//===-- WinEHPrepare - Prepare exception handling for code generation ---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass lowers LLVM IR exception handling into something closer to what the // backend wants. It snifs the personality function to see which kind of // preparation is necessary. If the personality function uses the Itanium LSDA, // this pass delegates to the DWARF EH preparation pass. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/Passes.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/TinyPtrVector.h" #include "llvm/Analysis/LibCallSemantics.h" #include "llvm/CodeGen/WinEHFuncInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/PromoteMemToReg.h" #include <memory> using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "winehprepare" namespace { // This map is used to model frame variable usage during outlining, to // construct a structure type to hold the frame variables in a frame // allocation block, and to remap the frame variable allocas (including // spill locations as needed) to GEPs that get the variable from the // frame allocation structure. typedef MapVector<Value *, TinyPtrVector<AllocaInst *>> FrameVarInfoMap; // TinyPtrVector cannot hold nullptr, so we need our own sentinel that isn't // quite null. AllocaInst *getCatchObjectSentinel() { return static_cast<AllocaInst *>(nullptr) + 1; } typedef SmallSet<BasicBlock *, 4> VisitedBlockSet; class LandingPadActions; class LandingPadMap; typedef DenseMap<const BasicBlock *, CatchHandler *> CatchHandlerMapTy; typedef DenseMap<const BasicBlock *, CleanupHandler *> CleanupHandlerMapTy; class WinEHPrepare : public FunctionPass { public: static char ID; // Pass identification, replacement for typeid. WinEHPrepare(const TargetMachine *TM = nullptr) : FunctionPass(ID), DT(nullptr) {} bool runOnFunction(Function &Fn) override; bool doFinalization(Module &M) override; void getAnalysisUsage(AnalysisUsage &AU) const override; const char *getPassName() const override { return "Windows exception handling preparation"; } private: bool prepareExceptionHandlers(Function &F, SmallVectorImpl<LandingPadInst *> &LPads); void promoteLandingPadValues(LandingPadInst *LPad); void completeNestedLandingPad(Function *ParentFn, LandingPadInst *OutlinedLPad, const LandingPadInst *OriginalLPad, FrameVarInfoMap &VarInfo); bool outlineHandler(ActionHandler *Action, Function *SrcFn, LandingPadInst *LPad, BasicBlock *StartBB, FrameVarInfoMap &VarInfo); void addStubInvokeToHandlerIfNeeded(Function *Handler, Value *PersonalityFn); void mapLandingPadBlocks(LandingPadInst *LPad, LandingPadActions &Actions); CatchHandler *findCatchHandler(BasicBlock *BB, BasicBlock *&NextBB, VisitedBlockSet &VisitedBlocks); void findCleanupHandlers(LandingPadActions &Actions, BasicBlock *StartBB, BasicBlock *EndBB); void processSEHCatchHandler(CatchHandler *Handler, BasicBlock *StartBB); // All fields are reset by runOnFunction. DominatorTree *DT; EHPersonality Personality; CatchHandlerMapTy CatchHandlerMap; CleanupHandlerMapTy CleanupHandlerMap; DenseMap<const LandingPadInst *, LandingPadMap> LPadMaps; // This maps landing pad instructions found in outlined handlers to // the landing pad instruction in the parent function from which they // were cloned. The cloned/nested landing pad is used as the key // because the landing pad may be cloned into multiple handlers. // This map will be used to add the llvm.eh.actions call to the nested // landing pads after all handlers have been outlined. DenseMap<LandingPadInst *, const LandingPadInst *> NestedLPtoOriginalLP; // This maps blocks in the parent function which are destinations of // catch handlers to cloned blocks in (other) outlined handlers. This // handles the case where a nested landing pads has a catch handler that // returns to a handler function rather than the parent function. // The original block is used as the key here because there should only // ever be one handler function from which the cloned block is not pruned. // The original block will be pruned from the parent function after all // handlers have been outlined. This map will be used to adjust the // return instructions of handlers which return to the block that was // outlined into a handler. This is done after all handlers have been // outlined but before the outlined code is pruned from the parent function. DenseMap<const BasicBlock *, BasicBlock *> LPadTargetBlocks; }; class WinEHFrameVariableMaterializer : public ValueMaterializer { public: WinEHFrameVariableMaterializer(Function *OutlinedFn, FrameVarInfoMap &FrameVarInfo); ~WinEHFrameVariableMaterializer() override {} Value *materializeValueFor(Value *V) override; void escapeCatchObject(Value *V); private: FrameVarInfoMap &FrameVarInfo; IRBuilder<> Builder; }; class LandingPadMap { public: LandingPadMap() : OriginLPad(nullptr) {} void mapLandingPad(const LandingPadInst *LPad); bool isInitialized() { return OriginLPad != nullptr; } bool isOriginLandingPadBlock(const BasicBlock *BB) const; bool isLandingPadSpecificInst(const Instruction *Inst) const; void remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue, Value *SelectorValue) const; private: const LandingPadInst *OriginLPad; // We will normally only see one of each of these instructions, but // if more than one occurs for some reason we can handle that. TinyPtrVector<const ExtractValueInst *> ExtractedEHPtrs; TinyPtrVector<const ExtractValueInst *> ExtractedSelectors; }; class WinEHCloningDirectorBase : public CloningDirector { public: WinEHCloningDirectorBase(Function *HandlerFn, FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap) : Materializer(HandlerFn, VarInfo), SelectorIDType(Type::getInt32Ty(HandlerFn->getContext())), Int8PtrType(Type::getInt8PtrTy(HandlerFn->getContext())), LPadMap(LPadMap) {} CloningAction handleInstruction(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; virtual CloningAction handleBeginCatch(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) = 0; virtual CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) = 0; virtual CloningAction handleTypeIdFor(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) = 0; virtual CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) = 0; virtual CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) = 0; virtual CloningAction handleLandingPad(ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) = 0; ValueMaterializer *getValueMaterializer() override { return &Materializer; } protected: WinEHFrameVariableMaterializer Materializer; Type *SelectorIDType; Type *Int8PtrType; LandingPadMap &LPadMap; }; class WinEHCatchDirector : public WinEHCloningDirectorBase { public: WinEHCatchDirector( Function *CatchFn, Value *Selector, FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap, DenseMap<LandingPadInst *, const LandingPadInst *> &NestedLPads) : WinEHCloningDirectorBase(CatchFn, VarInfo, LPadMap), CurrentSelector(Selector->stripPointerCasts()), ExceptionObjectVar(nullptr), NestedLPtoOriginalLP(NestedLPads) {} CloningAction handleBeginCatch(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; CloningAction handleTypeIdFor(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) override; CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) override; CloningAction handleLandingPad(ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) override; Value *getExceptionVar() { return ExceptionObjectVar; } TinyPtrVector<BasicBlock *> &getReturnTargets() { return