//===-- AutoUpgrade.cpp - Implement auto-upgrade helper functions ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the auto-upgrade helper functions. // This is where deprecated IR intrinsics and other IR features are updated to // current specifications. // //===----------------------------------------------------------------------===// #include "llvm/IR/AutoUpgrade.h" #include "llvm/IR/CFG.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Support/ErrorHandling.h" #include <cstring> using namespace llvm; // Upgrade the declarations of the SSE4.1 functions whose arguments have // changed their type from v4f32 to v2i64. static bool UpgradeSSE41Function(Function* F, Intrinsic::ID IID, Function *&NewFn) { // Check whether this is an old version of the function, which received // v4f32 arguments. Type *Arg0Type = F->getFunctionType()->getParamType(0); if (Arg0Type != VectorType::get(Type::getFloatTy(F->getContext()), 4)) return false; // Yes, it's old, replace it with new version. F->setName(F->getName() + ".old"); NewFn = Intrinsic::getDeclaration(F->getParent(), IID); return true; } // Upgrade the declarations of intrinsic functions whose 8-bit immediate mask // arguments have changed their type from i32 to i8. static bool UpgradeX86IntrinsicsWith8BitMask(Function *F, Intrinsic::ID IID, Function *&NewFn) { // Check that the last argument is an i32. Type *LastArgType = F->getFunctionType()->getParamType( F->getFunctionType()->getNumParams() - 1); if (!LastArgType->isIntegerTy(32)) return false; // Move this function aside and map down. F->setName(F->getName() + ".old"); NewFn = Intrinsic::getDeclaration(F->getParent(), IID); return true; } // Upgrade the declarations of AVX-512 cmp intrinsic functions whose 8-bit // immediates have changed their type from i32 to i8. static bool UpgradeAVX512CmpIntrinsic(Function *F, Intrinsic::ID IID, Function *&NewFn) { // Check that the last argument is an i32. Type *LastArgType = F->getFunctionType()->getParamType(2); if (!LastArgType->isIntegerTy(32)) return false; // Move this function aside and map down. F->setName(F->getName() + ".old"); NewFn = Intrinsic::getDeclaration(F->getParent(), IID); return true; } static bool UpgradeIntrinsicFunction1(Function *F, Function *&NewFn) { assert(F && "Illegal to upgrade a non-existent Function."); // Quickly eliminate it, if it's not a candidate. StringRef Name = F->getName(); if (Name.size() <= 8 || !Name.startswith("llvm.")) return false; Name = Name.substr(5); // Strip off "llvm." switch (Name[0]) { default: break; case 'a': { if (Name.startswith("arm.neon.vclz")) { Type* args[2] = { F->arg_begin()->getType(), Type::getInt1Ty(F->getContext()) }; // Can't use Intrinsic::getDeclaration here as it adds a ".i1" to // the end of the name. Change name from llvm.arm.neon.vclz.* to // llvm.ctlz.* FunctionType* fType = FunctionType::get(F->getReturnType(), args, false); NewFn = Function::Create(fType, F->getLinkage(), "llvm.ctlz." + Name.substr(14), F->getParent()); return true; } if (Name.startswith("arm.neon.vcnt")) { NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctpop, F->arg_begin()->getType()); return true; } break; } case 'c': { if (Name.startswith("ctlz.") && F->arg_size() == 1) { F->setName(Name + ".old"); NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz, F->arg_begin()->getType()); return true; } if (Name.startswith("cttz.") && F->arg_size() == 1) { F->setName(Name + ".old"); NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::cttz, F->arg_begin()->getType()); return true; } break; } case 'o': // We only need to change the name to match the mangling including the // address space. if (F->arg_size() == 2 && Name.startswith("objectsize.")) { Type *Tys[2] = { F->getReturnType(), F->arg_begin()->getType() }; if (F->getName() != Intrinsic::getName(Intrinsic::objectsize, Tys)) { F->setName(Name + ".old"); NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::objectsize, Tys); return true; } } break; case 'x': { if (Name.startswith("x86.sse2.pcmpeq.") || Name.startswith("x86.sse2.pcmpgt.") || Name.startswith("x86.avx2.pcmpeq.") || Name.startswith("x86.avx2.pcmpgt.") || Name.startswith("x86.avx.vpermil.") || Name == "x86.avx.vinsertf128.pd.256" || Name == "x86.avx.vinsertf128.ps.256" || Name == "x86.avx.vinsertf128.si.256" || Name == "x86.avx2.vinserti128" || Name == "x86.avx.vextractf128.pd.256" || Name == "x86.avx.vextractf128.ps.256" || Name == "x86.avx.vextractf128.si.256" || Name == "x86.avx2.vextracti128" || Name == "x86.avx.movnt.dq.256" || Name == "x86.avx.movnt.pd.256" || Name == "x86.avx.movnt.ps.256" || Name == "x86.sse42.crc32.64.8" || Name == "x86.avx.vbroadcast.ss" || Name == "x86.avx.vbroadcast.ss.256" || Name == "x86.avx.vbroadcast.sd.256" || Name == "x86.sse2.psll.dq" || Name == "x86.sse2.psrl.dq" || Name == "x86.avx2.psll.dq" || Name == "x86.avx2.psrl.dq" || Name == "x86.sse2.psll.dq.bs" || Name == "x86.sse2.psrl.dq.bs" || Name == "x86.avx2.psll.dq.bs" || Name == "x86.avx2.psrl.dq.bs" || Name == "x86.sse41.pblendw" || Name == "x86.sse41.blendpd" || Name == "x86.sse41.blendps" || Name == "x86.avx.blend.pd.256" || Name == "x86.avx.blend.ps.256" || Name == "x86.avx2.pblendw" || Name == "x86.avx2.pblendd.128" || Name == "x86.avx2.pblendd.256" || Name == "x86.avx2.vbroadcasti128" || (Name.startswith("x86.xop.vpcom") && F->arg_size() == 2)) { NewFn = nullptr; return true; } // SSE4.1 ptest functions may have an old signature. if (Name.startswith("x86.sse41.ptest")) { if (Name == "x86.sse41.ptestc") return UpgradeSSE41Function(F, Intrinsic::x86_sse41_ptestc, NewFn); if (Name == "x86.sse41.ptestz") return UpgradeSSE41Function(F, Intrinsic::x86_sse41_ptestz, NewFn); if (Name == "x86.sse41.ptestnzc") return UpgradeSSE41Function(F, Intrinsic::x86_sse41_ptestnzc, NewFn); } // Several blend and other instructions with masks used the wrong number of // bits. if (Name == "x86.sse41.insertps") return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_insertps, NewFn); if (Name == "x86.sse41.dppd") return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_dppd, NewFn); if (Name == "x86.sse41.dpps") return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_dpps, NewFn); if (Name == "x86.sse41.mpsadbw") return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_mpsadbw, NewFn); if (Name == "x86.avx.dp.ps.256") return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_avx_dp_ps_256, NewFn); if (Name == "x86.avx2.mpsadbw") return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_avx2_mpsadbw, NewFn); if (Name == "x86.avx512.mask.cmp.ps.512") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_ps_512, NewFn); if (Name == "x86.avx512.mask.cmp.pd.512") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_pd_512, NewFn); if (Name == "x86.avx512.mask.cmp.b.512") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_b_512, NewFn); if (Name == "x86.avx512.mask.cmp.w.512") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_w_512, NewFn); if (Name == "x86.avx512.mask.cmp.d.512") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_d_512, NewFn); if (Name == "x86.avx512.mask.cmp.q.512") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_q_512, NewFn); if (Name == "x86.avx512.mask.ucmp.b.512") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_b_512, NewFn); if (Name == "x86.avx512.mask.ucmp.w.512") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_w_512, NewFn); if (Name == "x86.avx512.mask.ucmp.d.512") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_d_512, NewFn); if (Name == "x86.avx512.mask.ucmp.q.512") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_q_512, NewFn); if (Name == "x86.avx512.mask.cmp.b.256") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_b_256, NewFn); if (Name == "x86.avx512.mask.cmp.w.256") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_w_256, NewFn); if (Name == "x86.avx512.mask.cmp.d.256") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_d_256, NewFn); if (Name == "x86.avx512.mask.cmp.q.256") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_q_256, NewFn); if (Name == "x86.avx512.mask.ucmp.b.256") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_b_256, NewFn); if (Name == "x86.avx512.mask.ucmp.w.256") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_w_256, NewFn); if (Name == "x86.avx512.mask.ucmp.d.256") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_d_256, NewFn); if (Name == "x86.avx512.mask.ucmp.q.256") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_q_256, NewFn); if (Name == "x86.avx512.mask.cmp.b.128") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_b_128, NewFn); if (Name == "x86.avx512.mask.cmp.w.128") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_w_128, NewFn); if (Name == "x86.avx512.mask.cmp.d.128") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_d_128, NewFn); if (Name == "x86.avx512.mask.cmp.q.128") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_q_128, NewFn); if (Name == "x86.avx512.mask.ucmp.b.128") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_b_128, NewFn); if (Name == "x86.avx512.mask.ucmp.w.128") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_w_128, NewFn); if (Name == "x86.avx512.mask.ucmp.d.128") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_d_128, NewFn); if (Name == "x86.avx512.mask.ucmp.q.128") return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_q_128, NewFn); // frcz.ss/sd may need to have an argument dropped if (Name.startswith("x86.xop.vfrcz.ss") && F->arg_size() == 2) { F->setName(Name + ".old"); NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::x86_xop_vfrcz_ss); return true; } if (Name.startswith("x86.xop.vfrcz.sd") && F->arg_size() == 2) { F->setName(Name + ".old"); NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::x86_xop_vfrcz_sd); return true; } // Fix the FMA4 intrinsics to remove the 4 if (Name.startswith("x86.fma4.")) { F->setName("llvm.x86.fma" + Name.substr(8)); NewFn = F; return true; } break; } } // This may not belong here. This function is effectively being overloaded // to both detect an intrinsic which needs upgrading, and to provide the // upgraded form of the intrinsic. We should perhaps have two separate // functions for this. return false; } bool llvm::UpgradeIntrinsicFunction(Function *F, Function *&NewFn) { NewFn = nullptr; bool Upgraded = UpgradeIntrinsicFunction1(F, NewFn); // Upgrade intrinsic attributes. This does not change the function. if (NewFn) F = NewFn; if (unsigned id = F->getIntrinsicID()) F->setAttributes(Intrinsic::getAttributes(F->getContext(), (Intrinsic::ID)id)); return Upgraded; } bool llvm::UpgradeGlobalVariable(GlobalVariable *GV) { // Nothing to do yet. return false; } // Handles upgrading SSE2 and AVX2 PSLLDQ intrinsics by converting them // to byte shuffles. static Value *UpgradeX86PSLLDQIntrinsics(IRBuilder<> &Builder, LLVMContext &C, Value *Op, unsigned NumLanes, unsigned Shift) { // Each lane is 16 bytes. unsigned NumElts = NumLanes * 16; // Bitcast from a 64-bit element type to a byte element type. Op = Builder.CreateBitCast(Op, VectorType::get(Type::getInt8Ty(C), NumElts), "cast"); // We'll be shuffling in zeroes. Value *Res = ConstantVector::getSplat(NumElts, Builder.getInt8(0)); // If shift is less than 16, emit a shuffle to move the bytes. Otherwise, // we'll just return the zero vector. if (Shift < 16) { SmallVector<Constant*, 32> Idxs; // 256-bit version is split into two 16-byte lanes. for (unsigned l = 0; l != NumElts; l += 16) for (unsigned i = 0; i != 16; ++i) { unsigned Idx = NumElts + i - Shift; if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand. Idxs.push_back(Builder.getInt32(Idx + l)); } Res = Builder.CreateShuffleVector(Res, Op, ConstantVector::get(Idxs)); } // Bitcast back to a 64-bit element type. return Builder.CreateBitCast(Res, VectorType::get(Type::getInt64Ty(C), 2*NumLanes), "cast"); } // Handles upgrading SSE2 and AVX2 PSRLDQ intrinsics by converting them // to byte shuffles. static Value *UpgradeX86PSRLDQIntrinsics(IRBuilder<> &Builder, LLVMContext &C, Value *Op, unsigned NumLanes, unsigned Shift) { // Each lane is 16 bytes. unsigned NumElts = NumLanes * 16; // Bitcast from a 64-bit element type to a byte element type. Op = Builder.CreateBitCast(Op, VectorType::get(Type::getInt8Ty(C), NumElts), "cast"); // We'll be shuffling in zeroes. Value *Res = ConstantVector::getSplat(NumElts, Builder.getInt8(0)); // If shift is less than 16, emit a shuffle to move the bytes. Otherwise, // we'll just return the zero vector. if (Shift < 16) { SmallVector<Constant*, 32> Idxs; // 256-bit version is split into two 16-byte lanes. for (unsigned l = 0; l != NumElts; l += 16) for (unsigned i = 0; i != 16; ++i) { unsigned Idx = i + Shift; if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand. Idxs.push_back(Builder.getInt32(Idx + l)); } Res = Builder.CreateShuffleVector(Op, Res, ConstantVector::get(Idxs)); } // Bitcast back to a 64-bit element type. return Builder.CreateBitCast(Res, VectorType::get(Type::getInt64Ty(C), 2*NumLanes), "cast"); } // UpgradeIntrinsicCall - Upgrade a call to an old intrinsic to be a call the // upgraded intrinsic. All argument and return casting must be provided in // order to seamlessly integrate with existing context. void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) { Function *F = CI->getCalledFunction(); LLVMContext &C = CI->getContext(); IRBuilder<> Builder(C); Builder.SetInsertPoint(CI->getParent(), CI); assert(F && "Intrinsic call is not direct?"); if (!NewFn) { // Get the Function's name. StringRef Name = F->getName(); Value *Rep; // Upgrade packed integer vector compares intrinsics to compare instructions if (Name.startswith("llvm.x86.sse2.pcmpeq.") || Name.startswith("llvm.x86.avx2.pcmpeq.")) { Rep = Builder.CreateICmpEQ(CI->getArgOperand(0), CI->getArgOperand(1), "pcmpeq"); // need to sign extend since icmp returns vector of i1 Rep = Builder.CreateSExt(Rep, CI->getType(), ""); } else if (Name.startswith("llvm.x86.sse2.pcmpgt.") || Name.startswith("llvm.x86.avx2.pcmpgt.")) { Rep = Builder.CreateICmpSGT(CI->getArgOperand(0), CI->getArgOperand(1), "pcmpgt"); // need to sign extend since icmp returns vector of i1 Rep = Builder.CreateSExt(Rep, CI->getType(), ""); } else if (Name == "llvm.x86.avx.movnt.dq.256" || Name == "llvm.x86.avx.movnt.ps.256" || Name == "llvm.x86.avx.movnt.pd.256") { IRBuilder<> Builder(C); Builder.SetInsertPoint(CI->getParent(), CI); Module *M = F->getParent(); SmallVector<Metadata *, 1> Elts; Elts.push_back( ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(C), 1))); MDNode *Node = MDNode::get(C, Elts); Value *Arg0 = CI->getArgOperand(0); Value *Arg1 = CI->getArgOperand(1); // Convert the type of the pointer to a pointer to the stored type. Value *BC = Builder.CreateBitCast(Arg0, PointerType::getUnqual(Arg1->getType()), "cast"); StoreInst *SI = Builder.CreateStore(Arg1, BC); SI->setMetadata(M->getMDKindID("nontemporal"), Node); SI->setAlignment(16); // Remove intrinsic. CI->eraseFromParent(); return; } else if (Name.startswith("llvm.x86.xop.vpcom")) { Intrinsic::ID intID; if (Name.endswith("ub")) intID = Intrinsic::x86_xop_vpcomub; else if (Name.endswith("uw")) intID = Intrinsic::x86_xop_vpcomuw; else if (Name.endswith("ud")) intID = Intrinsic::x86_xop_vpcomud; else if (Name.endswith("uq")) intID = Intrinsic::x86_xop_vpcomuq; else if (Name.endswith("b")) intID = Intrinsic::x86_xop_vpcomb; else if (Name.endswith("w")) intID = Intrinsic::x86_xop_vpcomw; else if (Name.endswith("d")) intID = Intrinsic::x86_xop_vpcomd; else