 0b000000; let Inst{9-5} = Rn; let Inst{4-0} = Rd; let DecoderMethod = "DecodeFMOVLaneInstruction"; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseUnscaledConversionFromHigh<bits<2> rmode, bits<3> opcode, RegisterOperand srcType, RegisterClass dstType, string asm, string kind> : I<(outs dstType:$Rd), (ins srcType:$Rn, VectorIndex1:$idx), asm, "{\t$Rd, $Rn"#kind#"$idx|"#kind#"\t$Rd, $Rn$idx}", "", []>, Sched<[WriteFCopy]> { bits<5> Rd; bits<5> Rn; let Inst{30-23} = 0b00111101; let Inst{21} = 1; let Inst{20-19} = rmode; let Inst{18-16} = opcode; let Inst{15-10} = 0b000000; let Inst{9-5} = Rn; let Inst{4-0} = Rd; let DecoderMethod = "DecodeFMOVLaneInstruction"; } multiclass UnscaledConversion<string asm> { def WSr : BaseUnscaledConversion<0b00, 0b111, GPR32, FPR32, asm> { let Inst{31} = 0; // 32-bit GPR flag let Inst{22} = 0; // 32-bit FPR flag } def XDr : BaseUnscaledConversion<0b00, 0b111, GPR64, FPR64, asm> { let Inst{31} = 1; // 64-bit GPR flag let Inst{22} = 1; // 64-bit FPR flag } def SWr : BaseUnscaledConversion<0b00, 0b110, FPR32, GPR32, asm> { let Inst{31} = 0; // 32-bit GPR flag let Inst{22} = 0; // 32-bit FPR flag } def DXr : BaseUnscaledConversion<0b00, 0b110, FPR64, GPR64, asm> { let Inst{31} = 1; // 64-bit GPR flag let Inst{22} = 1; // 64-bit FPR flag } def XDHighr : BaseUnscaledConversionToHigh<0b01, 0b111, GPR64, V128, asm, ".d"> { let Inst{31} = 1; let Inst{22} = 0; } def DXHighr : BaseUnscaledConversionFromHigh<0b01, 0b110, V128, GPR64, asm, ".d"> { let Inst{31} = 1; let Inst{22} = 0; } } //--- // Floating point conversion //--- class BaseFPConversion<bits<2> type, bits<2> opcode, RegisterClass dstType, RegisterClass srcType, string asm, list<dag> pattern> : I<(outs dstType:$Rd), (ins srcType:$Rn), asm, "\t$Rd, $Rn", "", pattern>, Sched<[WriteFCvt]> { bits<5> Rd; bits<5> Rn; let Inst{31-24} = 0b00011110; let Inst{23-22} = type; let Inst{21-17} = 0b10001; let Inst{16-15} = opcode; let Inst{14-10} = 0b10000; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass FPConversion<string asm> { // Double-precision to Half-precision def HDr : BaseFPConversion<0b01, 0b11, FPR16, FPR64, asm, [(set FPR16:$Rd, (fround FPR64:$Rn))]>; // Double-precision to Single-precision def SDr : BaseFPConversion<0b01, 0b00, FPR32, FPR64, asm, [(set FPR32:$Rd, (fround FPR64:$Rn))]>; // Half-precision to Double-precision def DHr : BaseFPConversion<0b11, 0b01, FPR64, FPR16, asm, [(set FPR64:$Rd, (fextend FPR16:$Rn))]>; // Half-precision to Single-precision def SHr : BaseFPConversion<0b11, 0b00, FPR32, FPR16, asm, [(set FPR32:$Rd, (fextend FPR16:$Rn))]>; // Single-precision to Double-precision def DSr : BaseFPConversion<0b00, 0b01, FPR64, FPR32, asm, [(set FPR64:$Rd, (fextend FPR32:$Rn))]>; // Single-precision to Half-precision def HSr : BaseFPConversion<0b00, 0b11, FPR16, FPR32, asm, [(set FPR16:$Rd, (fround FPR32:$Rn))]>; } //--- // Single operand floating point data processing //--- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSingleOperandFPData<bits<4> opcode, RegisterClass regtype, ValueType vt, string asm, SDPatternOperator node> : I<(outs regtype:$Rd), (ins regtype:$Rn), asm, "\t$Rd, $Rn", "", [(set (vt regtype:$Rd), (node (vt regtype:$Rn)))]>, Sched<[WriteF]> { bits<5> Rd; bits<5> Rn; let Inst{31-23} = 0b000111100; let Inst{21-19} = 0b100; let Inst{18-15} = opcode; let Inst{14-10} = 0b10000; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SingleOperandFPData<bits<4> opcode, string asm, SDPatternOperator node = null_frag> { def Sr : BaseSingleOperandFPData<opcode, FPR32, f32, asm, node> { let Inst{22} = 0; // 32-bit size flag } def Dr : BaseSingleOperandFPData<opcode, FPR64, f64, asm, node> { let Inst{22} = 1; // 64-bit size flag } } //--- // Two operand floating point data processing //--- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseTwoOperandFPData<bits<4> opcode, RegisterClass regtype, string asm, list<dag> pat> : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm), asm, "\t$Rd, $Rn, $Rm", "", pat>, Sched<[WriteF]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31-23} = 0b000111100; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass TwoOperandFPData<bits<4> opcode, string asm, SDPatternOperator node = null_frag> { def Srr : BaseTwoOperandFPData<opcode, FPR32, asm, [(set (f32 FPR32:$Rd), (node (f32 FPR32:$Rn), (f32 FPR32:$Rm)))]> { let Inst{22} = 0; // 32-bit size flag } def Drr : BaseTwoOperandFPData<opcode, FPR64, asm, [(set (f64 FPR64:$Rd), (node (f64 FPR64:$Rn), (f64 FPR64:$Rm)))]> { let Inst{22} = 1; // 64-bit size flag } } multiclass TwoOperandFPDataNeg<bits<4> opcode, string asm, SDNode node> { def Srr : BaseTwoOperandFPData<opcode, FPR32, asm, [(set FPR32:$Rd, (fneg (node FPR32:$Rn, (f32 FPR32:$Rm))))]> { let Inst{22} = 0; // 32-bit size flag } def Drr : BaseTwoOperandFPData<opcode, FPR64, asm, [(set FPR64:$Rd, (fneg (node FPR64:$Rn, (f64 FPR64:$Rm))))]> { let Inst{22} = 1; // 64-bit size flag } } //--- // Three operand floating point data processing //--- class BaseThreeOperandFPData<bit isNegated, bit isSub, RegisterClass regtype, string asm, list<dag> pat> : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, regtype: $Ra), asm, "\t$Rd, $Rn, $Rm, $Ra", "", pat>, Sched<[WriteFMul]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; bits<5> Ra; let Inst{31-23} = 0b000111110; let Inst{21} = isNegated; let Inst{20-16} = Rm; let Inst{15} = isSub; let Inst{14-10} = Ra; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass ThreeOperandFPData<bit isNegated, bit isSub,string asm, SDPatternOperator node> { def Srrr : BaseThreeOperandFPData<isNegated, isSub, FPR32, asm, [(set FPR32:$Rd, (node (f32 FPR32:$Rn), (f32 FPR32:$Rm), (f32 FPR32:$Ra)))]> { let Inst{22} = 0; // 32-bit size flag } def Drrr : BaseThreeOperandFPData<isNegated, isSub, FPR64, asm, [(set FPR64:$Rd, (node (f64 FPR64:$Rn), (f64 FPR64:$Rm), (f64 FPR64:$Ra)))]> { let Inst{22} = 1; // 64-bit size flag } } //--- // Floating point data comparisons //--- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseOneOperandFPComparison<bit signalAllNans, RegisterClass regtype, string asm, list<dag> pat> : I<(outs), (ins regtype:$Rn), asm, "\t$Rn, #0.0", "", pat>, Sched<[WriteFCmp]> { bits<5> Rn; let Inst{31-23} = 0b000111100; let Inst{21} = 1; let Inst{15-10} = 0b001000; let Inst{9-5} = Rn; let Inst{4} = signalAllNans; let Inst{3-0} = 0b1000; // Rm should be 0b00000 canonically, but we need to accept any value. let PostEncoderMethod = "fixOneOperandFPComparison"; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseTwoOperandFPComparison<bit signalAllNans, RegisterClass regtype, string asm, list<dag> pat> : I<(outs), (ins regtype:$Rn, regtype:$Rm), asm, "\t$Rn, $Rm", "", pat>, Sched<[WriteFCmp]> { bits<5> Rm; bits<5> Rn; let Inst{31-23} = 0b000111100; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15-10} = 0b001000; let Inst{9-5} = Rn; let Inst{4} = signalAllNans; let Inst{3-0} = 0b0000; } multiclass FPComparison<bit signalAllNans, string asm, SDPatternOperator OpNode = null_frag> { let Defs = [NZCV] in { def Srr : BaseTwoOperandFPComparison<signalAllNans, FPR32, asm, [(OpNode FPR32:$Rn, (f32 FPR32:$Rm)), (implicit NZCV)]> { let Inst{22} = 0; } def Sri : BaseOneOperandFPComparison<signalAllNans, FPR32, asm, [(OpNode (f32 FPR32:$Rn), fpimm0), (implicit NZCV)]> { let Inst{22} = 0; } def Drr : BaseTwoOperandFPComparison<signalAllNans, FPR64, asm, [(OpNode FPR64:$Rn, (f64 FPR64:$Rm)), (implicit NZCV)]> { let Inst{22} = 1; } def Dri : BaseOneOperandFPComparison<signalAllNans, FPR64, asm, [(OpNode (f64 FPR64:$Rn), fpimm0), (implicit NZCV)]> { let Inst{22} = 1; } } // Defs = [NZCV] } //--- // Floating point conditional comparisons //--- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseFPCondComparison<bit signalAllNans, RegisterClass regtype, string asm> : I<(outs), (ins regtype:$Rn, regtype:$Rm, imm0_15:$nzcv, ccode:$cond), asm, "\t$Rn, $Rm, $nzcv, $cond", "", []>, Sched<[WriteFCmp]> { bits<5> Rn; bits<5> Rm; bits<4> nzcv; bits<4> cond; let Inst{31-23} = 0b000111100; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15-12} = cond; let Inst{11-10} = 0b01; let Inst{9-5} = Rn; let Inst{4} = signalAllNans; let Inst{3-0} = nzcv; } multiclass FPCondComparison<bit signalAllNans, string asm> { let Defs = [NZCV], Uses = [NZCV] in { def Srr : BaseFPCondComparison<signalAllNans, FPR32, asm> { let Inst{22} = 0; } def Drr : BaseFPCondComparison<signalAllNans, FPR64, asm> { let Inst{22} = 1; } } // Defs = [NZCV], Uses = [NZCV] } //--- // Floating point conditional select //--- class BaseFPCondSelect<RegisterClass regtype, ValueType vt, string asm> : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, ccode:$cond), asm, "\t$Rd, $Rn, $Rm, $cond", "", [(set regtype:$Rd, (AArch64csel (vt regtype:$Rn), regtype:$Rm, (i32 imm:$cond), NZCV))]>, Sched<[WriteF]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; bits<4> cond; let Inst{31-23} = 0b000111100; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15-12} = cond; let Inst{11-10} = 0b11; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass FPCondSelect<string asm> { let Uses = [NZCV] in { def Srrr : BaseFPCondSelect<FPR32, f32, asm> { let Inst{22} = 0; } def Drrr : BaseFPCondSelect<FPR64, f64, asm> { let Inst{22} = 1; } } // Uses = [NZCV] } //--- // Floating move immediate //--- class BaseFPMoveImmediate<RegisterClass regtype, Operand fpimmtype, string asm> : I<(outs regtype:$Rd), (ins fpimmtype:$imm), asm, "\t$Rd, $imm", "", [(set regtype:$Rd, fpimmtype:$imm)]>, Sched<[WriteFImm]> { bits<5> Rd; bits<8> imm; let Inst{31-23} = 0b000111100; let Inst{21} = 1; let Inst{20-13} = imm; let Inst{12-5} = 0b10000000; let Inst{4-0} = Rd; } multiclass FPMoveImmediate<string asm> { def Si : BaseFPMoveImmediate<FPR32, fpimm32, asm> { let Inst{22} = 0; } def Di : BaseFPMoveImmediate<FPR64, fpimm64, asm> { let Inst{22} = 1; } } } // end of 'let Predicates = [HasFPARMv8]' //---------------------------------------------------------------------------- // AdvSIMD //---------------------------------------------------------------------------- let Predicates = [HasNEON] in { //---------------------------------------------------------------------------- // AdvSIMD three register vector instructions //---------------------------------------------------------------------------- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDThreeSameVector<bit Q, bit U, bits<2> size, bits<5> opcode, RegisterOperand regtype, string asm, string kind, list<dag> pattern> : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm), asm, "{\t$Rd" # kind # ", $Rn" # kind # ", $Rm" # kind # "|" # kind # "\t$Rd, $Rn, $Rm|}", "", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15-11} = opcode; let Inst{10} = 1; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDThreeSameVectorTied<bit Q, bit U, bits<2> size, bits<5> opcode, RegisterOperand regtype, string asm, string kind, list<dag> pattern> : I<(outs regtype:$dst), (ins regtype:$Rd, regtype:$Rn, regtype:$Rm), asm, "{\t$Rd" # kind # ", $Rn" # kind # ", $Rm" # kind # "|" # kind # "\t$Rd, $Rn, $Rm}", "$Rd = $dst", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15-11} = opcode; let Inst{10} = 1; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } // All operand sizes distinguished in the encoding. multiclass SIMDThreeSameVector<bit U, bits<5> opc, string asm, SDPatternOperator OpNode> { def v8i8 : BaseSIMDThreeSameVector<0, U, 0b00, opc, V64, asm, ".8b", [(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>; def v16i8 : BaseSIMDThreeSameVector<1, U, 0b00, opc, V128, asm, ".16b", [(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn), (v16i8 V128:$Rm)))]>; def v4i16 : BaseSIMDThreeSameVector<0, U, 0b01, opc, V64, asm, ".4h", [(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm)))]>; def v8i16 : BaseSIMDThreeSameVector<1, U, 0b01, opc, V128, asm, ".8h", [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn), (v8i16 V128:$Rm)))]>; def v2i32 : BaseSIMDThreeSameVector<0, U, 0b10, opc, V64, asm, ".2s", [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm)))]>; def v4i32 : BaseSIMDThreeSameVector<1, U, 0b10, opc, V128, asm, ".4s", [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (v4i32 V128:$Rm)))]>; def v2i64 : BaseSIMDThreeSameVector<1, U, 0b11, opc, V128, asm, ".2d", [(set (v2i64 V128:$Rd), (OpNode (v2i64 V128:$Rn), (v2i64 V128:$Rm)))]>; } // As above, but D sized elements unsupported. multiclass SIMDThreeSameVectorBHS<bit U, bits<5> opc, string asm, SDPatternOperator OpNode> { def v8i8 : BaseSIMDThreeSameVector<0, U, 0b00, opc, V64, asm, ".8b", [(set V64:$Rd, (v8i8 (OpNode (v8i8 V64:$Rn), (v8i8 V64:$Rm))))]>; def v16i8 : BaseSIMDThreeSameVector<1, U, 0b00, opc, V128, asm, ".16b", [(set V128:$Rd, (v16i8 (OpNode (v16i8 V128:$Rn), (v16i8 V128:$Rm))))]>; def v4i16 : BaseSIMDThreeSameVector<0, U, 0b01, opc, V64, asm, ".4h", [(set V64:$Rd, (v4i16 (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm))))]>; def v8i16 : BaseSIMDThreeSameVector<1, U, 0b01, opc, V128, asm, ".8h", [(set V128:$Rd, (v8i16 (OpNode (v8i16 V128:$Rn), (v8i16 V128:$Rm))))]>; def v2i32 : BaseSIMDThreeSameVector<0, U, 0b10, opc, V64, asm, ".2s", [(set V64:$Rd, (v2i32 (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm))))]>; def v4i32 : BaseSIMDThreeSameVector<1, U, 0b10, opc, V128, asm, ".4s", [(set V128:$Rd, (v4i32 (OpNode (v4i32 V128:$Rn), (v4i32 V128:$Rm))))]>; } multiclass SIMDThreeSameVectorBHSTied<bit U, bits<5> opc, string asm, SDPatternOperator OpNode> { def v8i8 : BaseSIMDThreeSameVectorTied<0, U, 0b00, opc, V64, asm, ".8b", [(set (v8i8 V64:$dst), (OpNode (v8i8 V64:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>; def v16i8 : BaseSIMDThreeSameVectorTied<1, U, 0b00, opc, V128, asm, ".16b", [(set (v16i8 V128:$dst), (OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn), (v16i8 V128:$Rm)))]>; def v4i16 : BaseSIMDThreeSameVectorTied<0, U, 0b01, opc, V64, asm, ".4h", [(set (v4i16 V64:$dst), (OpNode (v4i16 V64:$Rd), (v4i16 V64:$Rn), (v4i16 V64:$Rm)))]>; def v8i16 : BaseSIMDThreeSameVectorTied<1, U, 0b01, opc, V128, asm, ".8h", [(set (v8i16 V128:$dst), (OpNode (v8i16 V128:$Rd), (v8i16 V128:$Rn), (v8i16 V128:$Rm)))]>; def v2i32 : BaseSIMDThreeSameVectorTied<0, U, 0b10, opc, V64, asm, ".2s", [(set (v2i32 V64:$dst), (OpNode (v2i32 V64:$Rd), (v2i32 V64:$Rn), (v2i32 V64:$Rm)))]>; def v4i32 : BaseSIMDThreeSameVectorTied<1, U, 0b10, opc, V128, asm, ".4s", [(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn), (v4i32 V128:$Rm)))]>; } // As above, but only B sized elements supported. multiclass SIMDThreeSameVectorB<bit U, bits<5> opc, string asm, SDPatternOperator OpNode> { def v8i8 : BaseSIMDThreeSameVector<0, U, 0b00, opc, V64, asm, ".8b", [(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>; def v16i8 : BaseSIMDThreeSameVector<1, U, 0b00, opc, V128, asm, ".16b", [(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn), (v16i8 V128:$Rm)))]>; } // As above, but only S and D sized floating point elements supported. multiclass SIMDThreeSameVectorFP<bit U, bit S, bits<5> opc, string asm, SDPatternOperator OpNode> { def v2f32 : BaseSIMDThreeSameVector<0, U, {S,0}, opc, V64, asm, ".2s", [(set (v2f32 V64:$Rd), (OpNode (v2f32 V64:$Rn), (v2f32 V64:$Rm)))]>; def v4f32 : BaseSIMDThreeSameVector<1, U, {S,0}, opc, V128, asm, ".4s", [(set (v4f32 V128:$Rd), (OpNode (v4f32 V128:$Rn), (v4f32 V128:$Rm)))]>; def v2f64 : BaseSIMDThreeSameVector<1, U, {S,1}, opc, V128, asm, ".2d", [(set (v2f64 V128:$Rd), (OpNode (v2f64 V128:$Rn), (v2f64 V128:$Rm)))]>; } multiclass SIMDThreeSameVectorFPCmp<bit U, bit S, bits<5> opc, string asm, SDPatternOperator OpNode> { def v2f32 : BaseSIMDThreeSameVector<0, U, {S,0}, opc, V64, asm, ".2s", [(set (v2i32 V64:$Rd), (OpNode (v2f32 V64:$Rn), (v2f32 V64:$Rm)))]>; def v4f32 : BaseSIMDThreeSameVector<1, U, {S,0}, opc, V128, asm, ".4s", [(set (v4i32 V128:$Rd), (OpNode (v4f32 V128:$Rn), (v4f32 V128:$Rm)))]>; def v2f64 : BaseSIMDThreeSameVector<1, U, {S,1}, opc, V128, asm, ".2d", [(set (v2i64 V128:$Rd), (OpNode (v2f64 V128:$Rn), (v2f64 V128:$Rm)))]>; } multiclass SIMDThreeSameVectorFPTied<bit U, bit S, bits<5> opc, string asm, SDPatternOperator OpNode> { def v2f32 : BaseSIMDThreeSameVectorTied<0, U, {S,0}, opc, V64, asm, ".2s", [(set (v2f32 V64:$dst), (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn), (v2f32 V64:$Rm)))]>; def v4f32 : BaseSIMDThreeSameVectorTied<1, U, {S,0}, opc, V128, asm, ".4s", [(set (v4f32 V128:$dst), (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn), (v4f32 V128:$Rm)))]>; def v2f64 : BaseSIMDThreeSameVectorTied<1, U, {S,1}, opc, V128, asm, ".2d", [(set (v2f64 V128:$dst), (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn), (v2f64 V128:$Rm)))]>; } // As above, but D and B sized elements unsupported. multiclass SIMDThreeSameVectorHS<bit U, bits<5> opc, string asm, SDPatternOperator OpNode> { def v4i16 : BaseSIMDThreeSameVector<0, U, 0b01, opc, V64, asm, ".4h", [(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm)))]>; def v8i16 : BaseSIMDThreeSameVector<1, U, 0b01, opc, V128, asm, ".8h", [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn), (v8i16 V128:$Rm)))]>; def v2i32 : BaseSIMDThreeSameVector<0, U, 0b10, opc, V64, asm, ".2s", [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm)))]>; def v4i32 : BaseSIMDThreeSameVector<1, U, 0b10, opc, V128, asm, ".4s", [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (v4i32 V128:$Rm)))]>; } // Logical three vector ops share opcode bits, and only use B sized elements. multiclass SIMDLogicalThreeVector<bit U, bits<2> size, string asm, SDPatternOperator OpNode = null_frag> { def v8i8 : BaseSIMDThreeSameVector<0, U, size, 0b00011, V64, asm, ".8b", [(set (v8i8 V64:$Rd), (OpNode V64:$Rn, V64:$Rm))]>; def v16i8 : BaseSIMDThreeSameVector<1, U, size, 0b00011, V128, asm, ".16b", [(set (v16i8 V128:$Rd), (OpNode V128:$Rn, V128:$Rm))]>; def : Pat<(v4i16 (OpNode V64:$LHS, V64:$RHS)), (!cast<Instruction>(NAME#"v8i8") V64:$LHS, V64:$RHS)>; def : Pat<(v2i32 (OpNode V64:$LHS, V64:$RHS)), (!cast<Instruction>(NAME#"v8i8") V64:$LHS, V64:$RHS)>; def : Pat<(v1i64 (OpNode V64:$LHS, V64:$RHS)), (!cast<Instruction>(NAME#"v8i8") V64:$LHS, V64:$RHS)>; def : Pat<(v8i16 (OpNode V128:$LHS, V128:$RHS)), (!cast<Instruction>(NAME#"v16i8") V128:$LHS, V128:$RHS)>; def : Pat<(v4i32 (OpNode V128:$LHS, V128:$RHS)), (!cast<Instruction>(NAME#"v16i8") V128:$LHS, V128:$RHS)>; def : Pat<(v2i64 (OpNode V128:$LHS, V128:$RHS)), (!cast<Instruction>(NAME#"v16i8") V128:$LHS, V128:$RHS)>; } multiclass SIMDLogicalThreeVectorTied<bit U, bits<2> size, string asm, SDPatternOperator OpNode> { def v8i8 : BaseSIMDThreeSameVectorTied<0, U, size, 0b00011, V64, asm, ".8b", [(set (v8i8 V64:$dst), (OpNode (v8i8 V64:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>; def v16i8 : BaseSIMDThreeSameVectorTied<1, U, size, 0b00011, V128, asm, ".16b", [(set (v16i8 V128:$dst), (OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn), (v16i8 V128:$Rm)))]>; def : Pat<(v4i16 (OpNode (v4i16 V64:$LHS), (v4i16 V64:$MHS), (v4i16 V64:$RHS))), (!cast<Instruction>(NAME#"v8i8") V64:$LHS, V64:$MHS, V64:$RHS)>; def : Pat<(v2i32 (OpNode (v2i32 V64:$LHS), (v2i32 V64:$MHS), (v2i32 V64:$RHS))), (!cast<Instruction>(NAME#"v8i8") V64:$LHS, V64:$MHS, V64:$RHS)>; def : Pat<(v1i64 (OpNode (v1i64 V64:$LHS), (v1i64 V64:$MHS), (v1i64 V64:$RHS))), (!cast<Instruction>(NAME#"v8i8") V64:$LHS, V64:$MHS, V64:$RHS)>; def : Pat<(v8i16 (OpNode (v8i16 V128:$LHS), (v8i16 V128:$MHS), (v8i16 V128:$RHS))), (!cast<Instruction>(NAME#"v16i8") V128:$LHS, V128:$MHS, V128:$RHS)>; def : Pat<(v4i32 (OpNode (v4i32 V128:$LHS), (v4i32 V128:$MHS), (v4i32 V128:$RHS))), (!cast<Instruction>(NAME#"v16i8") V128:$LHS, V128:$MHS, V128:$RHS)>; def : Pat<(v2i64 (OpNode (v2i64 V128:$LHS), (v2i64 V128:$MHS), (v2i64 