ReturnTargets; } private: Value *CurrentSelector; Value *ExceptionObjectVar; TinyPtrVector<BasicBlock *> ReturnTargets; // This will be a reference to the field of the same name in the WinEHPrepare // object which instantiates this WinEHCatchDirector object. DenseMap<LandingPadInst *, const LandingPadInst *> &NestedLPtoOriginalLP; }; class WinEHCleanupDirector : public WinEHCloningDirectorBase { public: WinEHCleanupDirector(Function *CleanupFn, FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap) : WinEHCloningDirectorBase(CleanupFn, VarInfo, LPadMap) {} CloningAction handleBeginCatch(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; CloningAction handleTypeIdFor(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) override; CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) override; CloningAction handleLandingPad(ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) override; }; class LandingPadActions { public: LandingPadActions() : HasCleanupHandlers(false) {} void insertCatchHandler(CatchHandler *Action) { Actions.push_back(Action); } void insertCleanupHandler(CleanupHandler *Action) { Actions.push_back(Action); HasCleanupHandlers = true; } bool includesCleanup() const { return HasCleanupHandlers; } SmallVectorImpl<ActionHandler *> &actions() { return Actions; } SmallVectorImpl<ActionHandler *>::iterator begin() { return Actions.begin(); } SmallVectorImpl<ActionHandler *>::iterator end() { return Actions.end(); } private: // Note that this class does not own the ActionHandler objects in this vector. // The ActionHandlers are owned by the CatchHandlerMap and CleanupHandlerMap // in the WinEHPrepare class. SmallVector<ActionHandler *, 4> Actions; bool HasCleanupHandlers; }; } // end anonymous namespace char WinEHPrepare::ID = 0; INITIALIZE_TM_PASS(WinEHPrepare, "winehprepare", "Prepare Windows exceptions", false, false) FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) { return new WinEHPrepare(TM); } // FIXME: Remove this once the backend can handle the prepared IR. static cl::opt<bool> SEHPrepare("sehprepare", cl::Hidden, cl::desc("Prepare functions with SEH personalities")); bool WinEHPrepare::runOnFunction(Function &Fn) { SmallVector<LandingPadInst *, 4> LPads; SmallVector<ResumeInst *, 4> Resumes; for (BasicBlock &BB : Fn) { if (auto *LP = BB.getLandingPadInst()) LPads.push_back(LP); if (auto *Resume = dyn_cast<ResumeInst>(BB.getTerminator())) Resumes.push_back(Resume); } // No need to prepare functions that lack landing pads. if (LPads.empty()) return false; // Classify the personality to see what kind of preparation we need. Personality = classifyEHPersonality(LPads.back()->getPersonalityFn()); // Do nothing if this is not an MSVC personality. if (!isMSVCEHPersonality(Personality)) return false; DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); if (isAsynchronousEHPersonality(Personality) && !SEHPrepare) { // Replace all resume instructions with unreachable. // FIXME: Remove this once the backend can handle the prepared IR. for (ResumeInst *Resume : Resumes) { IRBuilder<>(Resume).CreateUnreachable(); Resume->eraseFromParent(); } return true; } // If there were any landing pads, prepareExceptionHandlers will make changes. prepareExceptionHandlers(Fn, LPads); return true; } bool WinEHPrepare::doFinalization(Module &M) { return false; } void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired<DominatorTreeWrapperPass>(); } bool WinEHPrepare::prepareExceptionHandlers( Function &F, SmallVectorImpl<LandingPadInst *> &LPads) { // These containers are used to re-map frame variables that are used in // outlined catch and cleanup handlers. They will be populated as the // handlers are outlined. FrameVarInfoMap FrameVarInfo; bool HandlersOutlined = false; Module *M = F.getParent(); LLVMContext &Context = M->getContext(); // Create a new function to receive the handler contents. PointerType *Int8PtrType = Type::getInt8PtrTy(Context); Type *Int32Type = Type::getInt32Ty(Context); Function *ActionIntrin = Intrinsic::getDeclaration(M, Intrinsic::eh_actions); for (LandingPadInst *LPad : LPads) { // Look for evidence that this landingpad has already been processed. bool LPadHasActionList = false; BasicBlock *LPadBB = LPad->getParent(); for (Instruction &Inst : *LPadBB) { if (auto *IntrinCall = dyn_cast<IntrinsicInst>(&Inst)) { if (IntrinCall->getIntrinsicID() == Intrinsic::eh_actions) { LPadHasActionList = true; break; } } // FIXME: This is here to help with the development of nested landing pad // outlining. It should be removed when that is finished. if (isa<UnreachableInst>(Inst)) { LPadHasActionList = true; break; } } // If we've already outlined the handlers for this landingpad, // there's nothing more to do here. if (LPadHasActionList) continue; // If either of the values in the aggregate returned by the landing pad is // extracted and stored to memory, promote the stored value to a register. promoteLandingPadValues(LPad); LandingPadActions Actions; mapLandingPadBlocks(LPad, Actions); HandlersOutlined |= !Actions.actions().empty(); for (ActionHandler *Action : Actions) { if (Action->hasBeenProcessed()) continue; BasicBlock *StartBB = Action->getStartBlock(); // SEH doesn't do any outlining for catches. Instead, pass the handler // basic block addr to llvm.eh.actions and list the block as a return // target. if (isAsynchronousEHPersonality(Personality)) { if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) { processSEHCatchHandler(CatchAction, StartBB); continue; } } outlineHandler(Action, &F, LPad, StartBB, FrameVarInfo); } // Replace the landing pad with a new llvm.eh.action based landing pad. BasicBlock *NewLPadBB = BasicBlock::Create(Context, "lpad", &F, LPadBB); assert(!isa<PHINode>(LPadBB->begin())); auto *NewLPad = cast<LandingPadInst>(LPad->clone()); NewLPadBB->getInstList().push_back(NewLPad); while (!pred_empty(LPadBB)) { auto *pred = *pred_begin(LPadBB); InvokeInst *Invoke = cast<InvokeInst>(pred->getTerminator()); Invoke->setUnwindDest(NewLPadBB); } // If anyone is still using the old landingpad value, just give them undef // instead. The eh pointer and selector values are not real. LPad->replaceAllUsesWith(UndefValue::get(LPad->getType())); // Replace the mapping of any nested landing pad that previously mapped // to this landing pad with a referenced to the cloned version. for (auto &LPadPair : NestedLPtoOriginalLP) { const LandingPadInst *OriginalLPad = LPadPair.second; if (OriginalLPad == LPad) { LPadPair.second = NewLPad; } } // Replace uses of the old lpad in phis with this block and delete the old // block. LPadBB->replaceSuccessorsPhiUsesWith(NewLPadBB); LPadBB->getTerminator()->eraseFromParent(); new UnreachableInst(LPadBB->getContext(), LPadBB); // Add a call to describe the actions for this landing pad. std::vector<Value *> ActionArgs; for (ActionHandler *Action : Actions) { // Action codes from docs are: 0 cleanup, 1 catch. if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) { ActionArgs.push_back(ConstantInt::get(Int32Type, 1)); ActionArgs.push_back(CatchAction->getSelector()); // Find the frame escape index of the exception object alloca in the // parent. int FrameEscapeIdx = -1; Value *EHObj = const_cast<Value *>(CatchAction->getExceptionVar()); if (EHObj && !isa<ConstantPointerNull>(EHObj)) { auto I = FrameVarInfo.find(EHObj); assert(I != FrameVarInfo.end() && "failed to map llvm.eh.begincatch var"); FrameEscapeIdx = std::distance(FrameVarInfo.begin(), I); } ActionArgs.push_back(ConstantInt::get(Int32Type, FrameEscapeIdx)); } else { ActionArgs.push_back(ConstantInt::get(Int32Type, 0)); } ActionArgs.push_back(Action->getHandlerBlockOrFunc()); } CallInst *Recover = CallInst::Create(ActionIntrin, ActionArgs, "recover", NewLPadBB); // Add an indirect branch listing possible successors of the catch handlers. IndirectBrInst *Branch = IndirectBrInst::Create(Recover, 0, NewLPadBB); for (ActionHandler *Action : Actions) { if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) { for (auto *Target : CatchAction->getReturnTargets()) { Branch->addDestination(Target); } } } } // End for each landingpad // If nothing got outlined, there is no more processing to be done. if (!HandlersOutlined) return false; // Replace any nested landing pad stubs with the correct action handler. // This must be done before we remove unreachable blocks because it // cleans up references to outlined blocks that will be deleted. for (auto &LPadPair : NestedLPtoOriginalLP) completeNestedLandingPad(&F, LPadPair.first, LPadPair.second, FrameVarInfo); NestedLPtoOriginalLP.clear(); F.addFnAttr("wineh-parent", F.getName()); // Delete any blocks that were only used by handlers that were outlined above. removeUnreachableBlocks(F); BasicBlock *Entry = &F.getEntryBlock(); IRBuilder<> Builder(F.getParent()->getContext()); Builder.SetInsertPoint(Entry->getFirstInsertionPt()); Function *FrameEscapeFn = Intrinsic::getDeclaration(M, Intrinsic::frameescape); Function *RecoverFrameFn = Intrinsic::getDeclaration(M, Intrinsic::framerecover); // Finally, replace all of the temporary allocas for frame variables used in // the outlined handlers with calls to llvm.framerecover. BasicBlock::iterator II = Entry->getFirstInsertionPt(); Instruction *AllocaInsertPt = II; SmallVector<Value *, 8> AllocasToEscape; for (auto &VarInfoEntry : FrameVarInfo) { Value *ParentVal = VarInfoEntry.first; TinyPtrVector<AllocaInst *> &Allocas = VarInfoEntry.second; // If the mapped value isn't already an alloca, we need to spill it if it // is a computed value or copy it if it is an argument. AllocaInst *ParentAlloca = dyn_cast<AllocaInst>(ParentVal); if (!ParentAlloca) { if (auto *Arg = dyn_cast<Argument>(ParentVal)) { // Lower this argument to a copy and then demote that to the stack. // We can't just use the argument location because the handler needs // it to be in the frame allocation block. // Use 'select i8 true, %arg, undef' to simulate a 'no-op' instruction. Value *TrueValue = ConstantInt::getTrue(Context); Value *UndefValue = UndefValue::get(Arg->getType()); Instruction *SI = SelectInst::Create(TrueValue, Arg, UndefValue, Arg->getName() + ".tmp", AllocaInsertPt); Arg->replaceAllUsesWith(SI); // Reset the select operand, because it was clobbered by the RAUW above. SI->setOperand(1, Arg); ParentAlloca = DemoteRegToStack(*SI, true, SI); } else if (auto *PN = dyn_cast<PHINode>(ParentVal)) { ParentAlloca = DemotePHIToStack(PN, AllocaInsertPt); } else { Instruction *ParentInst = cast<Instruction>(ParentVal); // FIXME: This is a work-around to temporarily handle the case where an // instruction that is only used in handlers is not sunk. // Without uses, DemoteRegToStack would just eliminate the value. // This will fail if ParentInst is an invoke. if (ParentInst->getNumUses() == 0) { BasicBlock::iterator InsertPt = ParentInst; ++InsertPt; ParentAlloca = new AllocaInst(ParentInst->getType(), nullptr, ParentInst->getName() + ".reg2mem", AllocaInsertPt); new StoreInst(ParentInst, ParentAlloca, InsertPt); } else { ParentAlloca = DemoteRegToStack(*ParentInst, true, AllocaInsertPt); } } } // FIXME: We should try to sink unescaped allocas from the parent frame into // the child frame. If the alloca is escaped, we have to use the lifetime // markers to ensure that the alloca is only live within the child frame. // Add this alloca to the list of things to escape. AllocasToEscape.push_back(ParentAlloca); // Next replace all outlined allocas that are mapped to it. for (AllocaInst *TempAlloca : Allocas) { if (TempAlloca == getCatchObjectSentinel()) continue; // Skip catch parameter sentinels. Function *HandlerFn = TempAlloca->getParent()->getParent(); // FIXME: Sink this GEP into the blocks where it is used. Builder.SetInsertPoint(TempAlloca); Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc()); Value *RecoverArgs[] = { Builder.CreateBitCast(&F, Int8PtrType, ""), &(HandlerFn->getArgumentList().back()), llvm::ConstantInt::get(Int32Type, AllocasToEscape.size() - 1)}; Value *RecoveredAlloca = Builder.CreateCall(RecoverFrameFn, RecoverArgs); // Add a pointer bitcast if the alloca wasn't an i8. if (RecoveredAlloca->getType() != TempAlloca->getType()) { RecoveredAlloca->setName(Twine(TempAlloca->getName()) + ".i8"); RecoveredAlloca = Builder.CreateBitCast(RecoveredAlloca, TempAlloca->getType()); } TempAlloca->replaceAllUsesWith(RecoveredAlloca); TempAlloca->removeFromParent(); RecoveredAlloca->takeName(TempAlloca); delete TempAlloca; } } // End for each FrameVarInfo entry. // Insert 'call void (...)* @llvm.frameescape(...)' at the end of the entry // block. Builder.SetInsertPoint(&F.getEntryBlock().back()); Builder.CreateCall(FrameEscapeFn, AllocasToEscape); // Clean up the handler action maps we created for this function DeleteContainerSeconds(CatchHandlerMap); CatchHandlerMap.clear(); DeleteContainerSeconds(CleanupHandlerMap); CleanupHandlerMap.clear(); return HandlersOutlined; } void WinEHPrepare::promoteLandingPadValues(LandingPadInst *LPad) { // If the return values of the landing pad instruction are extracted and // stored to memory, we want to promote the store locations to reg values. SmallVector<AllocaInst *, 2> EHAllocas; // The landingpad instruction returns an aggregate value. Typically, its // value will be passed to a pair of extract value instructions and the // results of those extracts are often passed to store instructions. // In unoptimized code the stored value will often be loaded and then stored // again. for (auto *U : LPad->users()) { ExtractValueInst *Extract = dyn_cast<ExtractValueInst>(U); if (!Extract) continue; for (auto *EU : Extract->users()) { if (auto *Store = dyn_cast<StoreInst>(EU)) { auto *AV = cast<AllocaInst>(Store->getPointerOperand()); EHAllocas.push_back(AV); } } } // We can't do this without a dominator tree. assert(DT); if (!EHAllocas.empty()) { PromoteMemToReg(EHAllocas, *DT); EHAllocas.clear(); } // After promotion, some extracts may be trivially dead. Remove them. SmallVector<Value *, 4> Users(LPad->user_begin(), LPad->user_end()); for (auto *U : Users) RecursivelyDeleteTriviallyDeadInstructions(U); } void WinEHPrepare::completeNestedLandingPad(Function *ParentFn, LandingPadInst *OutlinedLPad, const LandingPadInst *OriginalLPad, FrameVarInfoMap &FrameVarInfo) { // Get the nested block and erase the unreachable instruction that was // temporarily inserted as its terminator. LLVMContext &Context = ParentFn->getContext(); BasicBlock *OutlinedBB = OutlinedLPad->getParent(); assert(isa<UnreachableInst>(OutlinedBB->getTerminator())); OutlinedBB->getTerminator()->eraseFromParent(); // That should leave OutlinedLPad as the last instruction in its block. assert(&OutlinedBB->back() == OutlinedLPad); // The original landing pad will have already had its action intrinsic // built by the outlining loop. We need to clone that into the outlined // location. It may also be necessary to add references