if (Name.endswith("q")) intID = Intrinsic::x86_xop_vpcomq; else llvm_unreachable("Unknown suffix"); Name = Name.substr(18); // strip off "llvm.x86.xop.vpcom" unsigned Imm; if (Name.startswith("lt")) Imm = 0; else if (Name.startswith("le")) Imm = 1; else if (Name.startswith("gt")) Imm = 2; else if (Name.startswith("ge")) Imm = 3; else if (Name.startswith("eq")) Imm = 4; else if (Name.startswith("ne")) Imm = 5; else if (Name.startswith("false")) Imm = 6; else if (Name.startswith("true")) Imm = 7; else llvm_unreachable("Unknown condition"); Function *VPCOM = Intrinsic::getDeclaration(F->getParent(), intID); Rep = Builder.CreateCall3(VPCOM, CI->getArgOperand(0), CI->getArgOperand(1), Builder.getInt8(Imm)); } else if (Name == "llvm.x86.sse42.crc32.64.8") { Function *CRC32 = Intrinsic::getDeclaration(F->getParent(), Intrinsic::x86_sse42_crc32_32_8); Value *Trunc0 = Builder.CreateTrunc(CI->getArgOperand(0), Type::getInt32Ty(C)); Rep = Builder.CreateCall2(CRC32, Trunc0, CI->getArgOperand(1)); Rep = Builder.CreateZExt(Rep, CI->getType(), ""); } else if (Name.startswith("llvm.x86.avx.vbroadcast")) { // Replace broadcasts with a series of insertelements. Type *VecTy = CI->getType(); Type *EltTy = VecTy->getVectorElementType(); unsigned EltNum = VecTy->getVectorNumElements(); Value *Cast = Builder.CreateBitCast(CI->getArgOperand(0), EltTy->getPointerTo()); Value *Load = Builder.CreateLoad(Cast); Type *I32Ty = Type::getInt32Ty(C); Rep = UndefValue::get(VecTy); for (unsigned I = 0; I < EltNum; ++I) Rep = Builder.CreateInsertElement(Rep, Load, ConstantInt::get(I32Ty, I)); } else if (Name == "llvm.x86.avx2.vbroadcasti128") { // Replace vbroadcasts with a vector shuffle. Value *Op = Builder.CreatePointerCast( CI->getArgOperand(0), PointerType::getUnqual(VectorType::get(Type::getInt64Ty(C), 2))); Value *Load = Builder.CreateLoad(Op); const int Idxs[4] = { 0, 1, 0, 1 }; Rep = Builder.CreateShuffleVector(Load, UndefValue::get(Load->getType()), Idxs); } else if (Name == "llvm.x86.sse2.psll.dq") { // 128-bit shift left specified in bits. unsigned Shift = cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue(); Rep = UpgradeX86PSLLDQIntrinsics(Builder, C, CI->getArgOperand(0), 1, Shift / 8); // Shift is in bits. } else if (Name == "llvm.x86.sse2.psrl.dq") { // 128-bit shift right specified in bits. unsigned Shift = cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue(); Rep = UpgradeX86PSRLDQIntrinsics(Builder, C, CI->getArgOperand(0), 1, Shift / 8); // Shift is in bits. } else if (Name == "llvm.x86.avx2.psll.dq") { // 256-bit shift left specified in bits. unsigned Shift = cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue(); Rep = UpgradeX86PSLLDQIntrinsics(Builder, C, CI->getArgOperand(0), 2, Shift / 8); // Shift is in bits. } else if (Name == "llvm.x86.avx2.psrl.dq") { // 256-bit shift right specified in bits. unsigned Shift = cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue(); Rep = UpgradeX86PSRLDQIntrinsics(Builder, C, CI->getArgOperand(0), 2, Shift / 8); // Shift is in bits. } else if (Name == "llvm.x86.sse2.psll.dq.bs") { // 128-bit shift left specified in bytes. unsigned Shift = cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue(); Rep = UpgradeX86PSLLDQIntrinsics(Builder, C, CI->getArgOperand(0), 1, Shift); } else if (Name == "llvm.x86.sse2.psrl.dq.bs") { // 128-bit shift right specified in bytes. unsigned Shift = cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue(); Rep = UpgradeX86PSRLDQIntrinsics(Builder, C, CI->getArgOperand(0), 1, Shift); } else if (Name == "llvm.x86.avx2.psll.dq.bs") { // 256-bit shift left specified in bytes. unsigned Shift = cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue(); Rep = UpgradeX86PSLLDQIntrinsics(Builder, C, CI->getArgOperand(0), 2, Shift); } else if (Name == "llvm.x86.avx2.psrl.dq.bs") { // 256-bit shift right specified in