V128:$RHS))), (!cast<Instruction>(NAME#"v16i8") V128:$LHS, V128:$MHS, V128:$RHS)>; } //---------------------------------------------------------------------------- // AdvSIMD two register vector instructions. //---------------------------------------------------------------------------- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDTwoSameVector<bit Q, bit U, bits<2> size, bits<5> opcode, RegisterOperand regtype, string asm, string dstkind, string srckind, list<dag> pattern> : I<(outs regtype:$Rd), (ins regtype:$Rn), asm, "{\t$Rd" # dstkind # ", $Rn" # srckind # "|" # dstkind # "\t$Rd, $Rn}", "", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size; let Inst{21-17} = 0b10000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDTwoSameVectorTied<bit Q, bit U, bits<2> size, bits<5> opcode, RegisterOperand regtype, string asm, string dstkind, string srckind, list<dag> pattern> : I<(outs regtype:$dst), (ins regtype:$Rd, regtype:$Rn), asm, "{\t$Rd" # dstkind # ", $Rn" # srckind # "|" # dstkind # "\t$Rd, $Rn}", "$Rd = $dst", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size; let Inst{21-17} = 0b10000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } // Supports B, H, and S element sizes. multiclass SIMDTwoVectorBHS<bit U, bits<5> opc, string asm, SDPatternOperator OpNode> { def v8i8 : BaseSIMDTwoSameVector<0, U, 0b00, opc, V64, asm, ".8b", ".8b", [(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn)))]>; def v16i8 : BaseSIMDTwoSameVector<1, U, 0b00, opc, V128, asm, ".16b", ".16b", [(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn)))]>; def v4i16 : BaseSIMDTwoSameVector<0, U, 0b01, opc, V64, asm, ".4h", ".4h", [(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn)))]>; def v8i16 : BaseSIMDTwoSameVector<1, U, 0b01, opc, V128, asm, ".8h", ".8h", [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn)))]>; def v2i32 : BaseSIMDTwoSameVector<0, U, 0b10, opc, V64, asm, ".2s", ".2s", [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn)))]>; def v4i32 : BaseSIMDTwoSameVector<1, U, 0b10, opc, V128, asm, ".4s", ".4s", [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn)))]>; } class BaseSIMDVectorLShiftLongBySize<bit Q, bits<2> size, RegisterOperand regtype, string asm, string dstkind, string srckind, string amount> : I<(outs V128:$Rd), (ins regtype:$Rn), asm, "{\t$Rd" # dstkind # ", $Rn" # srckind # ", #" # amount # "|" # dstkind # "\t$Rd, $Rn, #" # amount # "}", "", []>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29-24} = 0b101110; let Inst{23-22} = size; let Inst{21-10} = 0b100001001110; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDVectorLShiftLongBySizeBHS { let hasSideEffects = 0 in { def v8i8 : BaseSIMDVectorLShiftLongBySize<0, 0b00, V64, "shll", ".8h", ".8b", "8">; def v16i8 : BaseSIMDVectorLShiftLongBySize<1, 0b00, V128, "shll2", ".8h", ".16b", "8">; def v4i16 : BaseSIMDVectorLShiftLongBySize<0, 0b01, V64, "shll", ".4s", ".4h", "16">; def v8i16 : BaseSIMDVectorLShiftLongBySize<1, 0b01, V128, "shll2", ".4s", ".8h", "16">; def v2i32 : BaseSIMDVectorLShiftLongBySize<0, 0b10, V64, "shll", ".2d", ".2s", "32">; def v4i32 : BaseSIMDVectorLShiftLongBySize<1, 0b10, V128, "shll2", ".2d", ".4s", "32">; } } // Supports all element sizes. multiclass SIMDLongTwoVector<bit U, bits<5> opc, string asm, SDPatternOperator OpNode> { def v8i8_v4i16 : BaseSIMDTwoSameVector<0, U, 0b00, opc, V64, asm, ".4h", ".8b", [(set (v4i16 V64:$Rd), (OpNode (v8i8 V64:$Rn)))]>; def v16i8_v8i16 : BaseSIMDTwoSameVector<1, U, 0b00, opc, V128, asm, ".8h", ".16b", [(set (v8i16 V128:$Rd), (OpNode (v16i8 V128:$Rn)))]>; def v4i16_v2i32 : BaseSIMDTwoSameVector<0, U, 0b01, opc, V64, asm, ".2s", ".4h", [(set (v2i32 V64:$Rd), (OpNode (v4i16 V64:$Rn)))]>; def v8i16_v4i32 : BaseSIMDTwoSameVector<1, U, 0b01, opc, V128, asm, ".4s", ".8h", [(set (v4i32 V128:$Rd), (OpNode (v8i16 V128:$Rn)))]>; def v2i32_v1i64 : BaseSIMDTwoSameVector<0, U, 0b10, opc, V64, asm, ".1d", ".2s", [(set (v1i64 V64:$Rd), (OpNode (v2i32 V64:$Rn)))]>; def v4i32_v2i64 : BaseSIMDTwoSameVector<1, U, 0b10, opc, V128, asm, ".2d", ".4s", [(set (v2i64 V128:$Rd), (OpNode (v4i32 V128:$Rn)))]>; } multiclass SIMDLongTwoVectorTied<bit U, bits<5> opc, string asm, SDPatternOperator OpNode> { def v8i8_v4i16 : BaseSIMDTwoSameVectorTied<0, U, 0b00, opc, V64, asm, ".4h", ".8b", [(set (v4i16 V64:$dst), (OpNode (v4i16 V64:$Rd), (v8i8 V64:$Rn)))]>; def v16i8_v8i16 : BaseSIMDTwoSameVectorTied<1, U, 0b00, opc, V128, asm, ".8h", ".16b", [(set (v8i16 V128:$dst), (OpNode (v8i16 V128:$Rd), (v16i8 V128:$Rn)))]>; def v4i16_v2i32 : BaseSIMDTwoSameVectorTied<0, U, 0b01, opc, V64, asm, ".2s", ".4h", [(set (v2i32 V64:$dst), (OpNode (v2i32 V64:$Rd), (v4i16 V64:$Rn)))]>; def v8i16_v4i32 : BaseSIMDTwoSameVectorTied<1, U, 0b01, opc, V128, asm, ".4s", ".8h", [(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd), (v8i16 V128:$Rn)))]>; def v2i32_v1i64 : BaseSIMDTwoSameVectorTied<0, U, 0b10, opc, V64, asm, ".1d", ".2s", [(set (v1i64 V64:$dst), (OpNode (v1i64 V64:$Rd), (v2i32 V64:$Rn)))]>; def v4i32_v2i64 : BaseSIMDTwoSameVectorTied<1, U, 0b10, opc, V128, asm, ".2d", ".4s", [(set (v2i64 V128:$dst), (OpNode (v2i64 V128:$Rd), (v4i32 V128:$Rn)))]>; } // Supports all element sizes, except 1xD. multiclass SIMDTwoVectorBHSDTied<bit U, bits<5> opc, string asm, SDPatternOperator OpNode> { def v8i8 : BaseSIMDTwoSameVectorTied<0, U, 0b00, opc, V64, asm, ".8b", ".8b", [(set (v8i8 V64:$dst), (OpNode (v8i8 V64:$Rd), (v8i8 V64:$Rn)))]>; def v16i8 : BaseSIMDTwoSameVectorTied<1, U, 0b00, opc, V128, asm, ".16b", ".16b", [(set (v16i8 V128:$dst), (OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn)))]>; def v4i16 : BaseSIMDTwoSameVectorTied<0, U, 0b01, opc, V64, asm, ".4h", ".4h", [(set (v4i16 V64:$dst), (OpNode (v4i16 V64:$Rd), (v4i16 V64:$Rn)))]>; def v8i16 : BaseSIMDTwoSameVectorTied<1, U, 0b01, opc, V128, asm, ".8h", ".8h", [(set (v8i16 V128:$dst), (OpNode (v8i16 V128:$Rd), (v8i16 V128:$Rn)))]>; def v2i32 : BaseSIMDTwoSameVectorTied<0, U, 0b10, opc, V64, asm, ".2s", ".2s", [(set (v2i32 V64:$dst), (OpNode (v2i32 V64:$Rd), (v2i32 V64:$Rn)))]>; def v4i32 : BaseSIMDTwoSameVectorTied<1, U, 0b10, opc, V128, asm, ".4s", ".4s", [(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn)))]>; def v2i64 : BaseSIMDTwoSameVectorTied<1, U, 0b11, opc, V128, asm, ".2d", ".2d", [(set (v2i64 V128:$dst), (OpNode (v2i64 V128:$Rd), (v2i64 V128:$Rn)))]>; } multiclass SIMDTwoVectorBHSD<bit U, bits<5> opc, string asm, SDPatternOperator OpNode = null_frag> { def v8i8 : BaseSIMDTwoSameVector<0, U, 0b00, opc, V64, asm, ".8b", ".8b", [(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn)))]>; def v16i8 : BaseSIMDTwoSameVector<1, U, 0b00, opc, V128, asm, ".16b", ".16b", [(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn)))]>; def v4i16 : BaseSIMDTwoSameVector<0, U, 0b01, opc, V64, asm, ".4h", ".4h", [(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn)))]>; def v8i16 : BaseSIMDTwoSameVector<1, U, 0b01, opc, V128, asm, ".8h", ".8h", [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn)))]>; def v2i32 : BaseSIMDTwoSameVector<0, U, 0b10, opc, V64, asm, ".2s", ".2s", [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn)))]>; def v4i32 : BaseSIMDTwoSameVector<1, U, 0b10, opc, V128, asm, ".4s", ".4s", [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn)))]>; def v2i64 : BaseSIMDTwoSameVector<1, U, 0b11, opc, V128, asm, ".2d", ".2d", [(set (v2i64 V128:$Rd), (OpNode (v2i64 V128:$Rn)))]>; } // Supports only B element sizes. multiclass SIMDTwoVectorB<bit U, bits<2> size, bits<5> opc, string asm, SDPatternOperator OpNode> { def v8i8 : BaseSIMDTwoSameVector<0, U, size, opc, V64, asm, ".8b", ".8b", [(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn)))]>; def v16i8 : BaseSIMDTwoSameVector<1, U, size, opc, V128, asm, ".16b", ".16b", [(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn)))]>; } // Supports only B and H element sizes. multiclass SIMDTwoVectorBH<bit U, bits<5> opc, string asm, SDPatternOperator OpNode> { def v8i8 : BaseSIMDTwoSameVector<0, U, 0b00, opc, V64, asm, ".8b", ".8b", [(set (v8i8 V64:$Rd), (OpNode V64:$Rn))]>; def v16i8 : BaseSIMDTwoSameVector<1, U, 0b00, opc, V128, asm, ".16b", ".16b", [(set (v16i8 V128:$Rd), (OpNode V128:$Rn))]>; def v4i16 : BaseSIMDTwoSameVector<0, U, 0b01, opc, V64, asm, ".4h", ".4h", [(set (v4i16 V64:$Rd), (OpNode V64:$Rn))]>; def v8i16 : BaseSIMDTwoSameVector<1, U, 0b01, opc, V128, asm, ".8h", ".8h", [(set (v8i16 V128:$Rd), (OpNode V128:$Rn))]>; } // Supports only S and D element sizes, uses high bit of the size field // as an extra opcode bit. multiclass SIMDTwoVectorFP<bit U, bit S, bits<5> opc, string asm, SDPatternOperator OpNode> { def v2f32 : BaseSIMDTwoSameVector<0, U, {S,0}, opc, V64, asm, ".2s", ".2s", [(set (v2f32 V64:$Rd), (OpNode (v2f32 V64:$Rn)))]>; def v4f32 : BaseSIMDTwoSameVector<1, U, {S,0}, opc, V128, asm, ".4s", ".4s", [(set (v4f32 V128:$Rd), (OpNode (v4f32 V128:$Rn)))]>; def v2f64 : BaseSIMDTwoSameVector<1, U, {S,1}, opc, V128, asm, ".2d", ".2d", [(set (v2f64 V128:$Rd), (OpNode (v2f64 V128:$Rn)))]>; } // Supports only S element size. multiclass SIMDTwoVectorS<bit U, bit S, bits<5> opc, string asm, SDPatternOperator OpNode> { def v2i32 : BaseSIMDTwoSameVector<0, U, {S,0}, opc, V64, asm, ".2s", ".2s", [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn)))]>; def v4i32 : BaseSIMDTwoSameVector<1, U, {S,0}, opc, V128, asm, ".4s", ".4s", [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn)))]>; } multiclass SIMDTwoVectorFPToInt<bit U, bit S, bits<5> opc, string asm, SDPatternOperator OpNode> { def v2f32 : BaseSIMDTwoSameVector<0, U, {S,0}, opc, V64, asm, ".2s", ".2s", [(set (v2i32 V64:$Rd), (OpNode (v2f32 V64:$Rn)))]>; def v4f32 : BaseSIMDTwoSameVector<1, U, {S,0}, opc, V128, asm, ".4s", ".4s", [(set (v4i32 V128:$Rd), (OpNode (v4f32 V128:$Rn)))]>; def v2f64 : BaseSIMDTwoSameVector<1, U, {S,1}, opc, V128, asm, ".2d", ".2d", [(set (v2i64 V128:$Rd), (OpNode (v2f64 V128:$Rn)))]>; } multiclass SIMDTwoVectorIntToFP<bit U, bit S, bits<5> opc, string asm, SDPatternOperator OpNode> { def v2f32 : BaseSIMDTwoSameVector<0, U, {S,0}, opc, V64, asm, ".2s", ".2s", [(set (v2f32 V64:$Rd), (OpNode (v2i32 V64:$Rn)))]>; def v4f32 : BaseSIMDTwoSameVector<1, U, {S,0}, opc, V128, asm, ".4s", ".4s", [(set (v4f32 V128:$Rd), (OpNode (v4i32 V128:$Rn)))]>; def v2f64 : BaseSIMDTwoSameVector<1, U, {S,1}, opc, V128, asm, ".2d", ".2d", [(set (v2f64 V128:$Rd), (OpNode (v2i64 V128:$Rn)))]>; } class BaseSIMDMixedTwoVector<bit Q, bit U, bits<2> size, bits<5> opcode, RegisterOperand inreg, RegisterOperand outreg, string asm, string outkind, string inkind, list<dag> pattern> : I<(outs outreg:$Rd), (ins inreg:$Rn), asm, "{\t$Rd" # outkind # ", $Rn" # inkind # "|" # outkind # "\t$Rd, $Rn}", "", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size; let Inst{21-17} = 0b10000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } class BaseSIMDMixedTwoVectorTied<bit Q, bit U, bits<2> size, bits<5> opcode, RegisterOperand inreg, RegisterOperand outreg, string asm, string outkind, string inkind, list<dag> pattern> : I<(outs outreg:$dst), (ins outreg:$Rd, inreg:$Rn), asm, "{\t$Rd" # outkind # ", $Rn" # inkind # "|" # outkind # "\t$Rd, $Rn}", "$Rd = $dst", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size; let Inst{21-17} = 0b10000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDMixedTwoVector<bit U, bits<5> opc, string asm, SDPatternOperator OpNode> { def v8i8 : BaseSIMDMixedTwoVector<0, U, 0b00, opc, V128, V64, asm, ".8b", ".8h", [(set (v8i8 V64:$Rd), (OpNode (v8i16 V128:$Rn)))]>; def v16i8 : BaseSIMDMixedTwoVectorTied<1, U, 0b00, opc, V128, V128, asm#"2", ".16b", ".8h", []>; def v4i16 : BaseSIMDMixedTwoVector<0, U, 0b01, opc, V128, V64, asm, ".4h", ".4s", [(set (v4i16 V64:$Rd), (OpNode (v4i32 V128:$Rn)))]>; def v8i16 : BaseSIMDMixedTwoVectorTied<1, U, 0b01, opc, V128, V128, asm#"2", ".8h", ".4s", []>; def v2i32 : BaseSIMDMixedTwoVector<0, U, 0b10, opc, V128, V64, asm, ".2s", ".2d", [(set (v2i32 V64:$Rd), (OpNode (v2i64 V128:$Rn)))]>; def v4i32 : BaseSIMDMixedTwoVectorTied<1, U, 0b10, opc, V128, V128, asm#"2", ".4s", ".2d", []>; def : Pat<(concat_vectors (v8i8 V64:$Rd), (OpNode (v8i16 V128:$Rn))), (!cast<Instruction>(NAME # "v16i8") (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>; def : Pat<(concat_vectors (v4i16 V64:$Rd), (OpNode (v4i32 V128:$Rn))), (!cast<Instruction>(NAME # "v8i16") (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>; def : Pat<(concat_vectors (v2i32 V64:$Rd), (OpNode (v2i64 V128:$Rn))), (!cast<Instruction>(NAME # "v4i32") (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>; } class BaseSIMDCmpTwoVector<bit Q, bit U, bits<2> size, bits<5> opcode, RegisterOperand regtype, string asm, string kind, string zero, ValueType dty, ValueType sty, SDNode OpNode> : I<(outs regtype:$Rd), (ins regtype:$Rn), asm, "{\t$Rd" # kind # ", $Rn" # kind # ", #" # zero # "|" # kind # "\t$Rd, $Rn, #" # zero # "}", "", [(set (dty regtype:$Rd), (OpNode (sty regtype:$Rn)))]>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size; let Inst{21-17} = 0b10000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } // Comparisons support all element sizes, except 1xD. multiclass SIMDCmpTwoVector<bit U, bits<5> opc, string asm, SDNode OpNode> { def v8i8rz : BaseSIMDCmpTwoVector<0, U, 0b00, opc, V64, asm, ".8b", "0", v8i8, v8i8, OpNode>; def v16i8rz : BaseSIMDCmpTwoVector<1, U, 0b00, opc, V128, asm, ".16b", "0", v16i8, v16i8, OpNode>; def v4i16rz : BaseSIMDCmpTwoVector<0, U, 0b01, opc, V64, asm, ".4h", "0", v4i16, v4i16, OpNode>; def v8i16rz : BaseSIMDCmpTwoVector<1, U, 0b01, opc, V128, asm, ".8h", "0", v8i16, v8i16, OpNode>; def v2i32rz : BaseSIMDCmpTwoVector<0, U, 0b10, opc, V64, asm, ".2s", "0", v2i32, v2i32, OpNode>; def v4i32rz : BaseSIMDCmpTwoVector<1, U, 0b10, opc, V128, asm, ".4s", "0", v4i32, v4i32, OpNode>; def v2i64rz : BaseSIMDCmpTwoVector<1, U, 0b11, opc, V128, asm, ".2d", "0", v2i64, v2i64, OpNode>; } // FP Comparisons support only S and D element sizes. multiclass SIMDFPCmpTwoVector<bit U, bit S, bits<5> opc, string asm, SDNode OpNode> { def v2i32rz : BaseSIMDCmpTwoVector<0, U, {S,0}, opc, V64, asm, ".2s", "0.0", v2i32, v2f32, OpNode>; def v4i32rz : BaseSIMDCmpTwoVector<1, U, {S,0}, opc, V128, asm, ".4s", "0.0", v4i32, v4f32, OpNode>; def v2i64rz : BaseSIMDCmpTwoVector<1, U, {S,1}, opc, V128, asm, ".2d", "0.0", v2i64, v2f64, OpNode>; def : InstAlias<asm # " $Vd.2s, $Vn.2s, #0", (!cast<Instruction>(NAME # v2i32rz) V64:$Vd, V64:$Vn), 0>; def : InstAlias<asm # " $Vd.4s, $Vn.4s, #0", (!cast<Instruction>(NAME # v4i32rz) V128:$Vd, V128:$Vn), 0>; def : InstAlias<asm # " $Vd.2d, $Vn.2d, #0", (!cast<Instruction>(NAME # v2i64rz) V128:$Vd, V128:$Vn), 0>; def : InstAlias<asm # ".2s $Vd, $Vn, #0", (!cast<Instruction>(NAME # v2i32rz) V64:$Vd, V64:$Vn), 0>; def : InstAlias<asm # ".4s $Vd, $Vn, #0", (!cast<Instruction>(NAME # v4i32rz) V128:$Vd, V128:$Vn), 0>; def : InstAlias<asm # ".2d $Vd, $Vn, #0", (!cast<Instruction>(NAME # v2i64rz) V128:$Vd, V128:$Vn), 0>; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDFPCvtTwoVector<bit Q, bit U, bits<2> size, bits<5> opcode, RegisterOperand outtype, RegisterOperand intype, string asm, string VdTy, string VnTy, list<dag> pattern> : I<(outs outtype:$Rd), (ins intype:$Rn), asm, !strconcat("\t$Rd", VdTy, ", $Rn", VnTy), "", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size; let Inst{21-17} = 0b10000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } class BaseSIMDFPCvtTwoVectorTied<bit Q, bit U, bits<2> size, bits<5> opcode, RegisterOperand outtype, RegisterOperand intype, string asm, string VdTy, string VnTy, list<dag> pattern> : I<(outs outtype:$dst), (ins outtype:$Rd, intype:$Rn), asm, !strconcat("\t$Rd", VdTy, ", $Rn", VnTy), "$Rd = $dst", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size; let Inst{21-17} = 0b10000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDFPWidenTwoVector<bit U, bit S, bits<5> opc, string asm> { def v4i16 : BaseSIMDFPCvtTwoVector<0, U, {S,0}, opc, V128, V64, asm, ".4s", ".4h", []>; def v8i16 : BaseSIMDFPCvtTwoVector<1, U, {S,0}, opc, V128, V128, asm#"2", ".4s", ".8h", []>; def v2i32 : BaseSIMDFPCvtTwoVector<0, U, {S,1}, opc, V128, V64, asm, ".2d", ".2s", []>; def v4i32 : BaseSIMDFPCvtTwoVector<1, U, {S,1}, opc, V128, V128, asm#"2", ".2d", ".4s", []>; } multiclass SIMDFPNarrowTwoVector<bit U, bit S, bits<5> opc, string asm> { def v4i16 : BaseSIMDFPCvtTwoVector<0, U, {S,0}, opc, V64, V128, asm, ".4h", ".4s", []>; def v8i16 : BaseSIMDFPCvtTwoVectorTied<1, U, {S,0}, opc, V128, V128, asm#"2", ".8h", ".4s", []>; def v2i32 : BaseSIMDFPCvtTwoVector<0, U, {S,1}, opc, V64, V128, asm, ".2s", ".2d", []>; def v4i32 : BaseSIMDFPCvtTwoVectorTied<1, U, {S,1}, opc, V128, V128, asm#"2", ".4s", ".2d", []>; } multiclass SIMDFPInexactCvtTwoVector<bit U, bit S, bits<5> opc, string asm, Intrinsic OpNode> { def v2f32 : BaseSIMDFPCvtTwoVector<0, U, {S,1}, opc, V64, V128, asm, ".2s", ".2d", [(set (v2f32 V64:$Rd), (OpNode (v2f64 V128:$Rn)))]>; def v4f32 : BaseSIMDFPCvtTwoVectorTied<1, U, {S,1}, opc, V128, V128, asm#"2", ".4s", ".2d", []>; def : Pat<(concat_vectors (v2f32 V64:$Rd), (OpNode (v2f64 V128:$Rn))), (!cast<Instruction>(NAME # "v4f32") (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>; } //---------------------------------------------------------------------------- // AdvSIMD three register different-size vector instructions. //---------------------------------------------------------------------------- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDDifferentThreeVector<bit U, bits<3> size, bits<4> opcode, RegisterOperand outtype, RegisterOperand intype1, RegisterOperand intype2, string asm, string outkind, string inkind1, string inkind2, list<dag> pattern> : I<(outs outtype:$Rd), (ins intype1:$Rn, intype2:$Rm), asm, "{\t$Rd" # outkind # ", $Rn" # inkind1 # ", $Rm" # inkind2 # "|" # outkind # "\t$Rd, $Rn, $Rm}", "", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31} = 0; let Inst{30} = size{0}; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size{2-1}; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15-12} = opcode; let Inst{11-10} = 0b00; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDDifferentThreeVectorTied<bit U, bits<3> size, bits<4> opcode, RegisterOperand outtype, RegisterOperand intype1, RegisterOperand intype2, string asm, string outkind, string inkind1, string inkind2, list<dag> pattern> : I<(outs outtype:$dst), (ins outtype:$Rd, intype1:$Rn, intype2:$Rm), asm, "{\t$Rd" # outkind # ", $Rn" # inkind1 # ", $Rm" # inkind2 # "|" # outkind # "\t$Rd, $Rn, $Rm}", "$Rd = $dst", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31} = 0; let Inst{30} = size{0}; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size{2-1}; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15-12} = opcode; let Inst{11-10} = 0b00; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } // FIXME: TableGen doesn't know how to deal with expanded types that also // change the element count (in this case, placing the results in // the high elements of the result register rather than the low // elements). Until that's fixed, we can't code-gen those. multiclass SIMDNarrowThreeVectorBHS<bit U, bits<4> opc, string asm, Intrinsic IntOp> { def v8i16_v8i8 : BaseSIMDDifferentThreeVector<U, 0b000, opc, V64, V128, V128, asm, ".8b", ".8h", ".8h", [(set (v8i8 V64:$Rd), (IntOp (v8i16 V128:$Rn), (v8i16 V128:$Rm)))]>; def v8i16_v16i8 : BaseSIMDDifferentThreeVectorTied<U, 0b001, opc, V128, V128, V128, asm#"2", ".16b", ".8h", ".8h", []>; def v4i32_v4i16 : BaseSIMDDifferentThreeVector<U, 0b010, opc, V64, V128, V128, asm, ".4h", ".4s", ".4s", [(set (v4i16 V64:$Rd), (IntOp (v4i32 V128:$Rn), (v4i32 V128:$Rm)))]>; def v4i32_v8i16 : BaseSIMDDifferentThreeVectorTied<U, 0b011, opc, V128, V128, V128, asm#"2", ".8h", ".4s", ".4s", []>; def v2i64_v2i32 : BaseSIMDDifferentThreeVector<U, 0b100, opc, V64, V128, V128, asm, ".2s", ".2d", ".2d", [(set (v2i32 V64:$Rd), (IntOp (v2i64 V128:$Rn), (v2i64 V128:$Rm)))]>; def v2i64_v4i32 : BaseSIMDDifferentThreeVectorTied<U, 0b101, opc, V128, V128, V128, asm#"2", ".4s", ".2d", ".2d", []>; // Patterns for the '2' variants involve INSERT_SUBREG, which you can't put in // a version attached to an instruction. def : Pat<(concat_vectors (v8i8 V64:$Rd), (IntOp (v8i16 V128:$Rn), (v8i16 V128:$Rm))), (!cast<Instruction>(NAME # "v8i16_v16i8") (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn, V128:$Rm)>; def : Pat<(concat_vectors (v4i16 V64:$Rd), (IntOp (v4i32 V128:$Rn), (v4i32 V128:$Rm))), (!cast<Instruction>(NAME # "v4i32_v8i16") (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn, V128:$Rm)>; def : Pat<(concat_vectors (v2i32 V64:$Rd), (IntOp (v2i64 V128:$Rn), (v2i64 V128:$Rm))), (!cast<Instruction>(NAME # "v2i64_v4i32") (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn, V128:$Rm)>; } multiclass SIMDDifferentThreeVectorBD<bit U, bits<4> opc, string asm, Intrinsic IntOp> { def v8i8 : BaseSIMDDifferentThreeVector<U, 0b000, opc, V128, V64, V64, asm, ".8h", ".8b", ".8b", [(set (v8i16 V128:$Rd), (IntOp (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>; def v16i8 : BaseSIMDDifferentThreeVector<U, 0b001, opc, V128, V128, V128, asm#"2", ".8h", ".16b", ".16b", []>; let Predicates = [HasCrypto] in { def v1i64 : BaseSIMDDifferentThreeVector<U, 0b110, opc, V128, V64, V64, asm, ".1q", ".1d", ".1d", []>; def v2i64 : BaseSIMDDifferentThreeVector<U, 0b111, opc, V128, V128, V128, asm#"2", ".1q", ".2d", ".2d", []>; } def : Pat<(v8i16 (IntOp (v8i8 (extract_high_v16i8 V128:$Rn)), (v8i8 (extract_high_v16i8 V128:$Rm)))), (!cast<Instruction>(NAME#"v16i8") V128:$Rn, V128:$Rm)>; } multiclass SIMDLongThreeVectorHS<bit U, bits<4> opc, string asm, SDPatternOperator OpNode> { def v4i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b010, opc, V128, V64, V64, asm, ".4s", ".4h", ".4h", [(set (v4i32 V128:$Rd), (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm)))]>; def v8i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b011, opc, V128, V128, V128, asm#"2", ".4s", ".8h", ".8h", [(set (v4i32 V128:$Rd), (OpNode (extract_high_v8i16 V128:$Rn), (extract_high_v8i16 V128:$Rm)))]>; def v2i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b100, opc, V128, V64, V64, asm, ".2d", ".2s", ".2s", [(set (v2i64 V128:$Rd), (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm)))]>; def v4i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b101, opc, V128, V128, V128, asm#"2", ".2d", ".4s", ".4s", [(set (v2i64 V128:$Rd), (OpNode (extract_high_v4i32 V128:$Rn), (extract_high_v4i32 V128:$Rm)))]>; } multiclass SIMDLongThreeVectorBHSabdl<bit U, bits<4> opc, string asm, SDPatternOperator OpNode = null_frag> { def v8i8_v8i16 : BaseSIMDDifferentThreeVector<U, 0b000, opc, V128, V64, V64, asm, ".8h", ".8b", ".8b", [(set (v8i16 V128:$Rd), (zext (v8i8 (OpNode (v8i8 V64:$Rn), (v8i8 V64:$Rm)))))]>; def v16i8_v8i16 : BaseSIMDDifferentThreeVector<U, 0b001, opc, V128, V128, V128, asm#"2", ".8h", ".16b", ".16b", [(set (v8i16 V128:$Rd), (zext (v8i8 (OpNode (extract_high_v16i8 V128:$Rn), (extract_high_v16i8 V128:$Rm)))))]>; def v4i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b010, opc, V128, V64, V64, asm, ".4s", ".4h", ".4h", [(set (v4i32 V128:$Rd), (zext (v4i16 (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm)))))]>; def v8i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b011, opc, V128, V128, V128, asm#"2", ".4s", ".8h", ".8h", [(set (v4i32 V128:$Rd), (zext (v4i16 (OpNode (extract_high_v8i16 V128:$Rn), (extract_high_v8i16 V128:$Rm)))))]>; def v2i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b100, opc, V128, V64, V64, asm, ".2d", ".2s", ".2s", [(set (v2i64 V128:$Rd), (zext (v2i32 (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm)))))]>; def v4i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b101, opc, V128, V128, V128, asm#"2", ".2d", ".4s", ".4s", [(set (v2i64 V128:$Rd), (zext (v2i32 (OpNode (extract_high_v4i32 V128:$Rn), (extract_high_v4i32 V128:$Rm)))))]>; } multiclass SIMDLongThreeVectorTiedBHSabal<bit U, bits<4> opc, string asm, SDPatternOperator OpNode> { def v8i8_v8i16 : BaseSIMDDifferentThreeVectorTied<U, 0b000, opc, V128, V64, V64, asm, ".8h", ".8b", ".8b", [(set (v8i16 V128:$dst), (add (v8i16 V128:$Rd), (zext (v8i8 (OpNode (v8i8 V64:$Rn), (v8i8 V64:$Rm))))))]>; def v16i8_v8i16 : BaseSIMDDifferentThreeVectorTied<U, 0b001, opc, V128, V128, V128, asm#"2", ".8h", ".16b", ".16b", [(set (v8i16 V128:$dst), (add (v8i16 V128:$Rd), (zext (v8i8 (OpNode (extract_high_v16i8 V128:$Rn), (extract_high_v16i8 V128:$Rm))))))]>; def v4i16_v4i32 : BaseSIMDDifferentThreeVectorTied<U, 0b010, opc, V128, V64, V64, asm, ".4s", ".4h", ".4h", [(set (v4i32 V128:$dst), (add (v4i32 V128:$Rd), (zext (v4i16 (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm))))))]>; def v8i16_v4i32 : BaseSIMDDifferentThreeVectorTied<U, 0b011, opc, V128, V128, V128, asm#"2", ".4s", ".8h", ".8h", [(set (v4i32 V128:$dst), (add (v4i32 V128:$Rd), (zext (v4i16 (OpNode (extract_high_v8i16 V128:$Rn), (extract_high_v8i16 V128:$Rm))))))]>; def v2i32_v2i64 : BaseSIMDDifferentThreeVectorTied<U, 0b100, opc, V128, V64, V64, asm, ".2d", ".2s", ".2s", [(set (v2i64 V128:$dst), (add (v2i64 V128:$Rd), (zext (v2i32 (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm))))))]>; def v4i32_v2i64 : BaseSIMDDifferentThreeVectorTied<U, 0b101, opc, V128, V128, V128, asm#"2", ".2d", ".4s", ".4s", [(set (v2i64 V128:$dst), (add (v2i64 V128:$Rd), (zext (v2i32 (OpNode (extract_high_v4i32 V128:$Rn), (extract_high_v4i32 V128:$Rm))))))]>; } multiclass SIMDLongThreeVectorBHS<bit U, bits<4> opc, string asm, SDPatternOperator OpNode = null_frag> { def v8i8_v8i16 : BaseSIMDDifferentThreeVector<U, 0b000, opc, V128, V64, V64, asm, ".8h", ".8b", ".8b", [(set (v8i16 V128:$Rd), (OpNode (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>; def v16i8_v8i16 : BaseSIMDDifferentThreeVector<U, 0b001, opc, V128, V128, V128, asm#"2", ".8h", ".16b", ".16b", [(set (v8i16 V128:$Rd), (OpNode (extract_high_v16i8 V128:$Rn), (extract_high_v16i8 V128:$Rm)))]>; def v4i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b010, opc, V128, V64, V64, asm, ".4s", ".4h", ".4h", [(set (v4i32 V128:$Rd), (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm)))]>; def v8i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b011, opc, V128, V128, V128, asm#"2", ".4s", ".8h", ".8h", [(set (v4i32 V128:$Rd), (OpNode (extract_high_v8i16 V128:$Rn), (extract_high_v8i16 V128:$Rm)))]>; def v2i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b100, opc, V128, V64, V64, asm, ".2d", ".2s", ".2s", [(set (v2i64 V128:$Rd), (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm)))]>; def v4i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b101, opc, V128, V128, V128, asm#"2", ".2d", ".4s", ".4s", [(set (v2i64 V128:$Rd), (OpNode (extract_high_v4i32 V128:$Rn), (extract_high_v4i32 V128:$Rm)))]>; } multiclass SIMDLongThreeVectorTiedBHS<bit U, bits<4> opc, string asm, SDPatternOperator OpNode> { def v8i8_v8i16 : BaseSIMDDifferentThreeVectorTied<U, 0b000, opc, V128, V64, V64, asm, ".8h", ".8b", ".8b", [(set (v8i16 V128:$dst), (OpNode (v8i16 V128:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>; def v16i8_v8i16 : BaseSIMDDifferentThreeVectorTied<U, 0b001, opc, V128, V128, V128, asm#"2", ".8h", ".16b", ".16b", [(set (v8i16 V128:$dst), (OpNode (v8i16 V128:$Rd), (extract_high_v16i8 V128:$Rn), (extract_high_v16i8 V128:$Rm)))]>; def v4i16_v4i32 : BaseSIMDDifferentThreeVectorTied<U, 0b010, opc, V128, V64, V64, asm, ".4s", ".4h", ".4h", [(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd), (v4i16 V64:$Rn), (v4i16 V64:$Rm)))]>; def v8i16_v4i32 : BaseSIMDDifferentThreeVectorTied<U, 0b011, opc, V128, V128, V128, asm#"2", ".4s", ".8h", ".8h", [(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd), (extract_high_v8i16 V128:$Rn), (extract_high_v8i16 V128:$Rm)))]>; def v2i32_v2i64 : BaseSIMDDifferentThreeVectorTied<U, 0b100, opc, V128, V64, V64, asm, ".2d", ".2s", ".2s", [(set (v2i64 V128:$dst), (OpNode (v2i64 V128:$Rd), (v2i32 V64:$Rn), (v2i32 V64:$Rm)))]>; def v4i32_v2i64 : BaseSIMDDifferentThreeVectorTied<U, 0b101, opc, V128, V128, V128, asm#"2", ".2d", ".4s", ".4s", [(set (v2i64 V128:$dst), (OpNode (v2i64 V128:$Rd), (extract_high_v4i32 V128:$Rn), (extract_high_v4i32 V128:$Rm)))]>; } multiclass SIMDLongThreeVectorSQDMLXTiedHS<bit U, bits<4> opc, string asm, SDPatternOperator Accum> { def v4i16_v4i32 : BaseSIMDDifferentThreeVectorTied<U, 0b010, opc, V128, V64, V64, asm, ".4s", ".4h", ".4h", [(set (v4i32 V128:$dst), (Accum (v4i32 V128:$Rd), (v4i32 (int_aarch64_neon_sqdmull (v4i16 V64:$Rn), (v4i16 V64:$Rm)))))]>; def v8i16_v4i32 : BaseSIMDDifferentThreeVectorTied<U, 0b011, opc, V128, V128, V128, asm#"2", ".4s", ".8h", ".8h", [(set (v4i32 V128:$dst), (Accum (v4i32 V128:$Rd), (v4i32 (int_aarch64_neon_sqdmull (extract_high_v8i16 V128:$Rn), (extract_high_v8i16 V128:$Rm)))))]>; def v2i32_v2i64 : BaseSIMDDifferentThreeVectorTied<U, 0b100, opc, V128, V64, V64, asm, ".2d", ".2s", ".2s", [(set (v2i64 V128:$dst), (Accum (v2i64 V128:$Rd), (v2i64 (int_aarch64_neon_sqdmull (v2i32 V64:$Rn), (v2i32 V64:$Rm)))))]>; def v4i32_v2i64 : BaseSIMDDifferentThreeVectorTied<U, 0b101, opc, V128, V128, V128, asm#"2", ".2d", ".4s", ".4s", [(set (v2i64 V128:$dst), (Accum (v2i64 V128:$Rd), (v2i64 (int_aarch64_neon_sqdmull (extract_high_v4i32 V128:$Rn), (extract_high_v4i32 V128:$Rm)))))]>; } multiclass SIMDWideThreeVectorBHS<bit U, bits<4> opc, string asm, SDPatternOperator OpNode> { def v8i8_v8i16 : BaseSIMDDifferentThreeVector<U, 0b000, opc, V128, V128, V64, asm, ".8h", ".8h", ".8b", [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn), (v8i8 V64:$Rm)))]>; def v16i8_v8i16 : BaseSIMDDifferentThreeVector<U, 0b001, opc, V128, V128, V128, asm#"2", ".8h", ".8h", ".16b", [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn), (extract_high_v16i8 V128:$Rm)))]>; def v4i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b010, opc, V128, V128, V64, asm, ".4s", ".4s", ".4h", [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (v4i16 V64:$Rm)))]>; def v8i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b011, opc, V128, V128, V128, asm#"2", ".4s", ".4s", ".8h", [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (extract_high_v8i16 V128:$Rm)))]>; def v2i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b100, opc, V128, V128, V64, asm, ".2d", ".2d", ".2s", [(set (v2i64 V128:$Rd), (OpNode (v2i64 V128:$Rn), (v2i32 V64:$Rm)))]>; def v4i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b101, opc, V128, V128, V128, asm#"2", ".2d", ".2d", ".4s", [(set (v2i64 V128:$Rd), (OpNode (v2i64 V128:$Rn), (extract_high_v4i32 V128:$Rm)))]>; } //---------------------------------------------------------------------------- // AdvSIMD bitwise extract from vector //---------------------------------------------------------------------------- class BaseSIMDBitwiseExtract<bit size, RegisterOperand regtype, ValueType vty, string asm, string kind> : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, i32imm:$imm), asm, "{\t$Rd" # kind # ", $Rn" # kind # ", $Rm" # kind # ", $imm" # "|" # kind # "\t$Rd, $Rn, $Rm, $imm}", "", [(set (vty regtype:$Rd), (AArch64ext regtype:$Rn, regtype:$Rm, (i32 imm:$imm)))]>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; bits<4> imm; let Inst{31} = 0; let Inst{30} = size; let Inst{29-21} = 0b101110000; let Inst{20-16} = Rm; let Inst{15} = 0; let Inst{14-11} = imm; let Inst{10} = 0; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDBitwiseExtract<string asm> { def v8i8 : BaseSIMDBitwiseExtract<0, V64, v8i8, asm, ".8b"> { let imm{3} = 0; } def v16i8 : BaseSIMDBitwiseExtract<1, V128, v16i8, asm, ".16b">; } //---------------------------------------------------------------------------- // AdvSIMD zip vector //---------------------------------------------------------------------------- class BaseSIMDZipVector<bits<3> size, bits<3> opc, RegisterOperand regtype, string asm, string kind, SDNode OpNode, ValueType valty> : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm), asm, "{\t$Rd" # kind # ", $Rn" # kind # ", $Rm" # kind # "|" # kind # "\t$Rd, $Rn, $Rm}", "", [(set (valty regtype:$Rd), (OpNode regtype:$Rn, regtype:$Rm))]>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31} = 0; let Inst{30} = size{0}; let Inst{29-24} = 0b001110; let Inst{23-22} = size{2-1}; let Inst{21} = 0; let Inst{20-16} = Rm; let Inst{15} = 0; let Inst{14-12} = opc; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDZipVector<bits<3>opc, string asm, SDNode OpNode> { def v8i8 : BaseSIMDZipVector<0b000, opc, V64, asm, ".8b", OpNode, v8i8>; def v16i8 : BaseSIMDZipVector<0b001, opc, V128, asm, ".16b", OpNode, v16i8>; def v4i16 : BaseSIMDZipVector<0b010, opc, V64, asm, ".4h", OpNode, v4i16>; def v8i16 : BaseSIMDZipVector<0b011, opc, V128, asm, ".8h", OpNode, v8i16>; def v2i32 : BaseSIMDZipVector<0b100, opc, V64, asm, ".2s", OpNode, v2i32>; def v4i32 : BaseSIMDZipVector<0b101, opc, V128, asm, ".4s", OpNode, v4i32>; def v2i64 : BaseSIMDZipVector<0b111, opc, V128, asm, ".2d", OpNode, v2i64>; def : Pat<(v4f16 (OpNode V64:$Rn, V64:$Rm)), (!cast<Instruction>(NAME#"v4i16") V64:$Rn, V64:$Rm)>; def : Pat<(v8f16 (OpNode V128:$Rn, V128:$Rm)), (!cast<Instruction>(NAME#"v8i16") V128:$Rn, V128:$Rm)>; def : Pat<(v2f32 (OpNode V64:$Rn, V64:$Rm)), (!cast<Instruction>(NAME#"v2i32") V64:$Rn, V64:$Rm)>; def : Pat<(v4f32 (OpNode V128:$Rn, V128:$Rm)), (!cast<Instruction>(NAME#"v4i32") V128:$Rn, V128:$Rm)>; def : Pat<(v2f64 (OpNode V128:$Rn, V128:$Rm)), (!cast<Instruction>(NAME#"v2i64") V128:$Rn, V128:$Rm)>; } //---------------------------------------------------------------------------- // AdvSIMD three register scalar instructions //---------------------------------------------------------------------------- let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in class BaseSIMDThreeScalar<bit U, bits<2> size, bits<5> opcode, RegisterClass regtype, string asm, list<dag> pattern> : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm), asm, "\t$Rd, $Rn, $Rm", "", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31-30} = 0b01; let Inst{29} = U; let Inst{28-24} = 0b11110; let Inst{23-22} = size; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15-11} = opcode; let Inst{10} = 1; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in class BaseSIMDThreeScalarTied<bit U, bits<2> size, bit R, bits<5> opcode, dag oops, dag iops, string asm, list<dag> pattern> : I<oops, iops, asm, "\t$Rd, $Rn, $Rm", "$Rd = $dst", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31-30} = 0b01; let Inst{29} = U; let Inst{28-24} = 0b11110; let Inst{23-22} = size; let Inst{21} = R; let Inst{20-16} = Rm; let Inst{15-11} = opcode; let Inst{10} = 1; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDThreeScalarD<bit U, bits<5> opc, string asm, SDPatternOperator OpNode> { def v1i64 : BaseSIMDThreeScalar<U, 0b11, opc, FPR64, asm, [(set (v1i64 FPR64:$Rd), (OpNode (v1i64 FPR64:$Rn), (v1i64 FPR64:$Rm)))]>; } multiclass SIMDThreeScalarBHSD<bit U, bits<5> opc, string asm, SDPatternOperator OpNode> { def v1i64 : BaseSIMDThreeScalar<U, 0b11, opc, FPR64, asm, [(set (v1i64 FPR64:$Rd), (OpNode (v1i64 FPR64:$Rn), (v1i64 FPR64:$Rm)))]>; def v1i32 : BaseSIMDThreeScalar<U, 0b10, opc, FPR32, asm, []>; def v1i16 : BaseSIMDThreeScalar<U, 0b01, opc, FPR16, asm, []>; def v1i8 : BaseSIMDThreeScalar<U, 0b00, opc, FPR8 , asm, []>; def : Pat<(i64 (OpNode (i64 FPR64:$Rn), (i64 FPR64:$Rm))), (!cast<Instruction>(NAME#"v1i64") FPR64:$Rn, FPR64:$Rm)>; def : Pat<(i32 (OpNode (i32 FPR32:$Rn), (i32 FPR32:$Rm))), (!cast<Instruction>(NAME#"v1i32") FPR32:$Rn, FPR32:$Rm)>; } multiclass SIMDThreeScalarHS<bit U, bits<5> opc, string asm, SDPatternOperator OpNode> { def v1i32 : BaseSIMDThreeScalar<U, 0b10, opc, FPR32, asm, [(set FPR32:$Rd, (OpNode FPR32:$Rn, FPR32:$Rm))]>; def v1i16 : BaseSIMDThreeScalar<U, 0b01, opc, FPR16, asm, []>; } multiclass SIMDThreeScalarHSTied<bit U, bit R, bits<5> opc, string asm, SDPatternOperator OpNode = null_frag> { def v1i32: BaseSIMDThreeScalarTied<U, 0b10, R, opc, (outs FPR32:$dst), (ins FPR32:$Rd, FPR32:$Rn, FPR32:$Rm), asm, []>; def v1i16: BaseSIMDThreeScalarTied<U, 0b01, R, opc, (outs FPR16:$dst), (ins FPR16:$Rd, FPR16:$Rn, FPR16:$Rm), asm, []>; } multiclass SIMDThreeScalarSD<bit U, bit S, bits<5> opc, string asm, SDPatternOperator OpNode = null_frag> { let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { def #NAME#64 : BaseSIMDThreeScalar<U, {S,1}, opc, FPR64, asm, [(set (f64 FPR64:$Rd), (OpNode (f64 FPR64:$Rn), (f64 FPR64:$Rm)))]>; def #NAME#32 : BaseSIMDThreeScalar<U, {S,0}, opc, FPR32, asm, [(set FPR32:$Rd, (OpNode FPR32:$Rn, FPR32:$Rm))]>; } def : Pat<(v1f64 (OpNode (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), (!cast<Instruction>(NAME # "64") FPR64:$Rn, FPR64:$Rm)>; } multiclass SIMDThreeScalarFPCmp<bit U, bit S, bits<5> opc, string asm, SDPatternOperator OpNode = null_frag> { let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { def #NAME#64 : BaseSIMDThreeScalar<U, {S,1}, opc, FPR64, asm, [(set (i64 FPR64:$Rd), (OpNode (f64 FPR64:$Rn), (f64 FPR64:$Rm)))]>; def #NAME#32 : BaseSIMDThreeScalar<U, {S,0}, opc, FPR32, asm, [(set (i32 FPR32:$Rd), (OpNode (f32 FPR32:$Rn), (f32 FPR32:$Rm)))]>; } def : Pat<(v1i64 (OpNode (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), (!cast<Instruction>(NAME # "64") FPR64:$Rn, FPR64:$Rm)>; } class BaseSIMDThreeScalarMixed<bit U, bits<2> size, bits<5> opcode, dag oops, dag iops, string asm, string cstr, list<dag> pat> : I<oops, iops, asm, "\t$Rd, $Rn, $Rm", cstr, pat>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31-30} = 0b01; let Inst{29} = U; let Inst{28-24} = 0b11110; let Inst{23-22} = size; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15-11} = opcode; let Inst{10} = 0; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in multiclass SIMDThreeScalarMixedHS<bit U, bits<5> opc, string asm, SDPatternOperator OpNode = null_frag> { def i16 : BaseSIMDThreeScalarMixed<U, 0b01, opc, (outs FPR32:$Rd), (ins FPR16:$Rn, FPR16:$Rm), asm, "", []>; def i32 : BaseSIMDThreeScalarMixed<U, 0b10, opc, (outs FPR64:$Rd), (ins FPR32:$Rn, FPR32:$Rm), asm, "", [(set (i64 FPR64:$Rd), (OpNode (i32 FPR32:$Rn), (i32 FPR32:$Rm)))]>; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in multiclass SIMDThreeScalarMixedTiedHS<bit U, bits<5> opc, string asm, SDPatternOperator OpNode = null_frag> { def i16 : BaseSIMDThreeScalarMixed<U, 0b01, opc, (outs FPR32:$dst), (ins FPR32:$Rd, FPR16:$Rn, FPR16:$Rm), asm, "$Rd = $dst", []>; def i32 : BaseSIMDThreeScalarMixed<U, 0b10, opc, (outs FPR64:$dst), (ins FPR64:$Rd, FPR32:$Rn, FPR32:$Rm), asm, "$Rd = $dst", [(set (i64 FPR64:$dst), (OpNode (i64 FPR64:$Rd), (i32 FPR32:$Rn), (i32 FPR32:$Rm)))]>; } //---------------------------------------------------------------------------- // AdvSIMD two register scalar instructions //---------------------------------------------------------------------------- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDTwoScalar<bit U, bits<2> size, bits<5> opcode, RegisterClass regtype, RegisterClass regtype2, string asm, list<dag> pat> : I<(outs regtype:$Rd), (ins regtype2:$Rn), asm, "\t$Rd, $Rn", "", pat>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31-30} = 0b01; let Inst{29} = U; let Inst{28-24} = 0b11110; let Inst{23-22} = size; let Inst{21-17} = 0b10000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDTwoScalarTied<bit U, bits<2> size, bits<5> opcode, RegisterClass regtype, RegisterClass regtype2, string