to the exception // variables to the outlined handler in which this landing pad is nested // and remap return instructions in the nested handlers that should return // to an address in the outlined handler. Function *OutlinedHandlerFn = OutlinedBB->getParent(); BasicBlock::const_iterator II = OriginalLPad; ++II; // The instruction after the landing pad should now be a call to eh.actions. const Instruction *Recover = II; assert(match(Recover, m_Intrinsic<Intrinsic::eh_actions>())); IntrinsicInst *EHActions = cast<IntrinsicInst>(Recover->clone()); // Remap the exception variables into the outlined function. WinEHFrameVariableMaterializer Materializer(OutlinedHandlerFn, FrameVarInfo); SmallVector<BlockAddress *, 4> ActionTargets; SmallVector<ActionHandler *, 4> ActionList; parseEHActions(EHActions, ActionList); for (auto *Action : ActionList) { auto *Catch = dyn_cast<CatchHandler>(Action); if (!Catch) continue; // The dyn_cast to function here selects C++ catch handlers and skips // SEH catch handlers. auto *Handler = dyn_cast<Function>(Catch->getHandlerBlockOrFunc()); if (!Handler) continue; // Visit all the return instructions, looking for places that return // to a location within OutlinedHandlerFn. for (BasicBlock &NestedHandlerBB : *Handler) { auto *Ret = dyn_cast<ReturnInst>(NestedHandlerBB.getTerminator()); if (!Ret) continue; // Handler functions must always return a block address. BlockAddress *BA = cast<BlockAddress>(Ret->getReturnValue()); // The original target will have been in the main parent function, // but if it is the address of a block that has been outlined, it // should be a block that was outlined into OutlinedHandlerFn. assert(BA->getFunction() == ParentFn); // Ignore targets that aren't part of OutlinedHandlerFn. if (!LPadTargetBlocks.count(BA->getBasicBlock())) continue; // If the return value is the address ofF a block that we // previously outlined into the parent handler function, replace // the return instruction and add the mapped target to the list // of possible return addresses. BasicBlock *MappedBB = LPadTargetBlocks[BA->getBasicBlock()]; assert(MappedBB->getParent() == OutlinedHandlerFn); BlockAddress *NewBA = BlockAddress::get(OutlinedHandlerFn, MappedBB); Ret->eraseFromParent(); ReturnInst::Create(Context, NewBA, &NestedHandlerBB); ActionTargets.push_back(NewBA); } } DeleteContainerPointers(ActionList); ActionList.clear(); OutlinedBB->getInstList().push_back(EHActions); // Insert an indirect branch into the outlined landing pad BB. IndirectBrInst *IBr = IndirectBrInst::Create(EHActions, 0, OutlinedBB); // Add the previously collected action targets. for (auto *Target : ActionTargets) IBr->addDestination(Target->getBasicBlock()); } // This function examines a block to determine whether the block ends with a // conditional branch to a catch handler based on a selector comparison. // This function is used both by the WinEHPrepare::findSelectorComparison() and // WinEHCleanupDirector::handleTypeIdFor(). static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler, Constant *&Selector, BasicBlock *&NextBB) { ICmpInst::Predicate Pred; BasicBlock *TBB, *FBB; Value *LHS, *RHS; if (!match(BB->getTerminator(), m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TBB, FBB))) return false; if (!match(LHS, m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector))) && !match(RHS, m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector)))) return false; if (Pred == CmpInst::ICMP_EQ) { CatchHandler = TBB; NextBB = FBB; return true; } if (Pred == CmpInst::ICMP_NE) { CatchHandler = FBB; NextBB = TBB; return true; } return false; } static BasicBlock *createStubLandingPad(Function *Handler, Value *PersonalityFn) { // FIXME: Finish this! LLVMContext &Context = Handler->getContext(); BasicBlock *StubBB = BasicBlock::Create(Context, "stub"); Handler->getBasicBlockList().push_back(StubBB); IRBuilder<> Builder(StubBB); LandingPadInst *LPad = Builder.CreateLandingPad( llvm::StructType::get(Type::getInt8PtrTy(Context), Type::getInt32Ty(Context), nullptr), PersonalityFn, 0); LPad->setCleanup(true); Builder.CreateUnreachable(); return StubBB; } // Cycles through the blocks in an outlined handler function looking for an // invoke instruction and inserts an invoke of llvm.donothing with an empty // landing pad if none is found. The code that generates the .xdata tables for // the handler needs at least one landing pad to identify the parent function's // personality. void WinEHPrepare::addStubInvokeToHandlerIfNeeded(Function *Handler, Value *PersonalityFn) { ReturnInst *Ret = nullptr; for (BasicBlock &BB : *Handler) { TerminatorInst *Terminator = BB.getTerminator(); // If we find an invoke, there is nothing to be done. auto *II = dyn_cast<InvokeInst>(Terminator); if (II) return; // If we've already recorded a return instruction, keep looking for invokes. if (Ret) continue; // If we haven't recorded a return instruction yet, try this terminator. Ret = dyn_cast<ReturnInst>(Terminator); } // If we got this far, the handler contains no invokes. We should have seen // at least one return. We'll insert an invoke of llvm.donothing ahead of // that return. assert(Ret); BasicBlock *OldRetBB = Ret->getParent(); BasicBlock *NewRetBB = SplitBlock(OldRetBB, Ret); // SplitBlock adds an unconditional branch instruction at the end of the // parent block. We want to replace that with an invoke call, so we can // erase it now. OldRetBB->getTerminator()->eraseFromParent(); BasicBlock *StubLandingPad = createStubLandingPad(Handler, PersonalityFn); Function *F = Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::donothing); InvokeInst::Create(F, NewRetBB, StubLandingPad, None, "", OldRetBB); } bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn, LandingPadInst *LPad, BasicBlock *StartBB, FrameVarInfoMap &VarInfo) { Module *M = SrcFn->getParent(); LLVMContext &Context = M->getContext(); // Create a new function to receive the handler contents. Type *Int8PtrType = Type::getInt8PtrTy(Context); std::vector<Type *> ArgTys; ArgTys.push_back(Int8PtrType); ArgTys.push_back(Int8PtrType); Function *Handler; if (Action->getType() == Catch) { FunctionType *FnType = FunctionType::get(Int8PtrType, ArgTys, false); Handler = Function::Create(FnType, GlobalVariable::InternalLinkage, SrcFn->getName() + ".catch", M); } else { FunctionType *FnType = FunctionType::get(Type::getVoidTy(Context), ArgTys, false); Handler = Function::Create(FnType, GlobalVariable::InternalLinkage, SrcFn->getName() + ".cleanup", M); } Handler->addFnAttr("wineh-parent", SrcFn->getName()); // Generate a standard prolog to setup the frame recovery structure. IRBuilder<> Builder(Context); BasicBlock *Entry = BasicBlock::Create(Context, "entry"); Handler->getBasicBlockList().push_front(Entry); Builder.SetInsertPoint(Entry); Builder.SetCurrentDebugLocation(LPad->getDebugLoc()); std::unique_ptr<WinEHCloningDirectorBase> Director; ValueToValueMapTy VMap; LandingPadMap &LPadMap = LPadMaps[LPad]; if (!LPadMap.isInitialized()) LPadMap.mapLandingPad(LPad); if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) { Constant *Sel = CatchAction->getSelector(); Director.reset(new WinEHCatchDirector(Handler, Sel, VarInfo, LPadMap, NestedLPtoOriginalLP)); LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType), ConstantInt::get(Type::getInt32Ty(Context), 1)); } else { Director.reset(new