bytes. unsigned Shift = cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue(); Rep = UpgradeX86PSRLDQIntrinsics(Builder, C, CI->getArgOperand(0), 2, Shift); } else if (Name == "llvm.x86.sse41.pblendw" || Name == "llvm.x86.sse41.blendpd" || Name == "llvm.x86.sse41.blendps" || Name == "llvm.x86.avx.blend.pd.256" || Name == "llvm.x86.avx.blend.ps.256" || Name == "llvm.x86.avx2.pblendw" || Name == "llvm.x86.avx2.pblendd.128" || Name == "llvm.x86.avx2.pblendd.256") { Value *Op0 = CI->getArgOperand(0); Value *Op1 = CI->getArgOperand(1); unsigned Imm = cast <ConstantInt>(CI->getArgOperand(2))->getZExtValue(); VectorType *VecTy = cast<VectorType>(CI->getType()); unsigned NumElts = VecTy->getNumElements(); SmallVector<Constant*, 16> Idxs; for (unsigned i = 0; i != NumElts; ++i) { unsigned Idx = ((Imm >> (i%8)) & 1) ? i + NumElts : i; Idxs.push_back(Builder.getInt32(Idx)); } Rep = Builder.CreateShuffleVector(Op0, Op1, ConstantVector::get(Idxs)); } else if (Name == "llvm.x86.avx.vinsertf128.pd.256" || Name == "llvm.x86.avx.vinsertf128.ps.256" || Name == "llvm.x86.avx.vinsertf128.si.256" || Name == "llvm.x86.avx2.vinserti128") { Value *Op0 = CI->getArgOperand(0); Value *Op1 = CI->getArgOperand(1); unsigned Imm = cast<ConstantInt>(CI->getArgOperand(2))->getZExtValue(); VectorType *VecTy = cast<VectorType>(CI->getType()); unsigned NumElts = VecTy->getNumElements(); // Mask off the high bits of the immediate value; hardware ignores those. Imm = Imm & 1; // Extend the second operand into a vector that is twice as big. Value *UndefV = UndefValue::get(Op1->getType()); SmallVector<Constant*, 8> Idxs; for (unsigned i = 0; i != NumElts; ++i) { Idxs.push_back(Builder.getInt32(i)); } Rep = Builder.CreateShuffleVector(Op1, UndefV, ConstantVector::get(Idxs)); // Insert the second operand into the first operand. // Note that there is no guarantee that instruction lowering will actually // produce a vinsertf128 instruction for the created shuffles. In // particular, the 0 immediate case involves no lane changes, so it can // be handled as a blend. // Example of shuffle mask for 32-bit elements: // Imm = 1 <i32 0, i32 1, i32 2, i32 3, i32 8, i32 9, i32 10, i32 11> // Imm = 0 <i32 8, i32 9, i32 10, i32 11, i32 4, i32 5, i32 6, i32 7 > SmallVector<Constant*, 8> Idxs2; // The low half of the result is either the low half of the 1st operand // or the low half of the 2nd operand (the inserted vector). for (unsigned i = 0; i != NumElts / 2; ++i) { unsigned Idx = Imm ? i : (i + NumElts); Idxs2.push_back(Builder.getInt32(Idx)); } // The high half of the result is either the low half of the 2nd operand // (the inserted vector) or the high half of the 1st operand. for (unsigned i = NumElts / 2; i != NumElts; ++i) { unsigned Idx = Imm ? (i + NumElts / 2) : i; Idxs2.push_back(Builder.getInt32(Idx)); } Rep = Builder.CreateShuffleVector(Op0, Rep, ConstantVector::get(Idxs2)); } else if (Name == "llvm.x86.avx.vextractf128.pd.256" || Name == "llvm.x86.avx.vextractf128.ps.256" || Name == "llvm.x86.avx.vextractf128.si.256" || Name == "llvm.x86.avx2.vextracti128") { Value *Op0 = CI->getArgOperand(0); unsigned Imm = cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue(); VectorType *VecTy = cast<VectorType>(CI->getType()); unsigned NumElts = VecTy->getNumElements(); // Mask off the high bits of the immediate value; hardware ignores those. Imm = Imm & 1; // Get indexes for either the high half or low half of the input vector. SmallVector<Constant*, 4> Idxs(NumElts); for (unsigned i = 0; i != NumElts; ++i) { unsigned Idx = Imm ? (i + NumElts) : i; Idxs[i] = Builder.getInt32(Idx); } Value *UndefV = UndefValue::get(Op0->getType()); Rep = Builder.CreateShuffleVector(Op0, UndefV, ConstantVector::get(Idxs)); } else { bool PD128 = false, PD256 = false, PS128 = false, PS256 = false; if (Name == "llvm.x86.avx.vpermil.pd.256") PD256 = true; else if (Name == "llvm.x86.avx.vpermil.pd") PD128 = true; else if (Name == "llvm.x86.avx.vpermil.ps.256") PS256 = true; else if (Name == "llvm.x86.avx.vpermil.ps") PS128 = true; if (PD256 || PD128 || PS256 || PS128) { Value *Op0 = CI->getArgOperand(0); unsigned Imm = cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue(); SmallVector<Constant*, 8> Idxs; if (PD128) for (unsigned i = 0; i != 2; ++i) Idxs.push_back(Builder.getInt32((Imm >> i) & 0x1)); else if (PD256) for (unsigned l = 0; l != 4; l+=2) for (unsigned i = 0; i != 2; ++i) Idxs.push_back(Builder.getInt32(((Imm >> (l+i)) & 0x1) + l)); else if (PS128) for (unsigned i = 0; i != 4; ++i) Idxs.push_back(Builder.getInt32((Imm >> (2 * i)) & 0x3)); else if (PS256) for (unsigned l = 0; l != 8; l+=4) for (unsigned i = 0; i != 4; ++i) Idxs.push_back(Builder.getInt32(((Imm >> (2 * i)) & 0x3) + l)); else llvm_unreachable("Unexpected function"); Rep = Builder.CreateShuffleVector(Op0, Op0, ConstantVector::get(Idxs)); } else { llvm_unreachable("Unknown function for CallInst upgrade."); } } CI->replaceAllUsesWith(Rep); CI->eraseFromParent(); return; } std::string Name = CI->getName(); if (!Name.empty()) CI->setName(Name + ".old"); switch (NewFn->getIntrinsicID()) { default: llvm_unreachable("Unknown function for CallInst upgrade."); case Intrinsic::ctlz: case Intrinsic::cttz: assert(CI->getNumArgOperands() == 1 && "Mismatch between function args and call args"); CI->replaceAllUsesWith(Builder.CreateCall2(NewFn, CI->getArgOperand(0), Builder.getFalse(), Name)); CI->eraseFromParent(); return; case Intrinsic::objectsize: CI->replaceAllUsesWith(Builder.CreateCall2(NewFn, CI->getArgOperand(0), CI->getArgOperand(1), Name)); CI->eraseFromParent(); return; case Intrinsic::ctpop: { CI->replaceAllUsesWith(Builder.CreateCall(NewFn, CI->getArgOperand(0))); CI->eraseFromParent(); return; } case Intrinsic::x86_xop_vfrcz_ss: case Intrinsic::x86_xop_vfrcz_sd: CI->replaceAllUsesWith(Builder.CreateCall(NewFn, CI->getArgOperand(1), Name)); CI->eraseFromParent(); return; case Intrinsic::x86_sse41_ptestc: case Intrinsic::x86_sse41_ptestz: case Intrinsic::x86_sse41_ptestnzc: { // The arguments for these intrinsics used to be v4f32, and changed // to v2i64. This is purely a nop, since those are bitwise intrinsics. // So, the only thing required is a bitcast for both arguments. // First, check the arguments have the old type. Value *Arg0 = CI->getArgOperand(0); if (Arg0->getType() != VectorType::get(Type::getFloatTy(C), 4)) return; // Old intrinsic, add bitcasts Value *Arg1 = CI->getArgOperand(1); Value *BC0 = Builder.CreateBitCast(Arg0, VectorType::get(Type::getInt64Ty(C), 2), "cast"); Value *BC1 = Builder.CreateBitCast(Arg1, VectorType::get(Type::getInt64Ty(C), 2), "cast"); CallInst* NewCall = Builder.CreateCall2(NewFn, BC0, BC1, Name); CI->replaceAllUsesWith(NewCall); CI->eraseFromParent(); return; } case Intrinsic::x86_sse41_insertps: case Intrinsic::x86_sse41_dppd: case Intrinsic::x86_sse41_dpps: case Intrinsic::x86_sse41_mpsadbw: case Intrinsic::x86_avx_dp_ps_256: case Intrinsic::x86_avx2_mpsadbw: { // Need to truncate the last argument from i32 to i8 -- this argument models // an inherently 8-bit immediate operand to these x86 instructions. SmallVector<Value *, 4> Args(CI->arg_operands().begin(), CI->arg_operands().end()); // Replace the last argument with a trunc. Args.back() = Builder.CreateTrunc(Args.back(), Type::getInt8Ty(C), "trunc"); CallInst *NewCall = Builder.CreateCall(NewFn, Args); CI->replaceAllUsesWith(NewCall); CI->eraseFromParent(); return; } case Intrinsic::x86_avx512_mask_cmp_ps_512: case Intrinsic::x86_avx512_mask_cmp_pd_512: { // Need to truncate the last argument from i32 to i8 -- this argument models // an inherently 8-bit immediate operand to these x86 instructions. SmallVector<Value *, 5> Args(CI->arg_operands().begin(), CI->arg_operands().end()); // Replace the last