asm, list<dag> pat> : I<(outs regtype:$dst), (ins regtype:$Rd, regtype2:$Rn), asm, "\t$Rd, $Rn", "$Rd = $dst", pat>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31-30} = 0b01; let Inst{29} = U; let Inst{28-24} = 0b11110; let Inst{23-22} = size; let Inst{21-17} = 0b10000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDCmpTwoScalar<bit U, bits<2> size, bits<5> opcode, RegisterClass regtype, string asm, string zero> : I<(outs regtype:$Rd), (ins regtype:$Rn), asm, "\t$Rd, $Rn, #" # zero, "", []>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31-30} = 0b01; let Inst{29} = U; let Inst{28-24} = 0b11110; let Inst{23-22} = size; let Inst{21-17} = 0b10000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } class SIMDInexactCvtTwoScalar<bits<5> opcode, string asm> : I<(outs FPR32:$Rd), (ins FPR64:$Rn), asm, "\t$Rd, $Rn", "", [(set (f32 FPR32:$Rd), (int_aarch64_sisd_fcvtxn (f64 FPR64:$Rn)))]>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31-17} = 0b011111100110000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDCmpTwoScalarD<bit U, bits<5> opc, string asm, SDPatternOperator OpNode> { def v1i64rz : BaseSIMDCmpTwoScalar<U, 0b11, opc, FPR64, asm, "0">; def : Pat<(v1i64 (OpNode FPR64:$Rn)), (!cast<Instruction>(NAME # v1i64rz) FPR64:$Rn)>; } multiclass SIMDCmpTwoScalarSD<bit U, bit S, bits<5> opc, string asm, SDPatternOperator OpNode> { def v1i64rz : BaseSIMDCmpTwoScalar<U, {S,1}, opc, FPR64, asm, "0.0">; def v1i32rz : BaseSIMDCmpTwoScalar<U, {S,0}, opc, FPR32, asm, "0.0">; def : InstAlias<asm # " $Rd, $Rn, #0", (!cast<Instruction>(NAME # v1i64rz) FPR64:$Rd, FPR64:$Rn), 0>; def : InstAlias<asm # " $Rd, $Rn, #0", (!cast<Instruction>(NAME # v1i32rz) FPR32:$Rd, FPR32:$Rn), 0>; def : Pat<(v1i64 (OpNode (v1f64 FPR64:$Rn))), (!cast<Instruction>(NAME # v1i64rz) FPR64:$Rn)>; } multiclass SIMDTwoScalarD<bit U, bits<5> opc, string asm, SDPatternOperator OpNode = null_frag> { def v1i64 : BaseSIMDTwoScalar<U, 0b11, opc, FPR64, FPR64, asm, [(set (v1i64 FPR64:$Rd), (OpNode (v1i64 FPR64:$Rn)))]>; def : Pat<(i64 (OpNode (i64 FPR64:$Rn))), (!cast<Instruction>(NAME # "v1i64") FPR64:$Rn)>; } multiclass SIMDTwoScalarSD<bit U, bit S, bits<5> opc, string asm> { def v1i64 : BaseSIMDTwoScalar<U, {S,1}, opc, FPR64, FPR64, asm,[]>; def v1i32 : BaseSIMDTwoScalar<U, {S,0}, opc, FPR32, FPR32, asm,[]>; } multiclass SIMDTwoScalarCVTSD<bit U, bit S, bits<5> opc, string asm, SDPatternOperator OpNode> { def v1i64 : BaseSIMDTwoScalar<U, {S,1}, opc, FPR64, FPR64, asm, [(set FPR64:$Rd, (OpNode (f64 FPR64:$Rn)))]>; def v1i32 : BaseSIMDTwoScalar<U, {S,0}, opc, FPR32, FPR32, asm, [(set FPR32:$Rd, (OpNode (f32 FPR32:$Rn)))]>; } multiclass SIMDTwoScalarBHSD<bit U, bits<5> opc, string asm, SDPatternOperator OpNode = null_frag> { let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { def v1i64 : BaseSIMDTwoScalar<U, 0b11, opc, FPR64, FPR64, asm, [(set (i64 FPR64:$Rd), (OpNode (i64 FPR64:$Rn)))]>; def v1i32 : BaseSIMDTwoScalar<U, 0b10, opc, FPR32, FPR32, asm, [(set (i32 FPR32:$Rd), (OpNode (i32 FPR32:$Rn)))]>; def v1i16 : BaseSIMDTwoScalar<U, 0b01, opc, FPR16, FPR16, asm, []>; def v1i8 : BaseSIMDTwoScalar<U, 0b00, opc, FPR8 , FPR8 , asm, []>; } def : Pat<(v1i64 (OpNode (v1i64 FPR64:$Rn))), (!cast<Instruction>(NAME # v1i64) FPR64:$Rn)>; } multiclass SIMDTwoScalarBHSDTied<bit U, bits<5> opc, string asm, Intrinsic OpNode> { let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { def v1i64 : BaseSIMDTwoScalarTied<U, 0b11, opc, FPR64, FPR64, asm, [(set (i64 FPR64:$dst), (OpNode (i64 FPR64:$Rd), (i64 FPR64:$Rn)))]>; def v1i32 : BaseSIMDTwoScalarTied<U, 0b10, opc, FPR32, FPR32, asm, [(set (i32 FPR32:$dst), (OpNode (i32 FPR32:$Rd), (i32 FPR32:$Rn)))]>; def v1i16 : BaseSIMDTwoScalarTied<U, 0b01, opc, FPR16, FPR16, asm, []>; def v1i8 : BaseSIMDTwoScalarTied<U, 0b00, opc, FPR8 , FPR8 , asm, []>; } def : Pat<(v1i64 (OpNode (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn))), (!cast<Instruction>(NAME # v1i64) FPR64:$Rd, FPR64:$Rn)>; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in multiclass SIMDTwoScalarMixedBHS<bit U, bits<5> opc, string asm, SDPatternOperator OpNode = null_frag> { def v1i32 : BaseSIMDTwoScalar<U, 0b10, opc, FPR32, FPR64, asm, [(set (i32 FPR32:$Rd), (OpNode (i64 FPR64:$Rn)))]>; def v1i16 : BaseSIMDTwoScalar<U, 0b01, opc, FPR16, FPR32, asm, []>; def v1i8 : BaseSIMDTwoScalar<U, 0b00, opc, FPR8 , FPR16, asm, []>; } //---------------------------------------------------------------------------- // AdvSIMD scalar pairwise instructions //---------------------------------------------------------------------------- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDPairwiseScalar<bit U, bits<2> size, bits<5> opcode, RegisterOperand regtype, RegisterOperand vectype, string asm, string kind> : I<(outs regtype:$Rd), (ins vectype:$Rn), asm, "{\t$Rd, $Rn" # kind # "|" # kind # "\t$Rd, $Rn}", "", []>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31-30} = 0b01; let Inst{29} = U; let Inst{28-24} = 0b11110; let Inst{23-22} = size; let Inst{21-17} = 0b11000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDPairwiseScalarD<bit U, bits<5> opc, string asm> { def v2i64p : BaseSIMDPairwiseScalar<U, 0b11, opc, FPR64Op, V128, asm, ".2d">; } multiclass SIMDPairwiseScalarSD<bit U, bit S, bits<5> opc, string asm> { def v2i32p : BaseSIMDPairwiseScalar<U, {S,0}, opc, FPR32Op, V64, asm, ".2s">; def v2i64p : BaseSIMDPairwiseScalar<U, {S,1}, opc, FPR64Op, V128, asm, ".2d">; } //---------------------------------------------------------------------------- // AdvSIMD across lanes instructions //---------------------------------------------------------------------------- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDAcrossLanes<bit Q, bit U, bits<2> size, bits<5> opcode, RegisterClass regtype, RegisterOperand vectype, string asm, string kind, list<dag> pattern> : I<(outs regtype:$Rd), (ins vectype:$Rn), asm, "{\t$Rd, $Rn" # kind # "|" # kind # "\t$Rd, $Rn}", "", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size; let Inst{21-17} = 0b11000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDAcrossLanesBHS<bit U, bits<5> opcode, string asm> { def v8i8v : BaseSIMDAcrossLanes<0, U, 0b00, opcode, FPR8, V64, asm, ".8b", []>; def v16i8v : BaseSIMDAcrossLanes<1, U, 0b00, opcode, FPR8, V128, asm, ".16b", []>; def v4i16v : BaseSIMDAcrossLanes<0, U, 0b01, opcode, FPR16, V64, asm, ".4h", []>; def v8i16v : BaseSIMDAcrossLanes<1, U, 0b01, opcode, FPR16, V128, asm, ".8h", []>; def v4i32v : BaseSIMDAcrossLanes<1, U, 0b10, opcode, FPR32, V128, asm, ".4s", []>; } multiclass SIMDAcrossLanesHSD<bit U, bits<5> opcode, string asm> { def v8i8v : BaseSIMDAcrossLanes<0, U, 0b00, opcode, FPR16, V64, asm, ".8b", []>; def v16i8v : BaseSIMDAcrossLanes<1, U, 0b00, opcode, FPR16, V128, asm, ".16b", []>; def v4i16v : BaseSIMDAcrossLanes<0, U, 0b01, opcode, FPR32, V64, asm, ".4h", []>; def v8i16v : BaseSIMDAcrossLanes<1, U, 0b01, opcode, FPR32, V128, asm, ".8h", []>; def v4i32v : BaseSIMDAcrossLanes<1, U, 0b10, opcode, FPR64, V128, asm, ".4s", []>; } multiclass SIMDAcrossLanesS<bits<5> opcode, bit sz1, string asm, Intrinsic intOp> { def v4i32v : BaseSIMDAcrossLanes<1, 1, {sz1, 0}, opcode, FPR32, V128, asm, ".4s", [(set FPR32:$Rd, (intOp (v4f32 V128:$Rn)))]>; } //---------------------------------------------------------------------------- // AdvSIMD INS/DUP instructions //---------------------------------------------------------------------------- // FIXME: There has got to be a better way to factor these. ugh. class BaseSIMDInsDup<bit Q, bit op, dag outs, dag ins, string asm, string operands, string constraints, list<dag> pattern> : I<outs, ins, asm, operands, constraints, pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = op; let Inst{28-21} = 0b01110000; let Inst{15} = 0; let Inst{10} = 1; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } class SIMDDupFromMain<bit Q, bits<5> imm5, string size, ValueType vectype, RegisterOperand vecreg, RegisterClass regtype> : BaseSIMDInsDup<Q, 0, (outs vecreg:$Rd), (ins regtype:$Rn), "dup", "{\t$Rd" # size # ", $Rn" # "|" # size # "\t$Rd, $Rn}", "", [(set (vectype vecreg:$Rd), (AArch64dup regtype:$Rn))]> { let Inst{20-16} = imm5; let Inst{14-11} = 0b0001; } class SIMDDupFromElement<bit Q, string dstkind, string srckind, ValueType vectype, ValueType insreg, RegisterOperand vecreg, Operand idxtype, ValueType elttype, SDNode OpNode> : BaseSIMDInsDup<Q, 0, (outs vecreg:$Rd), (ins V128:$Rn, idxtype:$idx), "dup", "{\t$Rd" # dstkind # ", $Rn" # srckind # "$idx" # "|" # dstkind # "\t$Rd, $Rn$idx}", "", [(set (vectype vecreg:$Rd), (OpNode (insreg V128:$Rn), idxtype:$idx))]> { let Inst{14-11} = 0b0000; } class SIMDDup64FromElement : SIMDDupFromElement<1, ".2d", ".d", v2i64, v2i64, V128, VectorIndexD, i64, AArch64duplane64> { bits<1> idx; let Inst{20} = idx; let Inst{19-16} = 0b1000; } class SIMDDup32FromElement<bit Q, string size, ValueType vectype, RegisterOperand vecreg> : SIMDDupFromElement<Q, size, ".s", vectype, v4i32, vecreg, VectorIndexS, i64, AArch64duplane32> { bits<2> idx; let Inst{20-19} = idx; let Inst{18-16} = 0b100; } class SIMDDup16FromElement<bit Q, string size, ValueType vectype, RegisterOperand vecreg> : SIMDDupFromElement<Q, size, ".h", vectype, v8i16, vecreg, VectorIndexH, i64, AArch64duplane16> { bits<3> idx; let Inst{20-18} = idx; let Inst{17-16} = 0b10; } class SIMDDup8FromElement<bit Q, string size, ValueType vectype, RegisterOperand vecreg> : SIMDDupFromElement<Q, size, ".b", vectype, v16i8, vecreg, VectorIndexB, i64, AArch64duplane8> { bits<4> idx; let Inst{20-17} = idx; let Inst{16} = 1; } class BaseSIMDMov<bit Q, string size, bits<4> imm4, RegisterClass regtype, Operand idxtype, string asm, list<dag> pattern> : BaseSIMDInsDup<Q, 0, (outs regtype:$Rd), (ins V128:$Rn, idxtype:$idx), asm, "{\t$Rd, $Rn" # size # "$idx" # "|" # size # "\t$Rd, $Rn$idx}", "", pattern> { let Inst{14-11} = imm4; } class SIMDSMov<bit Q, string size, RegisterClass regtype, Operand idxtype> : BaseSIMDMov<Q, size, 0b0101, regtype, idxtype, "smov", []>; class SIMDUMov<bit Q, string size, ValueType vectype, RegisterClass regtype, Operand idxtype> : BaseSIMDMov<Q, size, 0b0111, regtype, idxtype, "umov", [(set regtype:$Rd, (vector_extract (vectype V128:$Rn), idxtype:$idx))]>; class SIMDMovAlias<string asm, string size, Instruction inst, RegisterClass regtype, Operand idxtype> : InstAlias<asm#"{\t$dst, $src"#size#"$idx" # "|" # size # "\t$dst, $src$idx}", (inst regtype:$dst, V128:$src, idxtype:$idx)>; multiclass SMov { def vi8to32 : SIMDSMov<0, ".b", GPR32, VectorIndexB> { bits<4> idx; let Inst{20-17} = idx; let Inst{16} = 1; } def vi8to64 : SIMDSMov<1, ".b", GPR64, VectorIndexB> { bits<4> idx; let Inst{20-17} = idx; let Inst{16} = 1; } def vi16to32 : SIMDSMov<0, ".h", GPR32, VectorIndexH> { bits<3> idx; let Inst{20-18} = idx; let Inst{17-16} = 0b10; } def vi16to64 : SIMDSMov<1, ".h", GPR64, VectorIndexH> { bits<3> idx; let Inst{20-18} = idx; let Inst{17-16} = 0b10; } def vi32to64 : SIMDSMov<1, ".s", GPR64, VectorIndexS> { bits<2> idx; let Inst{20-19} = idx; let Inst{18-16} = 0b100; } } multiclass UMov { def vi8 : SIMDUMov<0, ".b", v16i8, GPR32, VectorIndexB> { bits<4> idx; let Inst{20-17} = idx; let Inst{16} = 1; } def vi16 : SIMDUMov<0, ".h", v8i16, GPR32, VectorIndexH> { bits<3> idx; let Inst{20-18} = idx; let Inst{17-16} = 0b10; } def vi32 : SIMDUMov<0, ".s", v4i32, GPR32, VectorIndexS> { bits<2> idx; let Inst{20-19} = idx; let Inst{18-16} = 0b100; } def vi64 : SIMDUMov<1, ".d", v2i64, GPR64, VectorIndexD> { bits<1> idx; let Inst{20} = idx; let Inst{19-16} = 0b1000; } def : SIMDMovAlias<"mov", ".s", !cast<Instruction>(NAME#"vi32"), GPR32, VectorIndexS>; def : SIMDMovAlias<"mov", ".d", !cast<Instruction>(NAME#"vi64"), GPR64, VectorIndexD>; } class SIMDInsFromMain<string size, ValueType vectype, RegisterClass regtype, Operand idxtype> : BaseSIMDInsDup<1, 0, (outs V128:$dst), (ins V128:$Rd, idxtype:$idx, regtype:$Rn), "ins", "{\t$Rd" # size # "$idx, $Rn" # "|" # size # "\t$Rd$idx, $Rn}", "$Rd = $dst", [(set V128:$dst, (vector_insert (vectype V128:$Rd), regtype:$Rn, idxtype:$idx))]> { let Inst{14-11} = 0b0011; } class SIMDInsFromElement<string size, ValueType vectype, ValueType elttype, Operand idxtype> : BaseSIMDInsDup<1, 1, (outs V128:$dst), (ins V128:$Rd, idxtype:$idx, V128:$Rn, idxtype:$idx2), "ins", "{\t$Rd" # size # "$idx, $Rn" # size # "$idx2" # "|" # size # "\t$Rd$idx, $Rn$idx2}", "$Rd = $dst", [(set V128:$dst, (vector_insert (vectype V128:$Rd), (elttype (vector_extract (vectype V128:$Rn), idxtype:$idx2)), idxtype:$idx))]>; class SIMDInsMainMovAlias<string size, Instruction inst, RegisterClass regtype, Operand idxtype> : InstAlias<"mov" # "{\t$dst" # size # "$idx, $src" # "|" # size #"\t$dst$idx, $src}", (inst V128:$dst, idxtype:$idx, regtype:$src)>; class SIMDInsElementMovAlias<string size, Instruction inst, Operand idxtype> : InstAlias<"mov" # "{\t$dst" # size # "$idx, $src" # size # "$idx2" # # "|" # size #" $dst$idx, $src$idx2}", (inst V128:$dst, idxtype:$idx, V128:$src, idxtype:$idx2)>; multiclass SIMDIns { def vi8gpr : SIMDInsFromMain<".b", v16i8, GPR32, VectorIndexB> { bits<4> idx; let Inst{20-17} = idx; let Inst{16} = 1; } def vi16gpr : SIMDInsFromMain<".h", v8i16, GPR32, VectorIndexH> { bits<3> idx; let Inst{20-18} = idx; let Inst{17-16} = 0b10; } def vi32gpr : SIMDInsFromMain<".s", v4i32, GPR32, VectorIndexS> { bits<2> idx; let Inst{20-19} = idx; let Inst{18-16} = 0b100; } def vi64gpr : SIMDInsFromMain<".d", v2i64, GPR64, VectorIndexD> { bits<1> idx; let Inst{20} = idx; let Inst{19-16} = 0b1000; } def vi8lane : SIMDInsFromElement<".b", v16i8, i32, VectorIndexB> { bits<4> idx; bits<4> idx2; let Inst{20-17} = idx; let Inst{16} = 1; let Inst{14-11} = idx2; } def vi16lane : SIMDInsFromElement<".h", v8i16, i32, VectorIndexH> { bits<3> idx; bits<3> idx2; let Inst{20-18} = idx; let Inst{17-16} = 0b10; let Inst{14-12} = idx2; let Inst{11} = {?}; } def vi32lane : SIMDInsFromElement<".s", v4i32, i32, VectorIndexS> { bits<2> idx; bits<2> idx2; let Inst{20-19} = idx; let Inst{18-16} = 0b100; let Inst{14-13} = idx2; let Inst{12-11} = {?,?}; } def vi64lane : SIMDInsFromElement<".d", v2i64, i64, VectorIndexD> { bits<1> idx; bits<1> idx2; let Inst{20} = idx; let Inst{19-16} = 0b1000; let Inst{14} = idx2; let Inst{13-11} = {?,?,?}; } // For all forms of the INS instruction, the "mov" mnemonic is the // preferred alias. Why they didn't just call the instruction "mov" in // the first place is a very good question indeed... def : SIMDInsMainMovAlias<".b", !cast<Instruction>(NAME#"vi8gpr"), GPR32, VectorIndexB>; def : SIMDInsMainMovAlias<".h", !cast<Instruction>(NAME#"vi16gpr"), GPR32, VectorIndexH>; def : SIMDInsMainMovAlias<".s", !cast<Instruction>(NAME#"vi32gpr"), GPR32, VectorIndexS>; def : SIMDInsMainMovAlias<".d", !cast<Instruction>(NAME#"vi64gpr"), GPR64, VectorIndexD>; def : SIMDInsElementMovAlias<".b", !cast<Instruction>(NAME#"vi8lane"), VectorIndexB>; def : SIMDInsElementMovAlias<".h", !cast<Instruction>(NAME#"vi16lane"), VectorIndexH>; def : SIMDInsElementMovAlias<".s", !cast<Instruction>(NAME#"vi32lane"), VectorIndexS>; def : SIMDInsElementMovAlias<".d", !cast<Instruction>(NAME#"vi64lane"), VectorIndexD>; } //---------------------------------------------------------------------------- // AdvSIMD TBL/TBX //---------------------------------------------------------------------------- let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in class BaseSIMDTableLookup<bit Q, bits<2> len, bit op, RegisterOperand vectype, RegisterOperand listtype, string asm, string kind> : I<(outs vectype:$Vd), (ins listtype:$Vn, vectype:$Vm), asm, "\t$Vd" # kind # ", $Vn, $Vm" # kind, "", []>, Sched<[WriteV]> { bits<5> Vd; bits<5> Vn; bits<5> Vm; let Inst{31} = 0; let Inst{30} = Q; let Inst{29-21} = 0b001110000; let Inst{20-16} = Vm; let Inst{15} = 0; let Inst{14-13} = len; let Inst{12} = op; let Inst{11-10} = 0b00; let Inst{9-5} = Vn; let Inst{4-0} = Vd; } let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in class BaseSIMDTableLookupTied<bit Q, bits<2> len, bit op, RegisterOperand vectype, RegisterOperand listtype, string asm, string kind> : I<(outs vectype:$dst), (ins vectype:$Vd, listtype:$Vn, vectype:$Vm), asm, "\t$Vd" # kind # ", $Vn, $Vm" # kind, "$Vd = $dst", []>, Sched<[WriteV]> { bits<5> Vd; bits<5> Vn; bits<5> Vm; let Inst{31} = 0; let Inst{30} = Q; let Inst{29-21} = 0b001110000; let Inst{20-16} = Vm; let Inst{15} = 0; let Inst{14-13} = len; let Inst{12} = op; let Inst{11-10} = 0b00; let Inst{9-5} = Vn; let Inst{4-0} = Vd; } class SIMDTableLookupAlias<string asm, Instruction inst, RegisterOperand vectype, RegisterOperand listtype> : InstAlias<!strconcat(asm, "\t$dst, $lst, $index"), (inst vectype:$dst, listtype:$lst, vectype:$index), 0>; multiclass SIMDTableLookup<bit op, string asm> { def v8i8One : BaseSIMDTableLookup<0, 0b00, op, V64, VecListOne16b, asm, ".8b">; def v8i8Two : BaseSIMDTableLookup<0, 0b01, op, V64, VecListTwo16b, asm, ".8b">; def v8i8Three : BaseSIMDTableLookup<0, 0b10, op, V64, VecListThree16b, asm, ".8b">; def v8i8Four : BaseSIMDTableLookup<0, 0b11, op, V64, VecListFour16b, asm, ".8b">; def v16i8One : BaseSIMDTableLookup<1, 0b00, op, V128, VecListOne16b, asm, ".16b">; def v16i8Two : BaseSIMDTableLookup<1, 0b01, op, V128, VecListTwo16b, asm, ".16b">; def v16i8Three: BaseSIMDTableLookup<1, 0b10, op, V128, VecListThree16b, asm, ".16b">; def v16i8Four : BaseSIMDTableLookup<1, 0b11, op, V128, VecListFour16b, asm, ".16b">; def : SIMDTableLookupAlias<asm # ".8b", !cast<Instruction>(NAME#"v8i8One"), V64, VecListOne128>; def : SIMDTableLookupAlias<asm # ".8b", !cast<Instruction>(NAME#"v8i8Two"), V64, VecListTwo128>; def : SIMDTableLookupAlias<asm # ".8b", !cast<Instruction>(NAME#"v8i8Three"), V64, VecListThree128>; def : SIMDTableLookupAlias<asm # ".8b", !cast<Instruction>(NAME#"v8i8Four"), V64, VecListFour128>; def : SIMDTableLookupAlias<asm # ".16b", !cast<Instruction>(NAME#"v16i8One"), V128, VecListOne128>; def : SIMDTableLookupAlias<asm # ".16b", !cast<Instruction>(NAME#"v16i8Two"), V128, VecListTwo128>; def : SIMDTableLookupAlias<asm # ".16b", !cast<Instruction>(NAME#"v16i8Three"), V128, VecListThree128>; def : SIMDTableLookupAlias<asm # ".16b", !cast<Instruction>(NAME#"v16i8Four"), V128, VecListFour128>; } multiclass SIMDTableLookupTied<bit op, string asm> { def v8i8One : BaseSIMDTableLookupTied<0, 0b00, op, V64, VecListOne16b, asm, ".8b">; def v8i8Two : BaseSIMDTableLookupTied<0, 0b01, op, V64, VecListTwo16b, asm, ".8b">; def v8i8Three : BaseSIMDTableLookupTied<0, 0b10, op, V64, VecListThree16b, asm, ".8b">; def v8i8Four : BaseSIMDTableLookupTied<0, 0b11, op, V64, VecListFour16b, asm, ".8b">; def v16i8One : BaseSIMDTableLookupTied<1, 0b00, op, V128, VecListOne16b, asm, ".16b">; def v16i8Two : BaseSIMDTableLookupTied<1, 0b01, op, V128, VecListTwo16b, asm, ".16b">; def v16i8Three: BaseSIMDTableLookupTied<1, 0b10, op, V128, VecListThree16b, asm, ".16b">; def v16i8Four : BaseSIMDTableLookupTied<1, 0b11, op, V128, VecListFour16b, asm, ".16b">; def : SIMDTableLookupAlias<asm # ".8b", !cast<Instruction>(NAME#"v8i8One"), V64, VecListOne128>; def : SIMDTableLookupAlias<asm # ".8b", !cast<Instruction>(NAME#"v8i8Two"), V64, VecListTwo128>; def : SIMDTableLookupAlias<asm # ".8b", !cast<Instruction>(NAME#"v8i8Three"), V64, VecListThree128>; def : SIMDTableLookupAlias<asm # ".8b", !cast<Instruction>(NAME#"v8i8Four"), V64, VecListFour128>; def : SIMDTableLookupAlias<asm # ".16b", !cast<Instruction>(NAME#"v16i8One"), V128, VecListOne128>; def : SIMDTableLookupAlias<asm # ".16b", !cast<Instruction>(NAME#"v16i8Two"), V128, VecListTwo128>; def : SIMDTableLookupAlias<asm # ".16b", !cast<Instruction>(NAME#"v16i8Three"), V128, VecListThree128>; def : SIMDTableLookupAlias<asm # ".16b", !cast<Instruction>(NAME#"v16i8Four"), V128, VecListFour128>; } //---------------------------------------------------------------------------- // AdvSIMD scalar CPY //---------------------------------------------------------------------------- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDScalarCPY<RegisterClass regtype, RegisterOperand vectype, string kind, Operand idxtype> : I<(outs regtype:$dst), (ins vectype:$src, idxtype:$idx), "mov", "{\t$dst, $src" # kind # "$idx" # "|\t$dst, $src$idx}", "", []>, Sched<[WriteV]> { bits<5> dst; bits<5> src; let Inst{31-21} = 0b01011110000; let Inst{15-10} = 0b000001; let Inst{9-5} = src; let Inst{4-0} = dst; } class SIMDScalarCPYAlias<string asm, string size, Instruction inst, RegisterClass regtype, RegisterOperand vectype, Operand idxtype> : InstAlias<asm # "{\t$dst, $src" # size # "$index" # # "|\t$dst, $src$index}", (inst regtype:$dst, vectype:$src, idxtype:$index), 0>; multiclass SIMDScalarCPY<string asm> { def i8 : BaseSIMDScalarCPY<FPR8, V128, ".b", VectorIndexB> { bits<4> idx; let Inst{20-17} = idx; let Inst{16} = 1; } def i16 : BaseSIMDScalarCPY<FPR16, V128, ".h", VectorIndexH> { bits<3> idx; let Inst{20-18} = idx; let Inst{17-16} = 0b10; } def i32 : BaseSIMDScalarCPY<FPR32, V128, ".s", VectorIndexS> { bits<2> idx; let Inst{20-19} = idx; let Inst{18-16} = 0b100; } def i64 : BaseSIMDScalarCPY<FPR64, V128, ".d", VectorIndexD> { bits<1> idx; let Inst{20} = idx; let Inst{19-16} = 0b1000; } def : Pat<(v1i64 (scalar_to_vector (i64 (vector_extract (v2i64 V128:$src), VectorIndexD:$idx)))), (!cast<Instruction>(NAME # i64) V128:$src, VectorIndexD:$idx)>; // 'DUP' mnemonic aliases. def : SIMDScalarCPYAlias<"dup", ".b", !cast<Instruction>(NAME#"i8"), FPR8, V128, VectorIndexB>; def : SIMDScalarCPYAlias<"dup", ".h", !cast<Instruction>(NAME#"i16"), FPR16, V128, VectorIndexH>; def : SIMDScalarCPYAlias<"dup", ".s", !cast<Instruction>(NAME#"i32"), FPR32, V128, VectorIndexS>; def : SIMDScalarCPYAlias<"dup", ".d", !cast<Instruction>(NAME#"i64"), FPR64, V128, VectorIndexD>; } //---------------------------------------------------------------------------- // AdvSIMD modified immediate instructions //---------------------------------------------------------------------------- class BaseSIMDModifiedImm<bit Q, bit op, dag oops, dag iops, string asm, string op_string, string cstr, list<dag> pattern> : I<oops, iops, asm, op_string, cstr, pattern>, Sched<[WriteV]> { bits<5> Rd; bits<8> imm8; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = op; let Inst{28-19} = 0b0111100000; let Inst{18-16} = imm8{7-5}; let Inst{11-10} = 0b01; let Inst{9-5} = imm8{4-0}; let Inst{4-0} = Rd; } class BaseSIMDModifiedImmVector<bit Q, bit op, RegisterOperand vectype, Operand immtype, dag opt_shift_iop, string opt_shift, string asm, string kind, list<dag> pattern> : BaseSIMDModifiedImm<Q, op, (outs vectype:$Rd), !con((ins immtype:$imm8), opt_shift_iop), asm, "{\t$Rd" # kind # ", $imm8" # opt_shift # "|" # kind # "\t$Rd, $imm8" # opt_shift # "}", "", pattern> { let DecoderMethod = "DecodeModImmInstruction"; } class BaseSIMDModifiedImmVectorTied<bit Q, bit op, RegisterOperand vectype, Operand immtype, dag opt_shift_iop, string opt_shift, string asm, string kind, list<dag> pattern> : BaseSIMDModifiedImm<Q, op, (outs vectype:$dst), !con((ins vectype:$Rd, immtype:$imm8), opt_shift_iop), asm, "{\t$Rd" # kind # ", $imm8" # opt_shift # "|" # kind # "\t$Rd, $imm8" # opt_shift # "}", "$Rd = $dst", pattern> { let DecoderMethod = "DecodeModImmTiedInstruction"; } class BaseSIMDModifiedImmVectorShift<bit Q, bit op, bits<2> b15_b12, RegisterOperand vectype, string asm, string kind, list<dag> pattern> : BaseSIMDModifiedImmVector<Q, op, vectype, imm0_255, (ins logical_vec_shift:$shift), "$shift", asm, kind, pattern> { bits<2> shift; let Inst{15} = b15_b12{1}; let Inst{14-13} = shift; let Inst{12} = b15_b12{0}; } class BaseSIMDModifiedImmVectorShiftTied<bit Q, bit op, bits<2> b15_b12, RegisterOperand vectype, string asm, string kind, list<dag> pattern> : BaseSIMDModifiedImmVectorTied<Q, op, vectype, imm0_255, (ins logical_vec_shift:$shift), "$shift", asm, kind, pattern> { bits<2> shift; let Inst{15} = b15_b12{1}; let Inst{14-13} = shift; let Inst{12} = b15_b12{0}; } class BaseSIMDModifiedImmVectorShiftHalf<bit Q, bit op, bits<2> b15_b12, RegisterOperand vectype, string asm, string kind, list<dag> pattern> : BaseSIMDModifiedImmVector<Q, op, vectype, imm0_255, (ins logical_vec_hw_shift:$shift), "$shift", asm, kind, pattern> { bits<2> shift; let Inst{15} = b15_b12{1}; let Inst{14} = 0; let Inst{13} = shift{0}; let Inst{12} = b15_b12{0}; } class BaseSIMDModifiedImmVectorShiftHalfTied<bit Q, bit op, bits<2> b15_b12, RegisterOperand vectype, string asm, string kind, list<dag> pattern> : BaseSIMDModifiedImmVectorTied<Q, op, vectype, imm0_255, (ins logical_vec_hw_shift:$shift), "$shift", asm, kind, pattern> { bits<2> shift; let Inst{15} = b15_b12{1}; let Inst{14} = 0; let Inst{13} = shift{0}; let Inst{12} = b15_b12{0}; } multiclass SIMDModifiedImmVectorShift<bit op, bits<2> hw_cmode, bits<2> w_cmode, string asm> { def v4i16 : BaseSIMDModifiedImmVectorShiftHalf<0, op, hw_cmode, V64, asm, ".4h", []>; def v8i16 : BaseSIMDModifiedImmVectorShiftHalf<1, op, hw_cmode, V128, asm, ".8h", []>; def v2i32 : BaseSIMDModifiedImmVectorShift<0, op, w_cmode, V64, asm, ".2s", []>; def v4i32 : BaseSIMDModifiedImmVectorShift<1, op, w_cmode, V128, asm, ".4s", []>; } multiclass SIMDModifiedImmVectorShiftTied<bit op, bits<2> hw_cmode, bits<2> w_cmode, string asm, SDNode OpNode> { def v4i16 : BaseSIMDModifiedImmVectorShiftHalfTied<0, op, hw_cmode, V64, asm, ".4h", [(set (v4i16 V64:$dst), (OpNode V64:$Rd, imm0_255:$imm8, (i32 imm:$shift)))]>; def v8i16 : BaseSIMDModifiedImmVectorShiftHalfTied<1, op, hw_cmode, V128, asm, ".8h", [(set (v8i16 V128:$dst), (OpNode V128:$Rd, imm0_255:$imm8, (i32 imm:$shift)))]>; def v2i32 : BaseSIMDModifiedImmVectorShiftTied<0, op, w_cmode, V64, asm, ".2s", [(set (v2i32 V64:$dst), (OpNode V64:$Rd, imm0_255:$imm8, (i32 imm:$shift)))]>; def v4i32 : BaseSIMDModifiedImmVectorShiftTied<1, op, w_cmode, V128, asm, ".4s", [(set (v4i32 V128:$dst), (OpNode V128:$Rd, imm0_255:$imm8, (i32 imm:$shift)))]>; } class SIMDModifiedImmMoveMSL<bit Q, bit op, bits<4> cmode, RegisterOperand vectype, string asm, string kind, list<dag> pattern> : BaseSIMDModifiedImmVector<Q, op, vectype, imm0_255, (ins move_vec_shift:$shift), "$shift", asm, kind, pattern> { bits<1> shift; let Inst{15-13} = cmode{3-1}; let Inst{12} = shift; } class SIMDModifiedImmVectorNoShift<bit Q, bit op, bits<4> cmode, RegisterOperand vectype, Operand imm_type, string asm, string kind, list<dag> pattern> : BaseSIMDModifiedImmVector<Q, op, vectype, imm_type, (ins), "", asm, kind, pattern> { let Inst{15-12} = cmode; } class SIMDModifiedImmScalarNoShift<bit Q, bit op, bits<4> cmode, string asm, list<dag> pattern> : BaseSIMDModifiedImm<Q, op, (outs FPR64:$Rd), (ins simdimmtype10:$imm8), asm, "\t$Rd, $imm8", "", pattern> { let Inst{15-12} = cmode; let DecoderMethod = "DecodeModImmInstruction"; } //---------------------------------------------------------------------------- // AdvSIMD indexed element //---------------------------------------------------------------------------- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDIndexed<bit Q, bit U, bit Scalar, bits<2> size, bits<4> opc, RegisterOperand dst_reg, RegisterOperand lhs_reg, RegisterOperand rhs_reg, Operand vec_idx, string asm, string apple_kind, string dst_kind, string lhs_kind, string rhs_kind, list<dag> pattern> : I<(outs dst_reg:$Rd), (ins lhs_reg:$Rn, rhs_reg:$Rm, vec_idx:$idx), asm, "{\t$Rd" # dst_kind # ", $Rn" # lhs_kind # ", $Rm" # rhs_kind # "$idx" # "|" # apple_kind # "\t$Rd, $Rn, $Rm$idx}", "", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28} = Scalar; let Inst{27-24} = 0b1111; let Inst{23-22} = size; // Bit 21 must be set by the derived class. let Inst{20-16} = Rm; let Inst{15-12} = opc; // Bit 11 must be set by the derived class. let Inst{10} = 0; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDIndexedTied<bit Q, bit U, bit Scalar, bits<2> size, bits<4> opc, RegisterOperand dst_reg, RegisterOperand lhs_reg, RegisterOperand rhs_reg, Operand vec_idx, string asm, string apple_kind, string dst_kind, string lhs_kind, string rhs_kind, list<dag> pattern> : I<(outs dst_reg:$dst), (ins dst_reg:$Rd, lhs_reg:$Rn, rhs_reg:$Rm, vec_idx:$idx), asm, "{\t$Rd" # dst_kind # ", $Rn" # lhs_kind # ", $Rm" # rhs_kind # "$idx" # "|" # apple_kind # "\t$Rd, $Rn, $Rm$idx}", "$Rd = $dst", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28} = Scalar; let Inst{27-24} = 0b1111; let Inst{23-22} = size; // Bit 21 must be set by the derived class. let Inst{20-16} = Rm; let Inst{15-12} = opc; // Bit 11 must be set by the derived class. let Inst{10} = 0; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDFPIndexedSD<bit U, bits<4> opc, string asm, SDPatternOperator OpNode> { def v2i32_indexed : BaseSIMDIndexed<0, U, 0, 0b10, opc, V64, V64, V128, VectorIndexS, asm, ".2s", ".2s", ".2s", ".s", [(set (v2f32 V64:$Rd), (OpNode (v2f32 V64:$Rn), (v2f32 (AArch64duplane32 (v4f32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v4i32_indexed : BaseSIMDIndexed<1, U, 0, 0b10, opc, V128, V128, V128, VectorIndexS, asm, ".4s", ".4s", ".4s", ".s", [(set (v4f32 V128:$Rd), (OpNode (v4f32 V128:$Rn), (v4f32 (AArch64duplane32 (v4f32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v2i64_indexed : BaseSIMDIndexed<1, U, 0, 0b11, opc, V128, V128, V128, VectorIndexD, asm, ".2d", ".2d", ".2d", ".d", [(set (v2f64 V128:$Rd), (OpNode (v2f64 V128:$Rn), (v2f64 (AArch64duplane64 (v2f64 V128:$Rm), VectorIndexD:$idx))))]> { bits<1> idx; let Inst{11} = idx{0}; let Inst{21} = 0; } def v1i32_indexed : BaseSIMDIndexed<1, U, 1, 0b10, opc, FPR32Op, FPR32Op, V128, VectorIndexS, asm, ".s", "", "", ".s", [(set (f32 FPR32Op:$Rd), (OpNode (f32 FPR32Op:$Rn), (f32 (vector_extract (v4f32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v1i64_indexed : BaseSIMDIndexed<1, U, 1, 0b11, opc, FPR64Op, FPR64Op, V128, VectorIndexD, asm, ".d", "", "", ".d", [(set (f64 FPR64Op:$Rd), (OpNode (f64 FPR64Op:$Rn), (f64 (vector_extract (v2f64 V128:$Rm), VectorIndexD:$idx))))]> { bits<1> idx; let Inst{11} = idx{0}; let Inst{21} = 0; } } multiclass SIMDFPIndexedSDTiedPatterns<string INST, SDPatternOperator OpNode> { // 2 variants for the .2s version: DUPLANE from 128-bit and DUP scalar. def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn), (AArch64duplane32 (v4f32 V128:$Rm), VectorIndexS:$idx))), (!cast<Instruction>(INST # v2i32_indexed) V64:$Rd, V64:$Rn, V128:$Rm, VectorIndexS:$idx)>; def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn), (AArch64dup (f32 FPR32Op:$Rm)))), (!cast<Instruction>(INST # "v2i32_indexed") V64:$Rd, V64:$Rn, (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>; // 2 variants for the .4s version: DUPLANE from 128-bit and DUP scalar. def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn), (AArch64duplane32 (v4f32 V128:$Rm), VectorIndexS:$idx))), (!cast<Instruction>(INST # "v4i32_indexed") V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>; def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn), (AArch64dup (f32 FPR32Op:$Rm)))), (!cast<Instruction>(INST # "v4i32_indexed") V128:$Rd, V128:$Rn, (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>; // 2 variants for the .2d version: DUPLANE from 128-bit and DUP scalar. def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn), (AArch64duplane64 (v2f64 V128:$Rm), VectorIndexD:$idx))), (!cast<Instruction>(INST # "v2i64_indexed") V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>; def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn), (AArch64dup (f64 FPR64Op:$Rm)))), (!cast<Instruction>(INST # "v2i64_indexed") V128:$Rd, V128:$Rn, (SUBREG_TO_REG (i32 0), FPR64Op:$Rm, dsub), (i64 0))>; // 2 variants for 32-bit scalar version: extract from .2s or from .4s def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn), (vector_extract (v4f32 V128:$Rm), VectorIndexS:$idx))), (!cast<Instruction>(INST # "v1i32_indexed") FPR32:$Rd, FPR32:$Rn, V128:$Rm, VectorIndexS:$idx)>; def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn), (vector_extract (v2f32 V64:$Rm), VectorIndexS:$idx))), (!cast<Instruction>(INST # "v1i32_indexed") FPR32:$Rd, FPR32:$Rn, (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), VectorIndexS:$idx)>; // 1 variant for 64-bit scalar version: extract from .1d or from .2d def : Pat<(f64 (OpNode (f64 FPR64:$Rd), (f64 FPR64:$Rn), (vector_extract (v2f64 V128:$Rm), VectorIndexD:$idx))), (!cast<Instruction>(INST # "v1i64_indexed") FPR64:$Rd, FPR64:$Rn, V128:$Rm, VectorIndexD:$idx)>; } multiclass SIMDFPIndexedSDTied<bit U, bits<4> opc, string asm> { def v2i32_indexed : BaseSIMDIndexedTied<0, U, 0, 0b10, opc, V64, V64, V128, VectorIndexS, asm, ".2s", ".2s", ".2s", ".s", []> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v4i32_indexed : BaseSIMDIndexedTied<1, U, 0, 0b10, opc, V128, V128, V128, VectorIndexS, asm, ".4s", ".4s", ".4s", ".s", []> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v2i64_indexed : BaseSIMDIndexedTied<1, U, 0, 0b11, opc, V128, V128, V128, VectorIndexD, asm, ".2d", ".2d", ".2d", ".d", []> { bits<1> idx; let Inst{11} = idx{0}; let Inst{21} = 0; } def v1i32_indexed : BaseSIMDIndexedTied<1, U, 1, 0b10, opc, FPR32Op, FPR32Op, V128, VectorIndexS, asm, ".s", "", "", ".s", []> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v1i64_indexed : BaseSIMDIndexedTied<1, U, 1, 0b11, opc, FPR64Op, FPR64Op, V128, VectorIndexD, asm, ".d", "", "", ".d", []> { bits<1> idx; let Inst{11} = idx{0}; let Inst{21} = 0; } } multiclass SIMDIndexedHS<bit U, bits<4> opc, string asm, SDPatternOperator OpNode> { def v4i16_indexed : BaseSIMDIndexed<0, U, 0, 0b01, opc, V64, V64, V128_lo, VectorIndexH, asm, ".4h", ".4h", ".4h", ".h", [(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn), (v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v8i16_indexed : BaseSIMDIndexed<1, U, 0, 0b01, opc, V128, V128, V128_lo, VectorIndexH, asm, ".8h", ".8h", ".8h", ".h", [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn), (v8i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v2i32_indexed : BaseSIMDIndexed<0, U, 0, 0b10, opc, V64, V64, V128, VectorIndexS, asm, ".2s", ".2s", ".2s", ".s", [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn), (v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v4i32_indexed : BaseSIMDIndexed<1, U, 0, 0b10, opc, V128, V128, V128, VectorIndexS, asm, ".4s", ".4s", ".4s", ".s", [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (v4i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v1i16_indexed : BaseSIMDIndexed<1, U, 1, 0b01, opc, FPR16Op, FPR16Op, V128_lo, VectorIndexH, asm, ".h", "", "", ".h", []> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v1i32_indexed : BaseSIMDIndexed<1, U, 1, 0b10, opc, FPR32Op, FPR32Op, V128, VectorIndexS, asm, ".s", "", "", ".s", [(set (i32 FPR32Op:$Rd), (OpNode FPR32Op:$Rn, (i32 (vector_extract (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } } multiclass SIMDVectorIndexedHS<bit U, bits<4> opc, string asm, SDPatternOperator OpNode> { def v4i16_indexed : BaseSIMDIndexed<0, U, 0, 0b01, opc, V64, V64, V128_lo, VectorIndexH, asm, ".4h", ".4h", ".4h", ".h", [(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn), (v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v8i16_indexed : BaseSIMDIndexed<1, U, 0, 0b01, opc, V128, V128, V128_lo, VectorIndexH, asm, ".8h", ".8h", ".8h", ".h", [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn), (v8i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v2i32_indexed : BaseSIMDIndexed<0, U, 0, 0b10, opc, V64, V64, V128, VectorIndexS, asm, ".2s", ".2s", ".2s", ".s", [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn), (v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v4i32_indexed : BaseSIMDIndexed<1, U, 0, 0b10, opc, V128, V128, V128, VectorIndexS, asm, ".4s", ".4s", ".4s", ".s", [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (v4i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } } multiclass SIMDVectorIndexedHSTied<bit U, bits<4> opc, string asm, SDPatternOperator OpNode> { def v4i16_indexed : BaseSIMDIndexedTied<0, U, 0, 0b01, opc, V64, V64, V128_lo, VectorIndexH, asm, ".4h", ".4h", ".4h", ".h", [(set (v4i16 V64:$dst), (OpNode (v4i16 V64:$Rd),(v4i16 V64:$Rn), (v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v8i16_indexed : BaseSIMDIndexedTied<1, U, 0, 0b01, opc, V128, V128, V128_lo, VectorIndexH, asm, ".8h", ".8h", ".8h", ".h", [(set (v8i16 V128:$dst), (OpNode (v8i16 V128:$Rd), (v8i16 V128:$Rn), (v8i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v2i32_indexed : BaseSIMDIndexedTied<0, U, 0, 0b10, opc, V64, V64, V128, VectorIndexS, asm, ".2s", ".2s", ".2s", ".s", [(set (v2i32 V64:$dst), (OpNode (v2i32 V64:$Rd), (v2i32 V64:$Rn), (v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v4i32_indexed : BaseSIMDIndexedTied<1, U, 0, 0b10, opc, V128, V128, V128, VectorIndexS, asm, ".4s", ".4s", ".4s", ".s", [(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn), (v4i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } } multiclass SIMDIndexedLongSD<bit U, bits<4> opc, string asm, SDPatternOperator OpNode> { def v4i16_indexed : BaseSIMDIndexed<0, U, 0, 0b01, opc, V128, V64, V128_lo, VectorIndexH, asm, ".4s", ".4s", ".4h", ".h", [(set (v4i32 V128:$Rd), (OpNode (v4i16 V64:$Rn), (v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v8i16_indexed : BaseSIMDIndexed<1, U, 0, 0b01, opc, V128, V128, V128_lo, VectorIndexH, asm#"2", ".4s", ".4s", ".8h", ".h", [(set (v4i32 V128:$Rd), (OpNode (extract_high_v8i16 V128:$Rn), (extract_high_v8i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v2i32_indexed : BaseSIMDIndexed<0, U, 0, 0b10, opc, V128, V64, V128, VectorIndexS, asm, ".2d", ".2d", ".2s", ".s", [(set (v2i64 V128:$Rd), (OpNode (v2i32 V64:$Rn), (v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v4i32_indexed : BaseSIMDIndexed<1, U, 0, 0b10, opc, V128, V128, V128, VectorIndexS, asm#"2", ".2d", ".2d", ".4s", ".s", [(set (v2i64 V128:$Rd), (OpNode (extract_high_v4i32 V128:$Rn), (extract_high_v4i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v1i32_indexed : BaseSIMDIndexed<1, U, 1, 0b01, opc, FPR32Op, FPR16Op, V128_lo, VectorIndexH, asm, ".h", "", "", ".h", []> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v1i64_indexed : BaseSIMDIndexed<1, U, 1, 0b10, opc, FPR64Op, FPR32Op, V128, VectorIndexS, asm, ".s", "", "", ".s", []> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } } multiclass SIMDIndexedLongSQDMLXSDTied<bit U, bits<4> opc, string asm, SDPatternOperator Accum> { def v4i16_indexed : BaseSIMDIndexedTied<0, U, 0, 0b01, opc, V128, V64, V128_lo, VectorIndexH, asm, ".4s", ".4s", ".4h", ".h", [(set (v4i32 V128:$dst), (Accum (v4i32 V128:$Rd), (v4i32 (int_aarch64_neon_sqdmull (v4i16 V64:$Rn), (v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } // FIXME: it would be nice to use the scalar (v1i32) instruction here, but an // intermediate EXTRACT_SUBREG would be untyped. def : Pat<(i32 (Accum (i32 FPR32Op:$Rd), (i32 (vector_extract (v4i32 (int_aarch64_neon_sqdmull (v4i16 V64:$Rn), (v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx)))), (i64 0))))), (EXTRACT_SUBREG (!cast<Instruction>(NAME # v4i16_indexed) (SUBREG_TO_REG (i32 0), FPR32Op:$Rd, ssub), V64:$Rn, V128_lo:$Rm, VectorIndexH:$idx), ssub)>; def v8i16_indexed : BaseSIMDIndexedTied<1, U, 0, 0b01, opc, V128, V128, V128_lo, VectorIndexH, asm#"2", ".4s", ".4s", ".8h", ".h", [(set (v4i32 V128:$dst), (Accum (v4i32 V128:$Rd), (v4i32 (int_aarch64_neon_sqdmull (extract_high_v8i16 V128:$Rn), (extract_high_v8i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v2i32_indexed : BaseSIMDIndexedTied<0, U, 0, 0b10, opc, V128, V64, V128, VectorIndexS, asm, ".2d", ".2d", ".2s", ".s", [(set (v2i64 V128:$dst), (Accum (v2i64 V128:$Rd), (v2i64 (int_aarch64_neon_sqdmull (v2i32 V64:$Rn), (v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v4i32_indexed : BaseSIMDIndexedTied<1, U, 0, 0b10, opc, V128, V128, V128, VectorIndexS, asm#"2", ".2d", ".2d", ".4s", ".s", [(set (v2i64 V128:$dst), (Accum (v2i64 V128:$Rd), (v2i64 (int_aarch64_neon_sqdmull (extract_high_v4i32 V128:$Rn), (extract_high_v4i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v1i32_indexed : BaseSIMDIndexedTied<1, U, 1, 0b01, opc, FPR32Op, FPR16Op, V128_lo, VectorIndexH, asm, ".h", "", "", ".h", []> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v1i64_indexed : BaseSIMDIndexedTied<1, U, 1, 0b10, opc, FPR64Op, FPR32Op, V128, VectorIndexS, asm, ".s", "", "", ".s", [(set (i64 FPR64Op:$dst), (Accum (i64 FPR64Op:$Rd), (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32Op:$Rn), (i32 (vector_extract (v4i32 V128:$Rm), VectorIndexS:$idx))))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } } multiclass SIMDVectorIndexedLongSD<bit U, bits<4> opc, string asm, SDPatternOperator OpNode> { let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { def v4i16_indexed : BaseSIMDIndexed<0, U, 0, 0b01, opc, V128, V64, V128_lo, VectorIndexH, asm, ".4s", ".4s", ".4h", ".h", [(set (v4i32 V128:$Rd), (OpNode (v4i16 V64:$Rn), (v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v8i16_indexed : BaseSIMDIndexed<1, U, 0, 0b01, opc, V128, V128, V128_lo, VectorIndexH, asm#"2", ".4s", ".4s", ".8h", ".h", [(set (v4i32 V128:$Rd), (OpNode (extract_high_v8i16 V128:$Rn), (extract_high_v8i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v2i32_indexed : BaseSIMDIndexed<0, U, 0, 0b10, opc, V128, V64, V128, VectorIndexS, asm, ".2d", ".2d", ".2s", ".s", [(set (v2i64 V128:$Rd), (OpNode (v2i32 V64:$Rn), (v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v4i32_indexed : BaseSIMDIndexed<1, U, 0, 0b10, opc, V128, V128, V128, VectorIndexS, asm#"2", ".2d", ".2d", ".4s", ".s", [(set (v2i64 V128:$Rd), (OpNode (extract_high_v4i32 V128:$Rn), (extract_high_v4i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } } } multiclass SIMDVectorIndexedLongSDTied<bit U, bits<4> opc, string asm, SDPatternOperator OpNode> { let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { def v4i16_indexed : BaseSIMDIndexedTied<0, U, 0, 0b01, opc, V128, V64, V128_lo, VectorIndexH, asm, ".4s", ".4s", ".4h", ".h", [(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd), (v4i16 V64:$Rn), (v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v8i16_indexed : BaseSIMDIndexedTied<1, U, 0, 0b01, opc, V128, V128, V128_lo, VectorIndexH, asm#"2", ".4s", ".4s", ".8h", ".h", [(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd), (extract_high_v8i16 V128:$Rn), (extract_high_v8i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v2i32_indexed : BaseSIMDIndexedTied<0, U, 0, 0b10, opc, V128, V64, V128, VectorIndexS, asm, ".2d", ".2d", ".2s", ".s", [(set (v2i64 V128:$dst), (OpNode (v2i64 V128:$Rd), (v2i32 V64:$Rn), (v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v4i32_indexed : BaseSIMDIndexedTied<1, U, 0, 0b10, opc, V128, V128, V128, VectorIndexS, asm#"2", ".2d", ".2d", ".4s", ".s", [(set (v2i64 V128:$dst), (OpNode (v2i64 V128:$Rd), (extract_high_v4i32 V128:$Rn), (extract_high_v4i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } } } //---------------------------------------------------------------------------- // AdvSIMD scalar shift by immediate //---------------------------------------------------------------------------- let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in class BaseSIMDScalarShift<bit U, bits<5> opc, bits<7> fixed_imm, RegisterClass regtype1, RegisterClass regtype2, Operand immtype, string asm, list<dag> pattern> : I<(outs regtype1:$Rd), (ins regtype2:$Rn, immtype:$imm), asm, "\t$Rd, $Rn, $imm", "", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<7> imm; let Inst{31-30} = 0b01; let Inst{29} = U; let Inst{28-23} = 0b111110; let Inst{22-16} = fixed_imm; let Inst{15-11} = opc; let Inst{10} = 1; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in class BaseSIMDScalarShiftTied<bit U, bits<5> opc, bits<7> fixed_imm, RegisterClass regtype1, RegisterClass regtype2, Operand immtype, string asm, list<dag> pattern> : I<(outs regtype1:$dst), (ins regtype1:$Rd, regtype2:$Rn, immtype:$imm), asm, "\t$Rd, $Rn, $imm", "$Rd = $dst", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<7> imm; let Inst{31-30} = 0b01; let Inst{29} = U; let Inst{28-23} = 0b111110; let Inst{22-16} = fixed_imm; let Inst{15-11} = opc; let Inst{10} = 1; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDScalarRShiftSD<bit U, bits<5> opc, string asm> { def s : BaseSIMDScalarShift<U, opc, {0,1,?,?,?,?,?}, FPR32, FPR32, vecshiftR32, asm, []> { let Inst{20-16} = imm{4-0}; } def d : BaseSIMDScalarShift<U, opc, {1,?,?,?,?,?,?}, FPR64, FPR64, vecshiftR64, asm, []> { let Inst{21-16} = imm{5-0}; } } multiclass SIMDScalarRShiftD<bit U, bits<5> opc, string asm, SDPatternOperator OpNode> { def d : BaseSIMDScalarShift<U, opc, {1,?,?,?,?,?,?}, FPR64, FPR64, vecshiftR64, asm, [(set (i64 FPR64:$Rd), (OpNode (i64 FPR64:$Rn), (i32 vecshiftR64:$imm)))]> { let Inst{21-16} = imm{5-0}; } def : Pat<(v1i64 (OpNode (v1i64 FPR64:$Rn), (i32 vecshiftR64:$imm))), (!cast<Instruction>(NAME # "d") FPR64:$Rn, vecshiftR64:$imm)>; } multiclass SIMDScalarRShiftDTied<bit U, bits<5> opc, string asm, SDPatternOperator OpNode = null_frag> { def d : BaseSIMDScalarShiftTied<U, opc, {1,?,?,?,?,?,?}, FPR64, FPR64, vecshiftR64, asm, [(set (i64 FPR64:$dst), (OpNode (i64 FPR64:$Rd), (i64 FPR64:$Rn), (i32 vecshiftR64:$imm)))]> { let Inst{21-16} = imm{5-0}; } def : Pat<(v1i64 (OpNode (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn), (i32 vecshiftR64:$imm))), (!cast<Instruction>(NAME # "d") FPR64:$Rd, FPR64:$Rn, vecshiftR64:$imm)>; } multiclass SIMDScalarLShiftD<bit U, bits<5> opc, string asm, SDPatternOperator OpNode> { def d : BaseSIMDScalarShift<U, opc, {1,?,?,?,?,?,?}, FPR64, FPR64, vecshiftL64, asm, [(set (v1i64 FPR64:$Rd), (OpNode (v1i64 FPR64:$Rn), (i32 vecshiftL64:$imm)))]> { let Inst{21-16} = imm{5-0}; } } let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in multiclass SIMDScalarLShiftDTied<bit U, bits<5> opc, string asm> { def d : BaseSIMDScalarShiftTied<U, opc, {1,?,?,?,?,?,?}, FPR64, FPR64, vecshiftL64, asm, []> { let Inst{21-16} = imm{5-0}; } } let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in multiclass SIMDScalarRShiftBHS<bit U, bits<5> opc, string asm, SDPatternOperator OpNode = null_frag> { def b : BaseSIMDScalarShift<U, opc, {0,0,0,1,?,?,?}, FPR8, FPR16, vecshiftR8, asm, []> { let Inst{18-16} = imm{2-0}; } def h : BaseSIMDScalarShift<U, opc, {0,0,1,?,?,?,?}, FPR16, FPR32, vecshiftR16, asm, []> { let Inst{19-16} = imm{3-0}; } def s : BaseSIMDScalarShift<U, opc, {0,1,?,?,?,?,?}, FPR32, FPR64, vecshiftR32, asm, [(set (i32 FPR32:$Rd), (OpNode (i64 FPR64:$Rn), vecshiftR32:$imm))]> { let Inst{20-16} = imm{4-0}; } } multiclass SIMDScalarLShiftBHSD<bit U, bits<5> opc, string asm, SDPatternOperator OpNode> { def b : BaseSIMDScalarShift<U, opc, {0,0,0,1,?,?,?}, FPR8, FPR8, vecshiftL8, asm, []> { let Inst{18-16} = imm{2-0}; } def h : BaseSIMDScalarShift<U, opc, {0,0,1,?,?,?,?}, FPR16, FPR16, vecshiftL16, asm, []> { let Inst{19-16} = imm{3-0}; } def s : BaseSIMDScalarShift<U, opc, {0,1,?,?,?,?,?}, FPR32, FPR32, vecshiftL32, asm, [(set (i32 FPR32:$Rd), (OpNode (i32 FPR32:$Rn), (i32 vecshiftL32:$imm)))]> { let Inst{20-16} = imm{4-0}; } def d : BaseSIMDScalarShift<U, opc, {1,?,?,?,?,?,?}, FPR64, FPR64, vecshiftL64, asm, [(set (i64 FPR64:$Rd), (OpNode (i64 FPR64:$Rn), (i32 vecshiftL64:$imm)))]> { let Inst{21-16} = imm{5-0}; } def : Pat<(v1i64 (OpNode (v1i64 FPR64:$Rn), (i32 vecshiftL64:$imm))), (!cast<Instruction>(NAME # "d") FPR64:$Rn, vecshiftL64:$imm)>; } multiclass SIMDScalarRShiftBHSD<bit U, bits<5> opc, string asm> { def b : BaseSIMDScalarShift<U, opc, {0,0,0,1,?,?,?}, FPR8, FPR8, vecshiftR8, asm, []> { let Inst{18-16} = imm{2-0}; } def h : BaseSIMDScalarShift<U, opc, {0,0,1,?,?,?,?}, FPR16, FPR16, vecshiftR16, asm, []> { let Inst{19-16} = imm{3-0}; } def s : BaseSIMDScalarShift<U, opc, {0,1,?,?,?,?,?}, FPR32, FPR32, vecshiftR32, asm, []> { let Inst{20-16} = imm{4-0}; } def d : BaseSIMDScalarShift<U, opc, {1,?,?,?,?,?,?}, FPR64, FPR64, vecshiftR64, asm, []> { let Inst{21-16} = imm{5-0}; } } //---------------------------------------------------------------------------- // AdvSIMD vector x indexed element //---------------------------------------------------------------------------- let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in class BaseSIMDVectorShift<bit Q, bit U, bits<5> opc, bits<7> fixed_imm, RegisterOperand dst_reg, RegisterOperand src_reg, Operand immtype, string asm, string dst_kind, string src_kind, list<dag> pattern> : I<(outs dst_reg:$Rd), (ins src_reg:$Rn, immtype:$imm), asm, "{\t$Rd" # dst_kind # ", $Rn" # src_kind # ", $imm" # "|" # dst_kind # "\t$Rd, $Rn, $imm}", "", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-23} = 0b011110; let Inst{22-16} = fixed_imm; let Inst{15-11} = opc; let Inst{10} = 1; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in class BaseSIMDVectorShiftTied<bit Q, bit U, bits<5> opc, bits<7> fixed_imm, RegisterOperand vectype1, RegisterOperand vectype2, Operand immtype, string asm, string dst_kind, string src_kind, list<dag> pattern> : I<(outs vectype1:$dst), (ins vectype1:$Rd, vectype2:$Rn, immtype:$imm), asm, "{\t$Rd" # dst_kind # ", $Rn" # src_kind # ", $imm" # "|" # dst_kind # "\t$Rd, $Rn, $imm}", "$Rd = $dst", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-23} = 0b011110; let Inst{22-16} = fixed_imm; let Inst{15-11} = opc; let Inst{10} = 1; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDVectorRShiftSD<bit U, bits<5> opc, string asm, Intrinsic OpNode> { def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?}, V64, V64, vecshiftR32, asm, ".2s", ".2s", [(set (v2i32 V64:$Rd), (OpNode (v2f32 V64:$Rn), (i32 imm:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v4i32_shift : BaseSIMDVectorShift<1, U, opc, {0,1,?,?,?,?,?}, V128, V128, vecshiftR32, asm, ".4s", ".4s", [(set (v4i32 V128:$Rd), (OpNode (v4f32 V128:$Rn), (i32 imm:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v2i64_shift : BaseSIMDVectorShift<1, U, opc, {1,?,?,?,?,?,?}, V128, V128, vecshiftR64, asm, ".2d", ".2d", [(set (v2i64 V128:$Rd), (OpNode (v2f64 V128:$Rn), (i32 imm:$imm)))]> { bits<6> imm; let Inst{21-16} = imm; } } multiclass SIMDVectorRShiftSDToFP<bit U, bits<5> opc, string asm, Intrinsic OpNode> { def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?}, V64, V64, vecshiftR32, asm, ".2s", ".2s", [(set (v2f32 V64:$Rd), (OpNode (v2i32 V64:$Rn), (i32 imm:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v4i32_shift : BaseSIMDVectorShift<1, U, opc, {0,1,?,?,?,?,?}, V128, V128, vecshiftR32, asm, ".4s", ".4s", [(set (v4f32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (i32 imm:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v2i64_shift : BaseSIMDVectorShift<1, U, opc, {1,?,?,?,?,?,?}, V128, V128, vecshiftR64, asm, ".2d", ".2d", [(set (v2f64 V128:$Rd), (OpNode (v2i64 V128:$Rn), (i32 imm:$imm)))]> { bits<6> imm; let Inst{21-16} = imm; } } multiclass SIMDVectorRShiftNarrowBHS<bit U, bits<5> opc, string asm, SDPatternOperator OpNode> { def v8i8_shift : BaseSIMDVectorShift<0, U, opc, {0,0,0,1,?,?,?}, V64, V128, vecshiftR16Narrow, asm, ".8b", ".8h", [(set (v8i8 V64:$Rd), (OpNode (v8i16 V128:$Rn), vecshiftR16Narrow:$imm))]> { bits<3> imm; let Inst{18-16} = imm; } def v16i8_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,0,1,?,?,?}, V128, V128, vecshiftR16Narrow, asm#"2", ".16b", ".8h", []> { bits<3> imm; let Inst{18-16} = imm; let hasSideEffects = 0; } def v4i16_shift : BaseSIMDVectorShift<0, U, opc, {0,0,1,?,?,?,?}, V64, V128, vecshiftR32Narrow, asm, ".4h", ".4s", [(set (v4i16 V64:$Rd), (OpNode (v4i32 V128:$Rn), vecshiftR32Narrow:$imm))]> { bits<4> imm; let Inst{19-16} = imm; } def v8i16_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,1,?,?,?,?}, V128, V128, vecshiftR32Narrow, asm#"2", ".8h", ".4s", []> { bits<4> imm; let Inst{19-16} = imm; let hasSideEffects = 0; } def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?}, V64, V128, vecshiftR64Narrow, asm, ".2s", ".2d", [(set (v2i32 V64:$Rd), (OpNode (v2i64 V128:$Rn), vecshiftR64Narrow:$imm))]> { bits<5> imm; let Inst{20-16} = imm; } def v4i32_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,1,?,?,?,?,?}, V128, V128, vecshiftR64Narrow, asm#"2", ".4s", ".2d", []> { bits<5> imm; let Inst{20-16} = imm; let hasSideEffects = 0; } // TableGen doesn't like patters w/ INSERT_SUBREG on the instructions // themselves, so put them here instead. // Patterns involving what's effectively an insert high and a normal // intrinsic, represented by CONCAT_VECTORS. def : Pat<(concat_vectors (v8i8 V64:$Rd),(OpNode (v8i16 V128:$Rn), vecshiftR16Narrow:$imm)), (!cast<Instruction>(NAME # "v16i8_shift") (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn, vecshiftR16Narrow:$imm)>; def : Pat<(concat_vectors (v4i16 V64:$Rd), (OpNode (v4i32 V128:$Rn), vecshiftR32Narrow:$imm)), (!cast<Instruction>(NAME # "v8i16_shift") (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn, vecshiftR32Narrow:$imm)>; def : Pat<(concat_vectors (v2i32 V64:$Rd), (OpNode (v2i64 V128:$Rn), vecshiftR64Narrow:$imm)), (!cast<Instruction>(NAME # "v4i32_shift") (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn, vecshiftR64Narrow:$imm)>; } multiclass SIMDVectorLShiftBHSD<bit U, bits<5> opc, string asm, SDPatternOperator OpNode> { def v8i8_shift : BaseSIMDVectorShift<0, U, opc, {0,0,0,1,?,?,?}, V64, V64, vecshiftL8, asm, ".8b", ".8b", [(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn), (i32 vecshiftL8:$imm)))]> { bits<3> imm; let Inst{18-16} = imm; } def v16i8_shift : BaseSIMDVectorShift<1, U, opc, {0,0,0,1,?,?,?}, V128, V128, vecshiftL8, asm, ".16b", ".16b", [(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn), (i32 vecshiftL8:$imm)))]> { bits<3> imm; let Inst{18-16} = imm; } def v4i16_shift : BaseSIMDVectorShift<0, U, opc, {0,0,1,?,?,?,?}, V64, V64, vecshiftL16, asm, ".4h", ".4h", [(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn), (i32 vecshiftL16:$imm)))]> { bits<4> imm; let Inst{19-16} = imm; } def v8i16_shift : BaseSIMDVectorShift<1, U, opc, {0,0,1,?,?,?,?}, V128, V128, vecshiftL16, asm, ".8h", ".8h", [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn), (i32 vecshiftL16:$imm)))]> { bits<4> imm; let Inst{19-16} = imm; } def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?}, V64, V64, vecshiftL32, asm, ".2s", ".2s", [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn), (i32 vecshiftL32:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v4i32_shift : BaseSIMDVectorShift<1, U, opc, {0,1,?,?,?,?,?}, V128, V128, vecshiftL32, asm, ".4s", ".4s", [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (i32 vecshiftL32:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v2i64_shift : BaseSIMDVectorShift<1, U, opc, {1,?,?,?,?,?,?}, V128, V128, vecshiftL64, asm, ".2d", ".2d", [(set (v2i64 V128:$Rd), (OpNode (v2i64 V128:$Rn), (i32 vecshiftL64:$imm)))]> { bits<6> imm; let Inst{21-16} = imm; } } multiclass SIMDVectorRShiftBHSD<bit U, bits<5> opc, string asm, SDPatternOperator OpNode> { def v8i8_shift : BaseSIMDVectorShift<0, U, opc, {0,0,0,1,?,?,?}, V64, V64, vecshiftR8, asm, ".8b", ".8b", [(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn), (i32 vecshiftR8:$imm)))]> { bits<3> imm; let Inst{18-16} = imm; } def v16i8_shift : BaseSIMDVectorShift<1, U, opc, {0,0,0,1,?,?,?}, V128, V128, vecshiftR8, asm, ".16b", ".16b", [(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn), (i32 vecshiftR8:$imm)))]> { bits<3> imm; let Inst{18-16} = imm; } def v4i16_shift : BaseSIMDVectorShift<0, U, opc, {0,0,1,?,?,?,?}, V64, V64, vecshiftR16, asm, ".4h", ".4h", [(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn), (i32 vecshiftR16:$imm)))]> { bits<4> imm; let Inst{19-16} = imm; } def v8i16_shift : BaseSIMDVectorShift<1, U, opc, {0,0,1,?,?,?,?}, V128, V128, vecshiftR16, asm, ".8h", ".8h", [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn), (i32 vecshiftR16:$imm)))]> { bits<4> imm; let Inst{19-16} = imm; } def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?}, V64, V64, vecshiftR32, asm, ".2s", ".2s", [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn), (i32 vecshiftR32:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v4i32_shift : BaseSIMDVectorShift<1, U, opc, {0,1,?,?,?,?,?}, V128, V128, vecshiftR32, asm, ".4s", ".4s", [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (i32 vecshiftR32:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v2i64_shift : BaseSIMDVectorShift<1, U, opc, {1,?,?,?,?,?,?}, V128, V128, vecshiftR64, asm, ".2d", ".2d", [(set (v2i64 V128:$Rd), (OpNode (v2i64 V128:$Rn), (i32 vecshiftR64:$imm)))]> { bits<6> imm; let Inst{21-16} = imm; } } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in multiclass SIMDVectorRShiftBHSDTied<bit U, bits<5> opc, string asm, SDPatternOperator OpNode = null_frag> { def v8i8_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,0,0,1,?,?,?}, V64, V64, vecshiftR8, asm, ".8b", ".8b", [(set (v8i8 V64:$dst), (OpNode (v8i8 V64:$Rd), (v8i8 V64:$Rn), (i32 vecshiftR8:$imm)))]> { bits<3> imm; let Inst{18-16} = imm; } def v16i8_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,0,1,?,?,?}, V128, V128, vecshiftR8, asm, ".16b", ".16b", [(set (v16i8 V128:$dst), (OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn), (i32 vecshiftR8:$imm)))]> { bits<3> imm; let Inst{18-16} = imm; } def v4i16_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,0,1,?,?,?,?}, V64, V64, vecshiftR16, asm, ".4h", ".4h", [(set (v4i16 V64:$dst), (OpNode (v4i16 V64:$Rd), (v4i16 V64:$Rn), (i32 vecshiftR16:$imm)))]> { bits<4> imm; let Inst{19-16} = imm; } def v8i16_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,1,?,?,?,?}, V128, V128, vecshiftR16, asm, ".8h", ".8h", [(set (v8i16 V128:$dst), (OpNode (v8i16 V128:$Rd), (v8i16 V128:$Rn), (i32 vecshiftR16:$imm)))]> { bits<4> imm; let Inst{19-16} = imm; } def v2i32_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,1,?,?,?,?,?}, V64, V64, vecshiftR32, asm, ".2s", ".2s", [(set (v2i32 V64:$dst), (OpNode (v2i32 V64:$Rd), (v2i32 V64:$Rn), (i32 vecshiftR32:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v4i32_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,1,?,?,?,?,?}, V128, V128, vecshiftR32, asm, ".4s", ".4s", [(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn), (i32 vecshiftR32:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v2i64_shift : BaseSIMDVectorShiftTied<1, U, opc, {1,?,?,?,?,?,?}, V128, V128, vecshiftR64, asm, ".2d", ".2d", [(set (v2i64 V128:$dst), (OpNode (v2i64 V128:$Rd), (v2i64 V128:$Rn), (i32 vecshiftR64:$imm)))]> { bits<6> imm; let Inst{21-16} = imm; } } multiclass SIMDVectorLShiftBHSDTied<bit U, bits<5> opc, string asm, SDPatternOperator OpNode = null_frag> { def v8i8_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,0,0,1,?,?,?}, V64, V64, vecshiftL8, asm, ".8b", ".8b", [(set (v8i8 V64:$dst), (OpNode (v8i8 V64:$Rd), (v8i8 V64:$Rn), (i32 vecshiftL8:$imm)))]> { bits<3> imm; let Inst{18-16} = imm; } def v16i8_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,0,1,?,?,?}, V128, V128, vecshiftL8, asm, ".16b", ".16b", [(set (v16i8 V128:$dst), (OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn), (i32 vecshiftL8:$imm)))]> { bits<3> imm; let Inst{18-16} = imm; } def v4i16_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,0,1,?,?,?,?