WinEHCleanupDirector(Handler, VarInfo, LPadMap)); LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType), UndefValue::get(Type::getInt32Ty(Context))); } SmallVector<ReturnInst *, 8> Returns; ClonedCodeInfo OutlinedFunctionInfo; // If the start block contains PHI nodes, we need to map them. BasicBlock::iterator II = StartBB->begin(); while (auto *PN = dyn_cast<PHINode>(II)) { bool Mapped = false; // Look for PHI values that we have already mapped (such as the selector). for (Value *Val : PN->incoming_values()) { if (VMap.count(Val)) { VMap[PN] = VMap[Val]; Mapped = true; } } // If we didn't find a match for this value, map it as an undef. if (!Mapped) { VMap[PN] = UndefValue::get(PN->getType()); } ++II; } // Skip over PHIs and, if applicable, landingpad instructions. II = StartBB->getFirstInsertionPt(); CloneAndPruneIntoFromInst(Handler, SrcFn, II, VMap, /*ModuleLevelChanges=*/false, Returns, "", &OutlinedFunctionInfo, Director.get()); // Move all the instructions in the first cloned block into our entry block. BasicBlock *FirstClonedBB = std::next(Function::iterator(Entry)); Entry->getInstList().splice(Entry->end(), FirstClonedBB->getInstList()); FirstClonedBB->eraseFromParent(); // Make sure we can identify the handler's personality later. addStubInvokeToHandlerIfNeeded(Handler, LPad->getPersonalityFn()); if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) { WinEHCatchDirector *CatchDirector = reinterpret_cast<WinEHCatchDirector *>(Director.get()); CatchAction->setExceptionVar(CatchDirector->getExceptionVar()); CatchAction->setReturnTargets(CatchDirector->getReturnTargets()); // Look for blocks that are not part of the landing pad that we just // outlined but terminate with a call to llvm.eh.endcatch and a // branch to a block that is in the handler we just outlined. // These blocks will be part of a nested landing pad that intends to // return to an address in this handler. This case is best handled // after both landing pads have been outlined, so for now we'll just // save the association of the blocks in LPadTargetBlocks. The // return instructions which are created from these branches will be // replaced after all landing pads have been outlined. for (const auto MapEntry : VMap) { // VMap maps all values and blocks that were just cloned, but dead // blocks which were pruned will map to nullptr. if (!isa<BasicBlock>(MapEntry.first) || MapEntry.second == nullptr) continue; const BasicBlock *MappedBB = cast<BasicBlock>(MapEntry.first); for (auto *Pred : predecessors(const_cast<BasicBlock *>(MappedBB))) { auto *Branch = dyn_cast<BranchInst>(Pred->getTerminator()); if (!Branch || !Branch->isUnconditional() || Pred->size() <= 1) continue; BasicBlock::iterator II = const_cast<BranchInst *>(Branch); --II; if (match(cast<Value>(II), m_Intrinsic<Intrinsic::eh_endcatch>())) { // This would indicate that a nested landing pad wants to return // to a block that is outlined into two different handlers. assert(!LPadTargetBlocks.count(MappedBB)); LPadTargetBlocks[MappedBB] = cast<BasicBlock>(MapEntry.second); } } } } // End if (CatchAction) Action->setHandlerBlockOrFunc(Handler); return true; } /// This BB must end in a selector dispatch. All we need to do is pass the /// handler block to llvm.eh.actions and list it as a possible indirectbr /// target. void WinEHPrepare::processSEHCatchHandler(CatchHandler *CatchAction, BasicBlock *StartBB) { BasicBlock *HandlerBB; BasicBlock *NextBB; Constant *Selector; bool Res = isSelectorDispatch(StartBB, HandlerBB, Selector, NextBB); if (Res) { // If this was EH dispatch, this must be a conditional branch to the handler // block. // FIXME: Handle instructions in the dispatch block. Currently we drop them, // leading to crashes if some optimization hoists stuff here. assert(CatchAction->getSelector() && HandlerBB && "expected catch EH dispatch"); } else { // This must be a catch-all. Split the block after the landingpad. assert(CatchAction->getSelector()->isNullValue() && "expected catch-all"); HandlerBB = StartBB->splitBasicBlock(StartBB->getFirstInsertionPt(), "catch.all"); } CatchAction->setHandlerBlockOrFunc(BlockAddress::get(HandlerBB)); TinyPtrVector<BasicBlock *> Targets(HandlerBB); CatchAction->setReturnTargets(Targets); } void LandingPadMap::mapLandingPad(const LandingPadInst *LPad) { // Each instance of this class should only ever be used to map a single // landing pad. assert(OriginLPad == nullptr || OriginLPad == LPad); // If the landing pad has already been mapped, there's nothing more to do. if (OriginLPad == LPad) return; OriginLPad = LPad; // The landingpad instruction returns an aggregate value. Typically, its // value will be passed to a pair of extract value instructions and the // results of those extracts will have been promoted to reg values before // this routine is called. for (auto *U : LPad->users()) { const ExtractValueInst *Extract = dyn_cast<ExtractValueInst>(U); if (!Extract) continue; assert(Extract->getNumIndices() == 1 && "Unexpected operation: extracting both landing pad values"); unsigned int Idx = *(Extract->idx_begin()); assert((Idx == 0 || Idx == 1) && "Unexpected operation: extracting an unknown landing pad element"); if (Idx == 0) { ExtractedEHPtrs.push_back(Extract); } else if (Idx == 1) { ExtractedSelectors.push_back(Extract); } } } bool LandingPadMap::isOriginLandingPadBlock(const BasicBlock *BB) const { return BB->getLandingPadInst() == OriginLPad; } bool LandingPadMap::isLandingPadSpecificInst(const Instruction *Inst) const { if (Inst == OriginLPad) return true; for (auto *Extract : ExtractedEHPtrs) { if (Inst == Extract) return true; } for (auto *Extract : ExtractedSelectors) { if (Inst == Extract) return true; } return false; } void LandingPadMap::remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue, Value *SelectorValue) const { // Remap all landing pad extract instructions to the specified values. for (auto *Extract : ExtractedEHPtrs) VMap[Extract] = EHPtrValue; for (auto *Extract : ExtractedSelectors) VMap[Extract] = SelectorValue; } CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction( ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { // If this is one of the boilerplate landing pad instructions, skip it. // The instruction will have already been remapped in VMap. if (LPadMap.isLandingPadSpecificInst(Inst)) return CloningDirector::SkipInstruction; // Nested landing pads will be cloned as stubs, with just the // landingpad instruction and an unreachable instruction. When // all landingpads have been outlined, we'll replace this with the // llvm.eh.actions call and indirect branch created when the // landing pad was outlined. if (auto *LPad = dyn_cast<LandingPadInst>(Inst)) { return handleLandingPad(VMap, LPad, NewBB); } if (auto *Invoke = dyn_cast<InvokeInst>(Inst)) return handleInvoke(VMap, Invoke, NewBB); if (auto *Resume = dyn_cast<ResumeInst>(Inst)) return handleResume(VMap, Resume, NewBB); if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>())) return handleBeginCatch(VMap, Inst, NewBB); if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>())) return handleEndCatch(VMap, Inst, NewBB); if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>())) return handleTypeIdFor(VMap, Inst, NewBB); // Continue with the default cloning behavior. return CloningDirector::CloneInstruction; } CloningDirector::CloningAction WinEHCatchDirector::handleLandingPad( ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) { Instruction *NewInst = LPad->clone(); if (LPad->hasName()) NewInst->setName(LPad->getName()); // Save