argument with a trunc. Args[2] = Builder.CreateTrunc(Args[2], Type::getInt8Ty(C), "trunc"); CallInst *NewCall = Builder.CreateCall(NewFn, Args); CI->replaceAllUsesWith(NewCall); CI->eraseFromParent(); return; } } } // This tests each Function to determine if it needs upgrading. When we find // one we are interested in, we then upgrade all calls to reflect the new // function. void llvm::UpgradeCallsToIntrinsic(Function* F) { assert(F && "Illegal attempt to upgrade a non-existent intrinsic."); // Upgrade the function and check if it is a totaly new function. Function *NewFn; if (UpgradeIntrinsicFunction(F, NewFn)) { if (NewFn != F) { // Replace all uses to the old function with the new one if necessary. for (Value::user_iterator UI = F->user_begin(), UE = F->user_end(); UI != UE; ) { if (CallInst *CI = dyn_cast<CallInst>(*UI++)) UpgradeIntrinsicCall(CI, NewFn); } // Remove old function, no longer used, from the module. F->eraseFromParent(); } } } void llvm::UpgradeInstWithTBAATag(Instruction *I) { MDNode *MD = I->getMetadata(LLVMContext::MD_tbaa); assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); // Check if the tag uses struct-path aware TBAA format. if (isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3) return; if (MD->getNumOperands() == 3) { Metadata *Elts[] = {MD->getOperand(0), MD->getOperand(1)}; MDNode *ScalarType = MDNode::get(I->getContext(), Elts); // Create a MDNode <ScalarType, ScalarType, offset 0, const> Metadata *Elts2[] = {ScalarType, ScalarType, ConstantAsMetadata::get(Constant::getNullValue( Type::getInt64Ty(I->getContext()))), MD->getOperand(2)}; I->setMetadata(LLVMContext::MD_tbaa, MDNode::get(I->getContext(), Elts2)); } else { // Create a MDNode <MD, MD, offset 0> Metadata *Elts[] = {MD, MD, ConstantAsMetadata::get(Constant::getNullValue( Type::getInt64Ty(I->getContext())))}; I->setMetadata(LLVMContext::MD_tbaa, MDNode::get(I->getContext(), Elts)); } } Instruction *llvm::UpgradeBitCastInst(unsigned Opc, Value *V, Type *DestTy, Instruction *&Temp) { if (Opc != Instruction::BitCast) return nullptr; Temp = nullptr; Type *SrcTy = V->getType(); if (SrcTy->isPtrOrPtrVectorTy() && DestTy->isPtrOrPtrVectorTy() && SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace()) { LLVMContext &Context = V->getContext(); // We have no information about target data layout, so we assume that // the maximum pointer size is 64bit. Type *MidTy = Type::getInt64Ty(Context); Temp = CastInst::Create(Instruction::PtrToInt, V, MidTy); return CastInst::Create(Instruction::IntToPtr, Temp, DestTy); } return nullptr; } Value *llvm::UpgradeBitCastExpr(unsigned Opc, Constant *C, Type *DestTy) { if (Opc != Instruction::BitCast) return nullptr; Type *SrcTy = C->getType(); if (SrcTy->isPtrOrPtrVectorTy() && DestTy->isPtrOrPtrVectorTy() && SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace()) { LLVMContext &Context = C->getContext(); // We have no information about target data layout, so we assume that // the maximum pointer size is 64bit. Type *MidTy = Type::getInt64Ty(Context); return ConstantExpr::getIntToPtr(ConstantExpr::getPtrToInt(C, MidTy), DestTy); } return nullptr; } /// Check the debug info version number, if it is out-dated, drop the debug /// info. Return true if module is modified. bool llvm::UpgradeDebugInfo(Module &M) { unsigned Version = getDebugMetadataVersionFromModule(M); if (Version == DEBUG_METADATA_VERSION) return false; bool RetCode = StripDebugInfo(M); if (RetCode) { DiagnosticInfoDebugMetadataVersion DiagVersion(M, Version); M.getContext().diagnose(DiagVersion); } return RetCode; } void llvm::UpgradeMDStringConstant(std::string &String) { const std::string OldPrefix = "llvm.vectorizer."; if (String == "llvm.vectorizer.unroll") { String = "llvm.loop.interleave.count"; } else if (String.find(OldPrefix) == 0) { String.replace(0, OldPrefix.size(), "llvm.loop.vectorize."); } }