}, V64, V64, vecshiftL16, asm, ".4h", ".4h", [(set (v4i16 V64:$dst), (OpNode (v4i16 V64:$Rd), (v4i16 V64:$Rn), (i32 vecshiftL16:$imm)))]> { bits<4> imm; let Inst{19-16} = imm; } def v8i16_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,1,?,?,?,?}, V128, V128, vecshiftL16, asm, ".8h", ".8h", [(set (v8i16 V128:$dst), (OpNode (v8i16 V128:$Rd), (v8i16 V128:$Rn), (i32 vecshiftL16:$imm)))]> { bits<4> imm; let Inst{19-16} = imm; } def v2i32_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,1,?,?,?,?,?}, V64, V64, vecshiftL32, asm, ".2s", ".2s", [(set (v2i32 V64:$dst), (OpNode (v2i32 V64:$Rd), (v2i32 V64:$Rn), (i32 vecshiftL32:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v4i32_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,1,?,?,?,?,?}, V128, V128, vecshiftL32, asm, ".4s", ".4s", [(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn), (i32 vecshiftL32:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v2i64_shift : BaseSIMDVectorShiftTied<1, U, opc, {1,?,?,?,?,?,?}, V128, V128, vecshiftL64, asm, ".2d", ".2d", [(set (v2i64 V128:$dst), (OpNode (v2i64 V128:$Rd), (v2i64 V128:$Rn), (i32 vecshiftL64:$imm)))]> { bits<6> imm; let Inst{21-16} = imm; } } multiclass SIMDVectorLShiftLongBHSD<bit U, bits<5> opc, string asm, SDPatternOperator OpNode> { def v8i8_shift : BaseSIMDVectorShift<0, U, opc, {0,0,0,1,?,?,?}, V128, V64, vecshiftL8, asm, ".8h", ".8b", [(set (v8i16 V128:$Rd), (OpNode (v8i8 V64:$Rn), vecshiftL8:$imm))]> { bits<3> imm; let Inst{18-16} = imm; } def v16i8_shift : BaseSIMDVectorShift<1, U, opc, {0,0,0,1,?,?,?}, V128, V128, vecshiftL8, asm#"2", ".8h", ".16b", [(set (v8i16 V128:$Rd), (OpNode (extract_high_v16i8 V128:$Rn), vecshiftL8:$imm))]> { bits<3> imm; let Inst{18-16} = imm; } def v4i16_shift : BaseSIMDVectorShift<0, U, opc, {0,0,1,?,?,?,?}, V128, V64, vecshiftL16, asm, ".4s", ".4h", [(set (v4i32 V128:$Rd), (OpNode (v4i16 V64:$Rn), vecshiftL16:$imm))]> { bits<4> imm; let Inst{19-16} = imm; } def v8i16_shift : BaseSIMDVectorShift<1, U, opc, {0,0,1,?,?,?,?}, V128, V128, vecshiftL16, asm#"2", ".4s", ".8h", [(set (v4i32 V128:$Rd), (OpNode (extract_high_v8i16 V128:$Rn), vecshiftL16:$imm))]> { bits<4> imm; let Inst{19-16} = imm; } def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?}, V128, V64, vecshiftL32, asm, ".2d", ".2s", [(set (v2i64 V128:$Rd), (OpNode (v2i32 V64:$Rn), vecshiftL32:$imm))]> { bits<5> imm; let Inst{20-16} = imm; } def v4i32_shift : BaseSIMDVectorShift<1, U, opc, {0,1,?,?,?,?,?}, V128, V128, vecshiftL32, asm#"2", ".2d", ".4s", [(set (v2i64 V128:$Rd), (OpNode (extract_high_v4i32 V128:$Rn), vecshiftL32:$imm))]> { bits<5> imm; let Inst{20-16} = imm; } } //--- // Vector load/store //--- // SIMD ldX/stX no-index memory references don't allow the optional // ", #0" constant and handle post-indexing explicitly, so we use // a more specialized parse method for them. Otherwise, it's the same as // the general GPR64sp handling. class BaseSIMDLdSt<bit Q, bit L, bits<4> opcode, bits<2> size, string asm, dag oops, dag iops, list<dag> pattern> : I<oops, iops, asm, "\t$Vt, [$Rn]", "", pattern> { bits<5> Vt; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29-23} = 0b0011000; let Inst{22} = L; let Inst{21-16} = 0b000000; let Inst{15-12} = opcode; let Inst{11-10} = size; let Inst{9-5} = Rn; let Inst{4-0} = Vt; } class BaseSIMDLdStPost<bit Q, bit L, bits<4> opcode, bits<2> size, string asm, dag oops, dag iops> : I<oops, iops, asm, "\t$Vt, [$Rn], $Xm", "$Rn = $wback", []> { bits<5> Vt; bits<5> Rn; bits<5> Xm; let Inst{31} = 0; let Inst{30} = Q; let Inst{29-23} = 0b0011001; let Inst{22} = L; let Inst{21} = 0; let Inst{20-16} = Xm; let Inst{15-12} = opcode; let Inst{11-10} = size; let Inst{9-5} = Rn; let Inst{4-0} = Vt; } // The immediate form of AdvSIMD post-indexed addressing is encoded with // register post-index addressing from the zero register. multiclass SIMDLdStAliases<string asm, string layout, string Count, int Offset, int Size> { // E.g. "ld1 { v0.8b, v1.8b }, [x1], #16" // "ld1\t$Vt, [$Rn], #16" // may get mapped to // (LD1Twov8b_POST VecListTwo8b:$Vt, GPR64sp:$Rn, XZR) def : InstAlias<asm # "\t$Vt, [$Rn], #" # Offset, (!cast<Instruction>(NAME # Count # "v" # layout # "_POST") GPR64sp:$Rn, !cast<RegisterOperand>("VecList" # Count # layout):$Vt, XZR), 1>; // E.g. "ld1.8b { v0, v1 }, [x1], #16" // "ld1.8b\t$Vt, [$Rn], #16" // may get mapped to // (LD1Twov8b_POST VecListTwo64:$Vt, GPR64sp:$Rn, XZR) def : InstAlias<asm # "." # layout # "\t$Vt, [$Rn], #" # Offset, (!cast<Instruction>(NAME # Count # "v" # layout # "_POST") GPR64sp:$Rn, !cast<RegisterOperand>("VecList" # Count # Size):$Vt, XZR), 0>; // E.g. "ld1.8b { v0, v1 }, [x1]" // "ld1\t$Vt, [$Rn]" // may get mapped to // (LD1Twov8b VecListTwo64:$Vt, GPR64sp:$Rn) def : InstAlias<asm # "." # layout # "\t$Vt, [$Rn]", (!cast<Instruction>(NAME # Count # "v" # layout) !cast<RegisterOperand>("VecList" # Count # Size):$Vt, GPR64sp:$Rn), 0>; // E.g. "ld1.8b { v0, v1 }, [x1], x2" // "ld1\t$Vt, [$Rn], $Xm" // may get mapped to // (LD1Twov8b_POST VecListTwo64:$Vt, GPR64sp:$Rn, GPR64pi8:$Xm) def : InstAlias<asm # "." # layout # "\t$Vt, [$Rn], $Xm", (!cast<Instruction>(NAME # Count # "v" # layout # "_POST") GPR64sp:$Rn, !cast<RegisterOperand>("VecList" # Count # Size):$Vt, !cast<RegisterOperand>("GPR64pi" # Offset):$Xm), 0>; } multiclass BaseSIMDLdN<string Count, string asm, string veclist, int Offset128, int Offset64, bits<4> opcode> { let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in { def v16b: BaseSIMDLdSt<1, 1, opcode, 0b00, asm, (outs !cast<RegisterOperand>(veclist # "16b"):$Vt), (ins GPR64sp:$Rn), []>; def v8h : BaseSIMDLdSt<1, 1, opcode, 0b01, asm, (outs !cast<RegisterOperand>(veclist # "8h"):$Vt), (ins GPR64sp:$Rn), []>; def v4s : BaseSIMDLdSt<1, 1, opcode, 0b10, asm, (outs !cast<RegisterOperand>(veclist # "4s"):$Vt), (ins GPR64sp:$Rn), []>; def v2d : BaseSIMDLdSt<1, 1, opcode, 0b11, asm, (outs !cast<RegisterOperand>(veclist # "2d"):$Vt), (ins GPR64sp:$Rn), []>; def v8b : BaseSIMDLdSt<0, 1, opcode, 0b00, asm, (outs !cast<RegisterOperand>(veclist # "8b"):$Vt), (ins GPR64sp:$Rn), []>; def v4h : BaseSIMDLdSt<0, 1, opcode, 0b01, asm, (outs !cast<RegisterOperand>(veclist # "4h"):$Vt), (ins GPR64sp:$Rn), []>; def v2s : BaseSIMDLdSt<0, 1, opcode, 0b10, asm, (outs !cast<RegisterOperand>(veclist # "2s"):$Vt), (ins GPR64sp:$Rn), []>; def v16b_POST: BaseSIMDLdStPost<1, 1, opcode, 0b00, asm, (outs GPR64sp:$wback, !cast<RegisterOperand>(veclist # "16b"):$Vt), (ins GPR64sp:$Rn, !cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>; def v8h_POST : BaseSIMDLdStPost<1, 1, opcode, 0b01, asm, (outs GPR64sp:$wback, !cast<RegisterOperand>(veclist # "8h"):$Vt), (ins GPR64sp:$Rn, !cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>; def v4s_POST : BaseSIMDLdStPost<1, 1, opcode, 0b10, asm, (outs GPR64sp:$wback, !cast<RegisterOperand>(veclist # "4s"):$Vt), (ins GPR64sp:$Rn, !cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>; def v2d_POST : BaseSIMDLdStPost<1, 1, opcode, 0b11, asm, (outs GPR64sp:$wback, !cast<RegisterOperand>(veclist # "2d"):$Vt), (ins GPR64sp:$Rn, !cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>; def v8b_POST : BaseSIMDLdStPost<0, 1, opcode, 0b00, asm, (outs GPR64sp:$wback, !cast<RegisterOperand>(veclist # "8b"):$Vt), (ins GPR64sp:$Rn, !cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>; def v4h_POST : BaseSIMDLdStPost<0, 1, opcode, 0b01, asm, (outs GPR64sp:$wback, !cast<RegisterOperand>(veclist # "4h"):$Vt), (ins GPR64sp:$Rn, !cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>; def v2s_POST : BaseSIMDLdStPost<0, 1, opcode, 0b10, asm, (outs GPR64sp:$wback, !cast<RegisterOperand>(veclist # "2s"):$Vt), (ins GPR64sp:$Rn, !cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>; } defm : SIMDLdStAliases<asm, "16b", Count, Offset128, 128>; defm : SIMDLdStAliases<asm, "8h", Count, Offset128, 128>; defm : SIMDLdStAliases<asm, "4s", Count, Offset128, 128>; defm : SIMDLdStAliases<asm, "2d", Count, Offset128, 128>; defm : SIMDLdStAliases<asm, "8b", Count, Offset64, 64>; defm : SIMDLdStAliases<asm, "4h", Count, Offset64, 64>; defm : SIMDLdStAliases<asm, "2s", Count, Offset64, 64>; } // Only ld1/st1 has a v1d version. multiclass BaseSIMDStN<string Count, string asm, string veclist, int Offset128, int Offset64, bits<4> opcode> { let hasSideEffects = 0, mayStore = 1, mayLoad = 0 in { def v16b : BaseSIMDLdSt<1, 0, opcode, 0b00, asm, (outs), (ins !cast<RegisterOperand>(veclist # "16b"):$Vt, GPR64sp:$Rn), []>; def v8h : BaseSIMDLdSt<1, 0, opcode, 0b01, asm, (outs), (ins !cast<RegisterOperand>(veclist # "8h"):$Vt, GPR64sp:$Rn), []>; def v4s : BaseSIMDLdSt<1, 0, opcode, 0b10, asm, (outs), (ins !cast<RegisterOperand>(veclist # "4s"):$Vt, GPR64sp:$Rn), []>; def v2d : BaseSIMDLdSt<1, 0, opcode, 0b11, asm, (outs), (ins !cast<RegisterOperand>(veclist # "2d"):$Vt, GPR64sp:$Rn), []>; def v8b : BaseSIMDLdSt<0, 0, opcode, 0b00, asm, (outs), (ins !cast<RegisterOperand>(veclist # "8b"):$Vt, GPR64sp:$Rn), []>; def v4h : BaseSIMDLdSt<0, 0, opcode, 0b01, asm, (outs), (ins !cast<RegisterOperand>(veclist # "4h"):$Vt, GPR64sp:$Rn), []>; def v2s : BaseSIMDLdSt<0, 0, opcode, 0b10, asm, (outs), (ins !cast<RegisterOperand>(veclist # "2s"):$Vt, GPR64sp:$Rn), []>; def v16b_POST : BaseSIMDLdStPost<1, 0, opcode, 0b00, asm, (outs GPR64sp:$wback), (ins !cast<RegisterOperand>(veclist # "16b"):$Vt, GPR64sp:$Rn, !cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>; def v8h_POST : BaseSIMDLdStPost<1, 0, opcode, 0b01, asm, (outs GPR64sp:$wback), (ins !cast<RegisterOperand>(veclist # "8h"):$Vt, GPR64sp:$Rn, !cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>; def v4s_POST : BaseSIMDLdStPost<1, 0, opcode, 0b10, asm, (outs GPR64sp:$wback), (ins !cast<RegisterOperand>(veclist # "4s"):$Vt, GPR64sp:$Rn, !cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>; def v2d_POST : BaseSIMDLdStPost<1, 0, opcode, 0b11, asm, (outs GPR64sp:$wback), (ins !cast<RegisterOperand>(veclist # "2d"):$Vt, GPR64sp:$Rn, !cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>; def v8b_POST : BaseSIMDLdStPost<0, 0, opcode, 0b00, asm, (outs GPR64sp:$wback), (ins !cast<RegisterOperand>(veclist # "8b"):$Vt, GPR64sp:$Rn, !cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>; def v4h_POST : BaseSIMDLdStPost<0, 0, opcode, 0b01, asm, (outs GPR64sp:$wback), (ins !cast<RegisterOperand>(veclist # "4h"):$Vt, GPR64sp:$Rn, !cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>; def v2s_POST : BaseSIMDLdStPost<0, 0, opcode, 0b10, asm, (outs GPR64sp:$wback), (ins !cast<RegisterOperand>(veclist # "2s"):$Vt, GPR64sp:$Rn, !cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>; } defm : SIMDLdStAliases<asm, "16b", Count, Offset128, 128>; defm : SIMDLdStAliases<asm, "8h", Count, Offset128, 128>; defm : SIMDLdStAliases<asm, "4s", Count, Offset128, 128>; defm : SIMDLdStAliases<asm, "2d", Count, Offset128, 128>; defm : SIMDLdStAliases<asm, "8b", Count, Offset64, 64>; defm : SIMDLdStAliases<asm, "4h", Count, Offset64, 64>; defm : SIMDLdStAliases<asm, "2s", Count, Offset64, 64>; } multiclass BaseSIMDLd1<string Count, string asm, string veclist, int Offset128, int Offset64, bits<4> opcode> : BaseSIMDLdN<Count, asm, veclist, Offset128, Offset64, opcode> { // LD1 instructions have extra "1d" variants. let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in { def v1d : BaseSIMDLdSt<0, 1, opcode, 0b11, asm, (outs !cast<RegisterOperand>(veclist # "1d"):$Vt), (ins GPR64sp:$Rn), []>; def v1d_POST : BaseSIMDLdStPost<0, 1, opcode, 0b11, asm, (outs GPR64sp:$wback, !cast<RegisterOperand>(veclist # "1d"):$Vt), (ins GPR64sp:$Rn, !cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>; } defm : SIMDLdStAliases<asm, "1d", Count, Offset64, 64>; } multiclass BaseSIMDSt1<string Count, string asm, string veclist, int Offset128, int Offset64, bits<4> opcode> : BaseSIMDStN<Count, asm, veclist, Offset128, Offset64, opcode> { // ST1 instructions have extra "1d" variants. let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in { def v1d : BaseSIMDLdSt<0, 0, opcode, 0b11, asm, (outs), (ins !cast<RegisterOperand>(veclist # "1d"):$Vt, GPR64sp:$Rn), []>; def v1d_POST : BaseSIMDLdStPost<0, 0, opcode, 0b11, asm, (outs GPR64sp:$wback), (ins !cast<RegisterOperand>(veclist # "1d"):$Vt, GPR64sp:$Rn, !cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>; } defm : SIMDLdStAliases<asm, "1d", Count, Offset64, 64>; } multiclass SIMDLd1Multiple<string asm> { defm One : BaseSIMDLd1<"One", asm, "VecListOne", 16, 8, 0b0111>; defm Two : BaseSIMDLd1<"Two", asm, "VecListTwo", 32, 16, 0b1010>; defm Three : BaseSIMDLd1<"Three", asm, "VecListThree", 48, 24, 0b0110>; defm Four : BaseSIMDLd1<"Four", asm, "VecListFour", 64, 32, 0b0010>; } multiclass SIMDSt1Multiple<string asm> { defm One : BaseSIMDSt1<"One", asm, "VecListOne", 16, 8, 0b0111>; defm Two : BaseSIMDSt1<"Two", asm, "VecListTwo", 32, 16, 0b1010>; defm Three : BaseSIMDSt1<"Three", asm, "VecListThree", 48, 24, 0b0110>; defm Four : BaseSIMDSt1<"Four", asm, "VecListFour", 64, 32, 0b0010>; } multiclass SIMDLd2Multiple<string asm> { defm Two : BaseSIMDLdN<"Two", asm, "VecListTwo", 32, 16, 0b1000>; } multiclass SIMDSt2Multiple<string asm> { defm Two : BaseSIMDStN<"Two", asm, "VecListTwo", 32, 16, 0b1000>; } multiclass SIMDLd3Multiple<string asm> { defm Three : BaseSIMDLdN<"Three", asm, "VecListThree", 48, 24, 0b0100>; } multiclass SIMDSt3Multiple<string asm> { defm Three : BaseSIMDStN<"Three", asm, "VecListThree", 48, 24, 0b0100>; } multiclass SIMDLd4Multiple<string asm> { defm Four : BaseSIMDLdN<"Four", asm, "VecListFour", 64, 32, 0b0000>; } multiclass SIMDSt4Multiple<string asm> { defm Four : BaseSIMDStN<"Four", asm, "VecListFour", 64, 32, 0b0000>; } //--- // AdvSIMD Load/store single-element //--- class BaseSIMDLdStSingle<bit L, bit R, bits<3> opcode, string asm, string operands, string cst, dag oops, dag iops, list<dag> pattern> : I<oops, iops, asm, operands, cst, pattern> { bits<5> Vt; bits<5> Rn; let Inst{31} = 0; let Inst{29-24} = 0b001101; let Inst{22} = L; let Inst{21} = R; let Inst{15-13} = opcode; let Inst{9-5} = Rn; let Inst{4-0} = Vt; } class BaseSIMDLdStSingleTied<bit L, bit R, bits<3> opcode, string asm, string operands, string cst, dag oops, dag iops, list<dag> pattern> : I<oops, iops, asm, operands, "$Vt = $dst," # cst, pattern> { bits<5> Vt; bits<5> Rn; let Inst{31} = 0; let Inst{29-24} = 0b001101; let Inst{22} = L; let Inst{21} = R; let Inst{15-13} = opcode; let Inst{9-5} = Rn; let Inst{4-0} = Vt; } let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in class BaseSIMDLdR<bit Q, bit R, bits<3> opcode, bit S, bits<2> size, string asm, Operand listtype> : BaseSIMDLdStSingle<1, R, opcode, asm, "\t$Vt, [$Rn]", "", (outs listtype:$Vt), (ins GPR64sp:$Rn), []> { let Inst{30} = Q; let Inst{23} = 0; let Inst{20-16} = 0b00000; let Inst{12} = S; let Inst{11-10} = size; } let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in class BaseSIMDLdRPost<bit Q, bit R, bits<3> opcode, bit S, bits<2> size, string asm, Operand listtype, Operand GPR64pi> : BaseSIMDLdStSingle<1, R, opcode, asm, "\t$Vt, [$Rn], $Xm", "$Rn = $wback", (outs GPR64sp:$wback, listtype:$Vt), (ins GPR64sp:$Rn, GPR64pi:$Xm), []> { bits<5> Xm; let Inst{30} = Q; let Inst{23} = 1; let Inst{20-16} = Xm; let Inst{12} = S; let Inst{11-10} = size; } multiclass SIMDLdrAliases<string asm, string layout, string Count, int Offset, int Size> { // E.g. "ld1r { v0.8b }, [x1], #1" // "ld1r.8b\t$Vt, [$Rn], #1" // may get mapped to // (LD1Rv8b_POST VecListOne8b:$Vt, GPR64sp:$Rn, XZR) def : InstAlias<asm # "\t$Vt, [$Rn], #" # Offset, (!cast<Instruction>(NAME # "v" # layout # "_POST") GPR64sp:$Rn, !cast<RegisterOperand>("VecList" # Count # layout):$Vt, XZR), 1>; // E.g. "ld1r.8b { v0 }, [x1], #1" // "ld1r.8b\t$Vt, [$Rn], #1" // may get mapped to // (LD1Rv8b_POST VecListOne64:$Vt, GPR64sp:$Rn, XZR) def : InstAlias<asm # "." # layout # "\t$Vt, [$Rn], #" # Offset, (!cast<Instruction>(NAME # "v" # layout # "_POST") GPR64sp:$Rn, !cast<RegisterOperand>("VecList" # Count # Size):$Vt, XZR), 0>; // E.g. "ld1r.8b { v0 }, [x1]" // "ld1r.8b\t$Vt, [$Rn]" // may get mapped to // (LD1Rv8b VecListOne64:$Vt, GPR64sp:$Rn) def : InstAlias<asm # "." # layout # "\t$Vt, [$Rn]", (!cast<Instruction>(NAME # "v" # layout) !cast<RegisterOperand>("VecList" # Count # Size):$Vt, GPR64sp:$Rn), 0>; // E.g. "ld1r.8b { v0 }, [x1], x2" // "ld1r.8b\t$Vt, [$Rn], $Xm" // may get mapped to // (LD1Rv8b_POST VecListOne64:$Vt, GPR64sp:$Rn, GPR64pi1:$Xm) def : InstAlias<asm # "." # layout # "\t$Vt, [$Rn], $Xm", (!cast<Instruction>(NAME # "v" # layout # "_POST") GPR64sp:$Rn, !cast<RegisterOperand>("VecList" # Count # Size):$Vt, !cast<RegisterOperand>("GPR64pi" # Offset):$Xm), 0>; } multiclass SIMDLdR<bit R, bits<3> opcode, bit S, string asm, string Count, int Offset1, int Offset2, int Offset4, int Offset8> { def v8b : BaseSIMDLdR<0, R, opcode, S, 0b00, asm, !cast<Operand>("VecList" # Count # "8b")>; def v16b: BaseSIMDLdR<1, R, opcode, S, 0b00, asm, !cast<Operand>("VecList" # Count #"16b")>; def v4h : BaseSIMDLdR<0, R, opcode, S, 0b01, asm, !cast<Operand>("VecList" # Count #"4h")>; def v8h : BaseSIMDLdR<1, R, opcode, S, 0b01, asm, !cast<Operand>("VecList" # Count #"8h")>; def v2s : BaseSIMDLdR<0, R, opcode, S, 0b10, asm, !cast<Operand>("VecList" # Count #"2s")>; def v4s : BaseSIMDLdR<1, R, opcode, S, 0b10, asm, !cast<Operand>("VecList" # Count #"4s")>; def v1d : BaseSIMDLdR<0, R, opcode, S, 0b11, asm, !cast<Operand>("VecList" # Count #"1d")>; def v2d : BaseSIMDLdR<1, R, opcode, S, 0b11, asm, !cast<Operand>("VecList" # Count #"2d")>; def v8b_POST : BaseSIMDLdRPost<0, R, opcode, S, 0b00, asm, !cast<Operand>("VecList" # Count # "8b"), !cast<Operand>("GPR64pi" # Offset1)>; def v16b_POST: BaseSIMDLdRPost<1, R, opcode, S, 0b00, asm, !cast<Operand>("VecList" # Count # "16b"), !cast<Operand>("GPR64pi" # Offset1)>; def v4h_POST : BaseSIMDLdRPost<0, R, opcode, S, 0b01, asm, !cast<Operand>("VecList" # Count # "4h"), !cast<Operand>("GPR64pi" # Offset2)>; def v8h_POST : BaseSIMDLdRPost<1, R, opcode, S, 0b01, asm, !cast<Operand>("VecList" # Count # "8h"), !cast<Operand>("GPR64pi" # Offset2)>; def v2s_POST : BaseSIMDLdRPost<0, R, opcode, S, 0b10, asm, !cast<Operand>("VecList" # Count # "2s"), !cast<Operand>("GPR64pi" # Offset4)>; def v4s_POST : BaseSIMDLdRPost<1, R, opcode, S, 0b10, asm, !cast<Operand>("VecList" # Count # "4s"), !cast<Operand>("GPR64pi" # Offset4)>; def v1d_POST : BaseSIMDLdRPost<0, R, opcode, S, 0b11, asm, !cast<Operand>("VecList" # Count # "1d"), !cast<Operand>("GPR64pi" # Offset8)>; def v2d_POST : BaseSIMDLdRPost<1, R, opcode, S, 0b11, asm, !cast<Operand>("VecList" # Count # "2d"), !cast<Operand>("GPR64pi" # Offset8)>; defm : SIMDLdrAliases<asm, "8b", Count, Offset1, 64>; defm : SIMDLdrAliases<asm, "16b", Count, Offset1, 128>; defm : SIMDLdrAliases<asm, "4h", Count, Offset2, 64>; defm : SIMDLdrAliases<asm, "8h", Count, Offset2, 128>; defm : SIMDLdrAliases<asm, "2s", Count, Offset4, 64>; defm : SIMDLdrAliases<asm, "4s", Count, Offset4, 128>; defm : SIMDLdrAliases<asm, "1d", Count, Offset8, 64>; defm : SIMDLdrAliases<asm, "2d", Count, Offset8, 128>; } class SIMDLdStSingleB<bit L, bit R, bits<3> opcode, string asm, dag oops, dag iops, list<dag> pattern> : BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "", oops, iops, pattern> { // idx encoded in Q:S:size fields. bits<4> idx; let Inst{30} = idx{3}; let Inst{23} = 0; let Inst{20-16} = 0b00000; let Inst{12} = idx{2}; let Inst{11-10} = idx{1-0}; } class SIMDLdStSingleBTied<bit L, bit R, bits<3> opcode, string asm, dag oops, dag iops, list<dag> pattern> : BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "", oops, iops, pattern> { // idx encoded in Q:S:size fields. bits<4> idx; let Inst{30} = idx{3}; let Inst{23} = 0; let Inst{20-16} = 0b00000; let Inst{12} = idx{2}; let