this correlation for later processing. NestedLPtoOriginalLP[cast<LandingPadInst>(NewInst)] = LPad; VMap[LPad] = NewInst; BasicBlock::InstListType &InstList = NewBB->getInstList(); InstList.push_back(NewInst); InstList.push_back(new UnreachableInst(NewBB->getContext())); return CloningDirector::StopCloningBB; } CloningDirector::CloningAction WinEHCatchDirector::handleBeginCatch( ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { // The argument to the call is some form of the first element of the // landingpad aggregate value, but that doesn't matter. It isn't used // here. // The second argument is an outparameter where the exception object will be // stored. Typically the exception object is a scalar, but it can be an // aggregate when catching by value. // FIXME: Leave something behind to indicate where the exception object lives // for this handler. Should it be part of llvm.eh.actions? assert(ExceptionObjectVar == nullptr && "Multiple calls to " "llvm.eh.begincatch found while " "outlining catch handler."); ExceptionObjectVar = Inst->getOperand(1)->stripPointerCasts(); if (isa<ConstantPointerNull>(ExceptionObjectVar)) return CloningDirector::SkipInstruction; assert(cast<AllocaInst>(ExceptionObjectVar)->isStaticAlloca() && "catch parameter is not static alloca"); Materializer.escapeCatchObject(ExceptionObjectVar); return CloningDirector::SkipInstruction; } CloningDirector::CloningAction WinEHCatchDirector::handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst); // It might be interesting to track whether or not we are inside a catch // function, but that might make the algorithm more brittle than it needs // to be. // The end catch call can occur in one of two places: either in a // landingpad block that is part of the catch handlers exception mechanism, // or at the end of the catch block. However, a catch-all handler may call // end catch from the original landing pad. If the call occurs in a nested // landing pad block, we must skip it and continue so that the landing pad // gets cloned. auto *ParentBB = IntrinCall->getParent(); if (ParentBB->isLandingPad() && !LPadMap.isOriginLandingPadBlock(ParentBB)) return CloningDirector::SkipInstruction; // If an end catch occurs anywhere else we want to terminate the handler // with a return to the code that follows the endcatch call. If the // next instruction is not an unconditional branch, we need to split the // block to provide a clear target for the return instruction. BasicBlock *ContinueBB; auto Next = std::next(BasicBlock::const_iterator(IntrinCall)); const BranchInst *Branch = dyn_cast<BranchInst>(Next); if (!Branch || !Branch->isUnconditional()) { // We're interrupting the cloning process at this location, so the // const_cast we're doing here will not cause a problem. ContinueBB = SplitBlock(const_cast<BasicBlock *>(ParentBB), const_cast<Instruction *>(cast<Instruction>(Next))); } else { ContinueBB = Branch->getSuccessor(0); } ReturnInst::Create(NewBB->getContext(), BlockAddress::get(ContinueBB), NewBB); ReturnTargets.push_back(ContinueBB); // We just added a terminator to the cloned block. // Tell the caller to stop processing the current basic block so that // the branch instruction will be skipped. return CloningDirector::StopCloningBB; } CloningDirector::CloningAction WinEHCatchDirector::handleTypeIdFor( ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst); Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts(); // This causes a replacement that will collapse the landing pad CFG based // on the filter function we intend to match. if (Selector == CurrentSelector) VMap[Inst] = ConstantInt::get(SelectorIDType, 1); else VMap[Inst] = ConstantInt::get(SelectorIDType, 0); // Tell the caller not to clone this instruction. return CloningDirector::SkipInstruction; } CloningDirector::CloningAction WinEHCatchDirector::handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) { return CloningDirector::CloneInstruction; } CloningDirector::CloningAction WinEHCatchDirector::handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) { // Resume instructions shouldn't be reachable from catch handlers. // We still need to handle it, but it will be pruned. BasicBlock::InstListType &InstList = NewBB->getInstList(); InstList.push_back(new UnreachableInst(NewBB->getContext())); return CloningDirector::StopCloningBB; } CloningDirector::CloningAction WinEHCleanupDirector::handleLandingPad( ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) { // The MS runtime will terminate the process if an exception occurs in a // cleanup handler, so we shouldn't encounter landing pads in the actual // cleanup code, but they may appear in catch blocks. Depending on where // we started cloning we may see one, but it will get dropped during dead // block pruning. Instruction *NewInst = new UnreachableInst(NewBB->getContext()); VMap[LPad] = NewInst; BasicBlock::InstListType &InstList = NewBB->getInstList(); InstList.push_back(NewInst); return CloningDirector::StopCloningBB; } CloningDirector::CloningAction WinEHCleanupDirector::handleBeginCatch( ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { // Catch blocks within cleanup handlers will always be unreachable. // We'll insert an unreachable instruction now, but it will be pruned // before the cloning process is complete. BasicBlock::InstListType &InstList = NewBB->getInstList(); InstList.push_back(new UnreachableInst(NewBB->getContext())); return CloningDirector::StopCloningBB; } CloningDirector::CloningAction WinEHCleanupDirector::handleEndCatch( ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { // Cleanup handlers nested within catch handlers may begin with a call to // eh.endcatch. We can just ignore that instruction. return CloningDirector::SkipInstruction; } CloningDirector::CloningAction WinEHCleanupDirector::handleTypeIdFor( ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { // If we encounter a selector comparison while cloning a cleanup handler, // we want to stop cloning immediately. Anything after the dispatch // will be outlined into a different handler. BasicBlock *CatchHandler; Constant *Selector; BasicBlock *NextBB; if (isSelectorDispatch(const_cast<BasicBlock *>(Inst->getParent()), CatchHandler, Selector, NextBB)) { ReturnInst::Create(NewBB->getContext(), nullptr, NewBB); return CloningDirector::StopCloningBB; } // If eg.typeid.for is called for any other reason, it can be ignored. VMap[Inst] = ConstantInt::get(SelectorIDType, 0); return CloningDirector::SkipInstruction; } CloningDirector::CloningAction WinEHCleanupDirector::handleInvoke( ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) { // All invokes in cleanup handlers can be replaced with calls. SmallVector<Value *, 16> CallArgs(Invoke->op_begin(), Invoke->op_end() - 3); // Insert a normal call instruction... CallInst *NewCall = CallInst::Create(const_cast<Value *>(Invoke->getCalledValue()), CallArgs, Invoke->getName(), NewBB); NewCall->setCallingConv(Invoke->getCallingConv()); NewCall->setAttributes(Invoke->getAttributes()); NewCall->setDebugLoc(Invoke->getDebugLoc()); VMap[Invoke] = NewCall; // Remap the operands. llvm::RemapInstruction(NewCall, VMap, RF_None, nullptr, &Materializer); // Insert an unconditional branch to the normal destination. BranchInst::Create(Invoke->getNormalDest(), NewBB); // The unwind destination won't be cloned into the new function, so // we don't need to clean up its phi nodes. // We just added a terminator to the cloned block. // Tell the caller to stop processing the current basic block. return CloningDirector::CloneSuccessors; } CloningDirector::CloningAction WinEHCleanupDirector::handleResume( ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) { ReturnInst::Create(NewBB->getContext(), nullptr, NewBB); // We just added a terminator to the cloned block. // Tell the caller to stop processing the current basic block so that // the branch instruction will be skipped. return CloningDirector::StopCloningBB; } WinEHFrameVariableMaterializer::WinEHFrameVariableMaterializer( Function *OutlinedFn, FrameVarInfoMap &FrameVarInfo) : FrameVarInfo(FrameVarInfo), Builder(OutlinedFn->getContext()) { BasicBlock *EntryBB = &OutlinedFn->getEntryBlock(); Builder.SetInsertPoint(EntryBB, EntryBB->getFirstInsertionPt()); } Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) { // If we're asked to materialize a value that is an instruction, we // temporarily create an alloca in the outlined function and add this // to the FrameVarInfo map. When all the outlining is complete, we'll // collect these into a structure, spilling non-alloca values in the // parent frame as necessary, and replace these temporary allocas with // GEPs referencing the frame allocation block. // If the value is an alloca, the mapping is direct. if (auto *AV = dyn_cast<AllocaInst>(V)) { AllocaInst *NewAlloca = dyn_cast<AllocaInst>(AV->clone()); Builder.Insert(NewAlloca, AV->getName()); FrameVarInfo[AV].push_back(NewAlloca); return NewAlloca; } // For other types of instructions or arguments, we need an alloca based on // the value's type and a load of the alloca. The alloca will be replaced // by a GEP, but the load will stay. In the parent function, the value will // be spilled to a location in the frame allocation block. if (isa<Instruction>(V) || isa<Argument>(V)) { AllocaInst *NewAlloca = Builder.CreateAlloca(V->getType(), nullptr, "eh.temp.alloca"); FrameVarInfo[V].push_back(NewAlloca); LoadInst *NewLoad = Builder.CreateLoad(NewAlloca, V->getName() + ".reload"); return NewLoad; } // Don't materialize other values. return nullptr; } void WinEHFrameVariableMaterializer::escapeCatchObject(Value *V) { // Catch parameter objects have to live in the parent frame. When we see a use // of a catch parameter, add a sentinel to the multimap to indicate that it's // used from another handler. This will prevent us from trying to sink the // alloca into the handler and ensure that the catch parameter is present in // the call to llvm.frameescape. FrameVarInfo[V].push_back(getCatchObjectSentinel()); } // This function maps the catch and cleanup handlers that are reachable from the // specified landing pad. The landing pad sequence will have this basic shape: // // <cleanup handler> // <selector comparison> // <catch handler> // <cleanup handler> // <selector comparison> // <catch handler> // <cleanup handler> // ... // // Any of the cleanup slots may be absent. The cleanup slots may be occupied by // any arbitrary control flow, but all paths through the cleanup code must // eventually reach the next selector comparison and no path can skip to a // different selector comparisons, though some paths may terminate abnormally. // Therefore, we will use a depth first search from the start of any given // cleanup block and stop searching when we find the next selector comparison. // // If the landingpad instruction does not have a catch clause, we will assume // that any instructions other than selector comparisons and catch handlers can // be ignored. In practice, these will only be the boilerplate instructions. // // The catch handlers may also have any control structure, but we are only // interested in the start of the catch handlers, so we don't need to actually // follow the flow of the catch handlers. The start of the catch handlers can // be located from the compare instructions, but they can be skipped in the // flow by following the contrary branch. void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad, LandingPadActions &Actions) { unsigned int NumClauses = LPad->getNumClauses(); unsigned int HandlersFound = 0; BasicBlock *BB = LPad->getParent(); DEBUG(dbgs() << "Mapping landing pad: " << BB->getName() << "\n"); if (NumClauses == 0) { findCleanupHandlers(Actions, BB, nullptr); return; } VisitedBlockSet VisitedBlocks; while (HandlersFound != NumClauses) { BasicBlock *NextBB = nullptr; // See if the clause we're looking for is a catch-all. // If so, the catch begins immediately. if (isa<ConstantPointerNull>(LPad->getClause(HandlersFound))) { // The catch all must occur last. assert(HandlersFound == NumClauses - 1); // For C++ EH, check if there is any interesting cleanup code before we // begin the catch. This is important because cleanups cannot rethrow // exceptions but code called from catches can. For SEH, it isn't // important if some finally code before a catch-all is executed out of // line or after recovering from the exception. if (Personality == EHPersonality::MSVC_CXX) findCleanupHandlers(Actions, BB, BB); // Add the catch handler to the action list. CatchHandler *Action = new CatchHandler(BB, LPad->getClause(HandlersFound), nullptr); CatchHandlerMap[BB] = Action; Actions.insertCatchHandler(Action); DEBUG(dbgs() << " Catch all handler at block " << BB->getName() << "\n"); ++HandlersFound; // Once we reach a catch-all, don't expect to hit a resume instruction. BB = nullptr; break; } CatchHandler *CatchAction = findCatchHandler(BB, NextBB, VisitedBlocks); // See if there is any interesting code executed before the dispatch. findCleanupHandlers(Actions, BB, CatchAction->getStartBlock()); assert(CatchAction); ++HandlersFound; // Add the catch handler to the action list. Actions.insertCatchHandler(CatchAction); DEBUG(dbgs() << " Found catch dispatch in block " << CatchAction->getStartBlock()->getName() << "\n"); // Move on to the block after the catch handler. BB = NextBB; } // If we didn't wind up in a catch-all, see if there is any interesting code // executed before the resume. findCleanupHandlers(Actions, BB, BB); // It's possible that some optimization moved code into a landingpad that // wasn't // previously being used for cleanup. If that happens, we need to execute // that // extra code from a cleanup handler. if (Actions.includesCleanup() && !LPad->isCleanup()) LPad->setCleanup(true); } // This function searches starting with the input block for the next // block that terminates with a branch whose condition is based on a selector // comparison. This may be the input block. See the mapLandingPadBlocks // comments for a discussion of control flow assumptions. // CatchHandler *WinEHPrepare::findCatchHandler(BasicBlock *BB, BasicBlock *&NextBB, VisitedBlockSet &VisitedBlocks) { // See if we've already found a catch handler use it. // Call count() first to avoid creating a null entry for blocks // we haven't seen before. if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) { CatchHandler *Action = cast<CatchHandler>(CatchHandlerMap[BB]); NextBB = Action->getNextBB(); return Action; } // VisitedBlocks applies only to the current search. We still // need to consider blocks that we've visited while mapping other // landing pads. VisitedBlocks.insert(BB); BasicBlock *CatchBlock = nullptr; Constant *Selector = nullptr; // If this is the first time we've visited this block from any landing pad // look to see if