Inst{11-10} = idx{1-0}; } class SIMDLdStSingleBPost<bit L, bit R, bits<3> opcode, string asm, dag oops, dag iops> : BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm", "$Rn = $wback", oops, iops, []> { // idx encoded in Q:S:size fields. bits<4> idx; bits<5> Xm; let Inst{30} = idx{3}; let Inst{23} = 1; let Inst{20-16} = Xm; let Inst{12} = idx{2}; let Inst{11-10} = idx{1-0}; } class SIMDLdStSingleBTiedPost<bit L, bit R, bits<3> opcode, string asm, dag oops, dag iops> : BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm", "$Rn = $wback", oops, iops, []> { // idx encoded in Q:S:size fields. bits<4> idx; bits<5> Xm; let Inst{30} = idx{3}; let Inst{23} = 1; let Inst{20-16} = Xm; let Inst{12} = idx{2}; let Inst{11-10} = idx{1-0}; } class SIMDLdStSingleH<bit L, bit R, bits<3> opcode, bit size, string asm, dag oops, dag iops, list<dag> pattern> : BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "", oops, iops, pattern> { // idx encoded in Q:S:size<1> fields. bits<3> idx; let Inst{30} = idx{2}; let Inst{23} = 0; let Inst{20-16} = 0b00000; let Inst{12} = idx{1}; let Inst{11} = idx{0}; let Inst{10} = size; } class SIMDLdStSingleHTied<bit L, bit R, bits<3> opcode, bit size, string asm, dag oops, dag iops, list<dag> pattern> : BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "", oops, iops, pattern> { // idx encoded in Q:S:size<1> fields. bits<3> idx; let Inst{30} = idx{2}; let Inst{23} = 0; let Inst{20-16} = 0b00000; let Inst{12} = idx{1}; let Inst{11} = idx{0}; let Inst{10} = size; } class SIMDLdStSingleHPost<bit L, bit R, bits<3> opcode, bit size, string asm, dag oops, dag iops> : BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm", "$Rn = $wback", oops, iops, []> { // idx encoded in Q:S:size<1> fields. bits<3> idx; bits<5> Xm; let Inst{30} = idx{2}; let Inst{23} = 1; let Inst{20-16} = Xm; let Inst{12} = idx{1}; let Inst{11} = idx{0}; let Inst{10} = size; } class SIMDLdStSingleHTiedPost<bit L, bit R, bits<3> opcode, bit size, string asm, dag oops, dag iops> : BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm", "$Rn = $wback", oops, iops, []> { // idx encoded in Q:S:size<1> fields. bits<3> idx; bits<5> Xm; let Inst{30} = idx{2}; let Inst{23} = 1; let Inst{20-16} = Xm; let Inst{12} = idx{1}; let Inst{11} = idx{0}; let Inst{10} = size; } class SIMDLdStSingleS<bit L, bit R, bits<3> opcode, bits<2> size, string asm, dag oops, dag iops, list<dag> pattern> : BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "", oops, iops, pattern> { // idx encoded in Q:S fields. bits<2> idx; let Inst{30} = idx{1}; let Inst{23} = 0; let Inst{20-16} = 0b00000; let Inst{12} = idx{0}; let Inst{11-10} = size; } class SIMDLdStSingleSTied<bit L, bit R, bits<3> opcode, bits<2> size, string asm, dag oops, dag iops, list<dag> pattern> : BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "", oops, iops, pattern> { // idx encoded in Q:S fields. bits<2> idx; let Inst{30} = idx{1}; let Inst{23} = 0; let Inst{20-16} = 0b00000; let Inst{12} = idx{0}; let Inst{11-10} = size; } class SIMDLdStSingleSPost<bit L, bit R, bits<3> opcode, bits<2> size, string asm, dag oops, dag iops> : BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm", "$Rn = $wback", oops, iops, []> { // idx encoded in Q:S fields. bits<2> idx; bits<5> Xm; let Inst{30} = idx{1}; let Inst{23} = 1; let Inst{20-16} = Xm; let Inst{12} = idx{0}; let Inst{11-10} = size; } class SIMDLdStSingleSTiedPost<bit L, bit R, bits<3> opcode, bits<2> size, string asm, dag oops, dag iops> : BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm", "$Rn = $wback", oops, iops, []> { // idx encoded in Q:S fields. bits<2> idx; bits<5> Xm; let Inst{30} = idx{1}; let Inst{23} = 1; let Inst{20-16} = Xm; let Inst{12} = idx{0}; let Inst{11-10} = size; } class SIMDLdStSingleD<bit L, bit R, bits<3> opcode, bits<2> size, string asm, dag oops, dag iops, list<dag> pattern> : BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "", oops, iops, pattern> { // idx encoded in Q field. bits<1> idx; let Inst{30} = idx; let Inst{23} = 0; let Inst{20-16} = 0b00000; let Inst{12} = 0; let Inst{11-10} = size; } class SIMDLdStSingleDTied<bit L, bit R, bits<3> opcode, bits<2> size, string asm, dag oops, dag iops, list<dag> pattern> : BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "", oops, iops, pattern> { // idx encoded in Q field. bits<1> idx; let Inst{30} = idx; let Inst{23} = 0; let Inst{20-16} = 0b00000; let Inst{12} = 0; let Inst{11-10} = size; } class SIMDLdStSingleDPost<bit L, bit R, bits<3> opcode, bits<2> size, string asm, dag oops, dag iops> : BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm", "$Rn = $wback", oops, iops, []> { // idx encoded in Q field. bits<1> idx; bits<5> Xm; let Inst{30} = idx; let Inst{23} = 1; let Inst{20-16} = Xm; let Inst{12} = 0; let Inst{11-10} = size; } class SIMDLdStSingleDTiedPost<bit L, bit R, bits<3> opcode, bits<2> size, string asm, dag oops, dag iops> : BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm", "$Rn = $wback", oops, iops, []> { // idx encoded in Q field. bits<1> idx; bits<5> Xm; let Inst{30} = idx; let Inst{23} = 1; let Inst{20-16} = Xm; let Inst{12} = 0; let Inst{11-10} = size; } let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in multiclass SIMDLdSingleBTied<bit R, bits<3> opcode, string asm, RegisterOperand listtype, RegisterOperand GPR64pi> { def i8 : SIMDLdStSingleBTied<1, R, opcode, asm, (outs listtype:$dst), (ins listtype:$Vt, VectorIndexB:$idx, GPR64sp:$Rn), []>; def i8_POST : SIMDLdStSingleBTiedPost<1, R, opcode, asm, (outs GPR64sp:$wback, listtype:$dst), (ins listtype:$Vt, VectorIndexB:$idx, GPR64sp:$Rn, GPR64pi:$Xm)>; } let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in multiclass SIMDLdSingleHTied<bit R, bits<3> opcode, bit size, string asm, RegisterOperand listtype, RegisterOperand GPR64pi> { def i16 : SIMDLdStSingleHTied<1, R, opcode, size, asm, (outs listtype:$dst), (ins listtype:$Vt, VectorIndexH:$idx, GPR64sp:$Rn), []>; def i16_POST : SIMDLdStSingleHTiedPost<1, R, opcode, size, asm, (outs GPR64sp:$wback, listtype:$dst), (ins listtype:$Vt, VectorIndexH:$idx, GPR64sp:$Rn, GPR64pi:$Xm)>; } let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in multiclass SIMDLdSingleSTied<bit R, bits<3> opcode, bits<2> size,string asm, RegisterOperand listtype, RegisterOperand GPR64pi> { def i32 : SIMDLdStSingleSTied<1, R, opcode, size, asm, (outs listtype:$dst), (ins listtype:$Vt, VectorIndexS:$idx, GPR64sp:$Rn), []>; def i32_POST : SIMDLdStSingleSTiedPost<1, R, opcode, size, asm, (outs GPR64sp:$wback, listtype:$dst), (ins listtype:$Vt, VectorIndexS:$idx, GPR64sp:$Rn, GPR64pi:$Xm)>; } let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in multiclass SIMDLdSingleDTied<bit R, bits<3> opcode, bits<2> size, string asm, RegisterOperand listtype, RegisterOperand GPR64pi> { def i64 : SIMDLdStSingleDTied<1, R, opcode, size, asm, (outs listtype:$dst), (ins listtype:$Vt, VectorIndexD:$idx, GPR64sp:$Rn), []>; def i64_POST : SIMDLdStSingleDTiedPost<1, R, opcode, size, asm, (outs GPR64sp:$wback, listtype:$dst), (ins listtype:$Vt, VectorIndexD:$idx, GPR64sp:$Rn, GPR64pi:$Xm)>; } let mayLoad = 0, mayStore = 1, hasSideEffects = 0 in multiclass SIMDStSingleB<bit R, bits<3> opcode, string asm, RegisterOperand listtype, RegisterOperand GPR64pi> { def i8 : SIMDLdStSingleB<0, R, opcode, asm, (outs), (ins listtype:$Vt, VectorIndexB:$idx, GPR64sp:$Rn), []>; def i8_POST : SIMDLdStSingleBPost<0, R, opcode, asm, (outs GPR64sp:$wback), (ins listtype:$Vt, VectorIndexB:$idx, GPR64sp:$Rn, GPR64pi:$Xm)>; } let mayLoad = 0, mayStore = 1, hasSideEffects = 0 in multiclass SIMDStSingleH<bit R, bits<3> opcode, bit size, string asm, RegisterOperand listtype, RegisterOperand GPR64pi> { def i16 : SIMDLdStSingleH<0, R, opcode, size, asm, (outs), (ins listtype:$Vt, VectorIndexH:$idx, GPR64sp:$Rn), []>; def i16_POST : SIMDLdStSingleHPost<0, R, opcode, size, asm, (outs GPR64sp:$wback), (ins listtype:$Vt, VectorIndexH:$idx, GPR64sp:$Rn, GPR64pi:$Xm)>; } let mayLoad = 0, mayStore = 1, hasSideEffects = 0 in multiclass SIMDStSingleS<bit R, bits<3> opcode, bits<2> size,string asm, RegisterOperand listtype, RegisterOperand GPR64pi> { def i32 : SIMDLdStSingleS<0, R, opcode, size, asm, (outs), (ins listtype:$Vt, VectorIndexS:$idx, GPR64sp:$Rn), []>; def i32_POST : SIMDLdStSingleSPost<0, R, opcode, size, asm, (outs GPR64sp:$wback), (ins listtype:$Vt, VectorIndexS:$idx, GPR64sp:$Rn, GPR64pi:$Xm)>; } let mayLoad = 0, mayStore = 1, hasSideEffects = 0 in multiclass SIMDStSingleD<bit R, bits<3> opcode, bits<2> size, string asm, RegisterOperand listtype, RegisterOperand GPR64pi> { def i64 : SIMDLdStSingleD<0, R, opcode, size, asm, (outs), (ins listtype:$Vt, VectorIndexD:$idx, GPR64sp:$Rn), []>; def i64_POST : SIMDLdStSingleDPost<0, R, opcode, size, asm, (outs GPR64sp:$wback), (ins listtype:$Vt, VectorIndexD:$idx, GPR64sp:$Rn, GPR64pi:$Xm)>; } multiclass SIMDLdStSingleAliases<string asm, string layout, string Type, string Count, int Offset, Operand idxtype> { // E.g. "ld1 { v0.8b }[0], [x1], #1" // "ld1\t$Vt, [$Rn], #1" // may get mapped to // (LD1Rv8b_POST VecListOne8b:$Vt, GPR64sp:$Rn, XZR) def : InstAlias<asm # "\t$Vt$idx, [$Rn], #" # Offset, (!cast<Instruction>(NAME # Type # "_POST") GPR64sp:$Rn, !cast<RegisterOperand>("VecList" # Count # layout):$Vt, idxtype:$idx, XZR), 1>; // E.g. "ld1.8b { v0 }[0], [x1], #1" // "ld1.8b\t$Vt, [$Rn], #1" // may get mapped to // (LD1Rv8b_POST VecListOne64:$Vt, GPR64sp:$Rn, XZR) def : InstAlias<asm # "." # layout # "\t$Vt$idx, [$Rn], #" # Offset, (!cast<Instruction>(NAME # Type # "_POST") GPR64sp:$Rn, !cast<RegisterOperand>("VecList" # Count # "128"):$Vt, idxtype:$idx, XZR), 0>; // E.g. "ld1.8b { v0 }[0], [x1]" // "ld1.8b\t$Vt, [$Rn]" // may get mapped to // (LD1Rv8b VecListOne64:$Vt, GPR64sp:$Rn) def : InstAlias<asm # "." # layout # "\t$Vt$idx, [$Rn]", (!cast<Instruction>(NAME # Type) !cast<RegisterOperand>("VecList" # Count # "128"):$Vt, idxtype:$idx, GPR64sp:$Rn), 0>; // E.g. "ld1.8b { v0 }[0], [x1], x2" // "ld1.8b\t$Vt, [$Rn], $Xm" // may get mapped to // (LD1Rv8b_POST VecListOne64:$Vt, GPR64sp:$Rn, GPR64pi1:$Xm) def : InstAlias<asm # "." # layout # "\t$Vt$idx, [$Rn], $Xm", (!cast<Instruction>(NAME # Type # "_POST") GPR64sp:$Rn, !cast<RegisterOperand>("VecList" # Count # "128"):$Vt, idxtype:$idx, !cast<RegisterOperand>("GPR64pi" # Offset):$Xm), 0>; } multiclass SIMDLdSt1SingleAliases<string asm> { defm : SIMDLdStSingleAliases<asm, "b", "i8", "One", 1, VectorIndexB>; defm : SIMDLdStSingleAliases<asm, "h", "i16", "One", 2, VectorIndexH>; defm : SIMDLdStSingleAliases<asm, "s", "i32", "One", 4, VectorIndexS>; defm : SIMDLdStSingleAliases<asm, "d", "i64", "One", 8, VectorIndexD>; } multiclass SIMDLdSt2SingleAliases<string asm> { defm : SIMDLdStSingleAliases<asm, "b", "i8", "Two", 2, VectorIndexB>; defm : SIMDLdStSingleAliases<asm, "h", "i16", "Two", 4, VectorIndexH>; defm : SIMDLdStSingleAliases<asm, "s", "i32", "Two", 8, VectorIndexS>; defm : SIMDLdStSingleAliases<asm, "d", "i64", "Two", 16, VectorIndexD>; } multiclass SIMDLdSt3SingleAliases<string asm> { defm : SIMDLdStSingleAliases<asm, "b", "i8", "Three", 3, VectorIndexB>; defm : SIMDLdStSingleAliases<asm, "h", "i16", "Three", 6, VectorIndexH>; defm : SIMDLdStSingleAliases<asm, "s", "i32", "Three", 12, VectorIndexS>; defm : SIMDLdStSingleAliases<asm, "d", "i64", "Three", 24, VectorIndexD>; } multiclass SIMDLdSt4SingleAliases<string asm> { defm : SIMDLdStSingleAliases<asm, "b", "i8", "Four", 4, VectorIndexB>; defm : SIMDLdStSingleAliases<asm, "h", "i16", "Four", 8, VectorIndexH>; defm : SIMDLdStSingleAliases<asm, "s", "i32", "Four", 16, VectorIndexS>; defm : SIMDLdStSingleAliases<asm, "d", "i64", "Four", 32, VectorIndexD>; } } // end of 'let Predicates = [HasNEON]' //---------------------------------------------------------------------------- // AdvSIMD v8.1 Rounding Double Multiply Add/Subtract //---------------------------------------------------------------------------- let Predicates = [HasNEON, HasV8_1a] in { class BaseSIMDThreeSameVectorTiedR0<bit Q, bit U, bits<2> size, bits<5> opcode, RegisterOperand regtype, string asm, string kind, list<dag> pattern> : BaseSIMDThreeSameVectorTied<Q, U, size, opcode, regtype, asm, kind, pattern> { let Inst{21}=0; } multiclass SIMDThreeSameVectorSQRDMLxHTiedHS<bit U, bits<5> opc, string asm, SDPatternOperator Accum> { def v4i16 : BaseSIMDThreeSameVectorTiedR0<0, U, 0b01, opc, V64, asm, ".4h", [(set (v4i16 V64:$dst), (Accum (v4i16 V64:$Rd), (v4i16 (int_aarch64_neon_sqrdmulh (v4i16 V64:$Rn), (v4i16 V64:$Rm)))))]>; def v8i16 : BaseSIMDThreeSameVectorTiedR0<1, U, 0b01, opc, V128, asm, ".8h", [(set (v8i16 V128:$dst), (Accum (v8i16 V128:$Rd), (v8i16 (int_aarch64_neon_sqrdmulh (v8i16 V128:$Rn), (v8i16 V128:$Rm)))))]>; def v2i32 : BaseSIMDThreeSameVectorTiedR0<0, U, 0b10, opc, V64, asm, ".2s", [(set (v2i32 V64:$dst), (Accum (v2i32 V64:$Rd), (v2i32 (int_aarch64_neon_sqrdmulh (v2i32 V64:$Rn), (v2i32 V64:$Rm)))))]>; def v4i32 : BaseSIMDThreeSameVectorTiedR0<1, U, 0b10, opc, V128, asm, ".4s", [(set (v4i32 V128:$dst), (Accum (v4i32 V128:$Rd), (v4i32 (int_aarch64_neon_sqrdmulh (v4i32 V128:$Rn), (v4i32 V128:$Rm)))))]>; } multiclass SIMDIndexedSQRDMLxHSDTied<bit U, bits<4> opc, string asm, SDPatternOperator Accum> { def v4i16_indexed : BaseSIMDIndexedTied<0, U, 0, 0b01, opc, V64, V64, V128_lo, VectorIndexH, asm, ".4h", ".4h", ".4h", ".h", [(set (v4i16 V64:$dst), (Accum (v4i16 V64:$Rd), (v4i16 (int_aarch64_neon_sqrdmulh (v4i16 V64:$Rn), (v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v8i16_indexed : BaseSIMDIndexedTied<1, U, 0, 0b01, opc, V128, V128, V128_lo, VectorIndexH, asm, ".8h", ".8h", ".8h", ".h", [(set (v8i16 V128:$dst), (Accum (v8i16 V128:$Rd), (v8i16 (int_aarch64_neon_sqrdmulh (v8i16 V128:$Rn), (v8i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v2i32_indexed : BaseSIMDIndexedTied<0, U, 0, 0b10, opc, V64, V64, V128, VectorIndexS, asm, ".2s", ".2s", ".2s", ".s", [(set (v2i32 V64:$dst), (Accum (v2i32 V64:$Rd), (v2i32 (int_aarch64_neon_sqrdmulh (v2i32 V64:$Rn), (v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } // FIXME: it would be nice to use the scalar (v1i32) instruction here, but // an intermediate EXTRACT_SUBREG would be untyped. // FIXME: direct EXTRACT_SUBREG from v2i32 to i32 is illegal, that's why we // got it lowered here as (i32 vector_extract (v4i32 insert_subvector(..))) def : Pat<(i32 (Accum (i32 FPR32Op:$Rd), (i32 (vector_extract (v4i32 (insert_subvector (undef), (v2i32 (int_aarch64_neon_sqrdmulh (v2i32 V64:$Rn), (v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx)))), (i32 0))), (i64 0))))), (EXTRACT_SUBREG (v2i32 (!cast<Instruction>(NAME # v2i32_indexed) (v2i32 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), FPR32Op:$Rd, ssub)), V64:$Rn, V128:$Rm, VectorIndexS:$idx)), ssub)>; def v4i32_indexed : BaseSIMDIndexedTied<1, U, 0, 0b10, opc, V128, V128, V128, VectorIndexS, asm, ".4s", ".4s", ".4s", ".s", [(set (v4i32 V128:$dst), (Accum (v4i32 V128:$Rd), (v4i32 (int_aarch64_neon_sqrdmulh (v4i32 V128:$Rn), (v4i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } // FIXME: it would be nice to use the scalar (v1i32) instruction here, but // an intermediate EXTRACT_SUBREG would be untyped. def : Pat<(i32 (Accum (i32 FPR32Op:$Rd), (i32 (vector_extract (v4i32 (int_aarch64_neon_sqrdmulh (v4i32 V128:$Rn), (v4i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx)))), (i64 0))))), (EXTRACT_SUBREG (v4i32 (!cast<Instruction>(NAME # v4i32_indexed) (v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32Op:$Rd, ssub)), V128:$Rn, V128:$Rm, VectorIndexS:$idx)), ssub)>; def i16_indexed : BaseSIMDIndexedTied<1, U, 1, 0b01, opc, FPR16Op, FPR16Op, V128_lo, VectorIndexH, asm, ".h", "", "", ".h", []> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def i32_indexed : BaseSIMDIndexedTied<1, U, 1, 0b10, opc, FPR32Op, FPR32Op, V128, VectorIndexS, asm, ".s", "", "", ".s", [(set (i32 FPR32Op:$dst), (Accum (i32 FPR32Op:$Rd), (i32 (int_aarch64_neon_sqrdmulh (i32 FPR32Op:$Rn), (i32 (vector_extract (v4i32 V128:$Rm), VectorIndexS:$idx))))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } } } // let Predicates = [HasNeon, HasV8_1a] //---------------------------------------------------------------------------- // Crypto extensions //---------------------------------------------------------------------------- let Predicates = [HasCrypto] in { let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class AESBase<bits<4> opc, string asm, dag outs, dag ins, string cstr, list<dag> pat> : I<outs, ins, asm, "{\t$Rd.16b, $Rn.16b|.16b\t$Rd, $Rn}", cstr, pat>, Sched<[WriteV]>{ bits<5> Rd; bits<5> Rn; let Inst{31-16} = 0b0100111000101000; let Inst{15-12} = opc; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } class AESInst<bits<4> opc, string asm, Intrinsic OpNode> : AESBase<opc, asm, (outs V128:$Rd), (ins V128:$Rn), "", [(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn)))]>; class AESTiedInst<bits<4> opc, string asm, Intrinsic OpNode> : AESBase<opc, asm, (outs V128:$dst), (ins V128:$Rd, V128:$Rn), "$Rd = $dst", [(set (v16i8 V128:$dst), (OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn)))]>; let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class SHA3OpTiedInst<bits<3> opc, string asm, string dst_lhs_kind, dag oops, dag iops, list<dag> pat> : I<oops, iops, asm, "{\t$Rd" # dst_lhs_kind # ", $Rn" # dst_lhs_kind # ", $Rm.4s" # "|.4s\t$Rd, $Rn, $Rm}", "$Rd = $dst", pat>, Sched<[WriteV]>{ bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31-21} = 0b01011110000; let Inst{20-16} = Rm; let Inst{15} = 0; let Inst{14-12} = opc; let Inst{11-10} = 0b00; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } class SHATiedInstQSV<bits<3> opc, string asm, Intrinsic OpNode> : SHA3OpTiedInst<opc, asm, "", (outs FPR128:$dst), (ins FPR128:$Rd, FPR32:$Rn, V128:$Rm), [(set (v4i32 FPR128:$dst), (OpNode (v4i32 FPR128:$Rd), (i32 FPR32:$Rn), (v4i32 V128:$Rm)))]>; class SHATiedInstVVV<bits<3> opc, string asm, Intrinsic OpNode> : SHA3OpTiedInst<opc, asm, ".4s", (outs V128:$dst), (ins V128:$Rd, V128:$Rn, V128:$Rm), [(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn), (v4i32 V128:$Rm)))]>; class SHATiedInstQQV<bits<3> opc, string asm, Intrinsic OpNode> : SHA3OpTiedInst<opc, asm, "", (outs FPR128:$dst), (ins FPR128:$Rd, FPR128:$Rn, V128:$Rm), [(set (v4i32 FPR128:$dst), (OpNode (v4i32 FPR128:$Rd), (v4i32 FPR128:$Rn), (v4i32 V128:$Rm)))]>; let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class SHA2OpInst<bits<4> opc, string asm, string kind, string cstr, dag oops, dag iops, list<dag> pat> : I<oops, iops, asm, "{\t$Rd" # kind # ", $Rn" # kind # "|" # kind # "\t$Rd, $Rn}", cstr, pat>, Sched<[WriteV]>{ bits<5> Rd; bits<5> Rn; let Inst{31-16} = 0b0101111000101000; let Inst{15-12} = opc; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } class SHATiedInstVV<bits<4> opc, string asm, Intrinsic OpNode> : SHA2OpInst<opc, asm, ".4s", "$Rd = $dst", (outs V128:$dst), (ins V128:$Rd, V128:$Rn), [(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn)))]>; class SHAInstSS<bits<4> opc, string asm, Intrinsic OpNode> : SHA2OpInst<opc, asm, "", "", (outs FPR32:$Rd), (ins FPR32:$Rn), [(set (i32 FPR32:$Rd), (OpNode (i32 FPR32:$Rn)))]>; } // end of 'let Predicates = [HasCrypto]' // Allow the size specifier tokens to be upper case, not just lower. def : TokenAlias<".8B", ".8b">; def : TokenAlias<".4H", ".4h">; def : TokenAlias<".2S", ".2s">; def : TokenAlias<".1D", ".1d">; def : TokenAlias<".16B", ".16b">; def : TokenAlias<".8H", ".8h">; def : TokenAlias<".4S", ".4s">; def : TokenAlias<".2D", ".2d">; def : TokenAlias<".1Q", ".1q">; def : TokenAlias<".B", ".b">; def : TokenAlias<".H", ".h">; def : TokenAlias<".S", ".s">; def : TokenAlias<".D", ".d">; def : TokenAlias<".Q", ".q">;