it is a selector dispatch block. if (!CatchHandlerMap.count(BB)) { if (isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) { CatchHandler *Action = new CatchHandler(BB, Selector, NextBB); CatchHandlerMap[BB] = Action; return Action; } } // Visit each successor, looking for the dispatch. // FIXME: We expect to find the dispatch quickly, so this will probably // work better as a breadth first search. for (BasicBlock *Succ : successors(BB)) { if (VisitedBlocks.count(Succ)) continue; CatchHandler *Action = findCatchHandler(Succ, NextBB, VisitedBlocks); if (Action) return Action; } return nullptr; } // These are helper functions to combine repeated code from findCleanupHandlers. static void createCleanupHandler(LandingPadActions &Actions, CleanupHandlerMapTy &CleanupHandlerMap, BasicBlock *BB) { CleanupHandler *Action = new CleanupHandler(BB); CleanupHandlerMap[BB] = Action; Actions.insertCleanupHandler(Action); DEBUG(dbgs() << " Found cleanup code in block " << Action->getStartBlock()->getName() << "\n"); } static bool isFrameAddressCall(Value *V) { return match(V, m_Intrinsic<Intrinsic::frameaddress>(m_SpecificInt(0))); } static CallSite matchOutlinedFinallyCall(BasicBlock *BB, Instruction *MaybeCall) { // Look for finally blocks that Clang has already outlined for us. // %fp = call i8* @llvm.frameaddress(i32 0) // call void @"fin$parent"(iN 1, i8* %fp) if (isFrameAddressCall(MaybeCall) && MaybeCall != BB->getTerminator()) MaybeCall = MaybeCall->getNextNode(); CallSite FinallyCall(MaybeCall); if (!FinallyCall || FinallyCall.arg_size() != 2) return CallSite(); if (!match(FinallyCall.getArgument(0), m_SpecificInt(1))) return CallSite(); if (!isFrameAddressCall(FinallyCall.getArgument(1))) return CallSite(); return FinallyCall; } static BasicBlock *followSingleUnconditionalBranches(BasicBlock *BB) { // Skip single ubr blocks. while (BB->getFirstNonPHIOrDbg() == BB->getTerminator()) { auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); if (Br && Br->isUnconditional()) BB = Br->getSuccessor(0); else return BB; } return BB; } // This function searches starting with the input block for the next block that // contains code that is not part of a catch handler and would not be eliminated // during handler outlining. // void WinEHPrepare::findCleanupHandlers(LandingPadActions &Actions, BasicBlock *StartBB, BasicBlock *EndBB) { // Here we will skip over the following: // // landing pad prolog: // // Unconditional branches // // Selector dispatch // // Resume pattern // // Anything else marks the start of an interesting block BasicBlock *BB = StartBB; // Anything other than an unconditional branch will kick us out of this loop // one way or another. while (BB) { BB = followSingleUnconditionalBranches(BB); // If we've already scanned this block, don't scan it again. If it is // a cleanup block, there will be an action in the CleanupHandlerMap. // If we've scanned it and it is not a cleanup block, there will be a // nullptr in the CleanupHandlerMap. If we have not scanned it, there will // be no entry in the CleanupHandlerMap. We must call count() first to // avoid creating a null entry for blocks we haven't scanned. if (CleanupHandlerMap.count(BB)) { if (auto *Action = CleanupHandlerMap[BB]) { Actions.insertCleanupHandler(Action); DEBUG(dbgs() << " Found cleanup code in block " << Action->getStartBlock()->getName() << "\n"); // FIXME: This cleanup might chain into another, and we need to discover // that. return; } else { // Here we handle the case where the cleanup handler map contains a // value for this block but the value is a nullptr. This means that // we have previously analyzed the block and determined that it did // not contain any cleanup code. Based on the earlier analysis, we // know the the block must end in either an unconditional branch, a // resume or a conditional branch that is predicated on a comparison // with a selector. Either the resume or the selector dispatch // would terminate the search for cleanup code, so the unconditional // branch is the only case for which we might need to continue // searching. BasicBlock *SuccBB = followSingleUnconditionalBranches(BB); if (SuccBB == BB || SuccBB == EndBB) return; BB = SuccBB; continue; } } // Create an entry in the cleanup handler map for this block. Initially // we create an entry that says this isn't a cleanup block. If we find // cleanup code, the caller will replace this entry. CleanupHandlerMap[BB] = nullptr; TerminatorInst *Terminator = BB->getTerminator(); // Landing pad blocks have extra instructions we need to accept. LandingPadMap *LPadMap = nullptr; if (BB->isLandingPad()) { LandingPadInst *LPad = BB->getLandingPadInst(); LPadMap = &LPadMaps[LPad]; if (!LPadMap->isInitialized()) LPadMap->mapLandingPad(LPad); } // Look for the bare resume pattern: // %lpad.val1 = insertvalue { i8*, i32 } undef, i8* %exn, 0 // %lpad.val2 = insertvalue { i8*, i32 } %lpad.val1, i32 %sel, 1 // resume { i8*, i32 } %lpad.val2 if (auto *Resume = dyn_cast<ResumeInst>(Terminator)) { InsertValueInst *Insert1 = nullptr; InsertValueInst *Insert2 = nullptr; Value *ResumeVal = Resume->getOperand(0); // If the resume value isn't a phi or landingpad value, it should be a // series of insertions. Identify them so we can avoid them when scanning // for cleanups. if (!isa<PHINode>(ResumeVal) && !isa<LandingPadInst>(ResumeVal)) { Insert2 = dyn_cast<InsertValueInst>(ResumeVal); if (!Insert2) return createCleanupHandler(Actions, CleanupHandlerMap, BB); Insert1 = dyn_cast<InsertValueInst>(Insert2->getAggregateOperand()); if (!Insert1) return createCleanupHandler(Actions, CleanupHandlerMap, BB); } for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); II != IE; ++II) { Instruction *Inst = II; if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst)) continue; if (Inst == Insert1 || Inst == Insert2 || Inst == Resume) continue; if (!Inst->hasOneUse() || (Inst->user_back() != Insert1 && Inst->user_back() != Insert2)) { return createCleanupHandler(Actions, CleanupHandlerMap, BB); } } return; } BranchInst *Branch = dyn_cast<BranchInst>(Terminator); if (Branch && Branch->isConditional()) { // Look for the selector dispatch. // %2 = call i32 @llvm.eh.typeid.for(i8* bitcast (i8** @_ZTIf to i8*)) // %matches = icmp eq i32 %sel, %2 // br i1 %matches, label %catch14, label %eh.resume CmpInst *Compare = dyn_cast<CmpInst>(Branch->getCondition()); if (!Compare || !Compare->isEquality()) return createCleanupHandler(Actions, CleanupHandlerMap, BB); for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); II != IE; ++II) { Instruction *Inst = II; if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst)) continue; if (Inst == Compare || Inst == Branch) continue; if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>())) continue; return createCleanupHandler(Actions, CleanupHandlerMap, BB); } // The selector dispatch block should always terminate our search. assert(BB == EndBB); return; } if (isAsynchronousEHPersonality(Personality)) { // If this is a landingpad block, split the block at the first non-landing // pad instruction. Instruction *MaybeCall = BB->getFirstNonPHIOrDbg(); if (LPadMap) { while (MaybeCall != BB->getTerminator() && LPadMap->isLandingPadSpecificInst(MaybeCall)) MaybeCall = MaybeCall->getNextNode(); } // Look for outlined finally calls. if (CallSite FinallyCall = matchOutlinedFinallyCall(BB, MaybeCall)) { Function *Fin = FinallyCall.getCalledFunction(); assert(Fin && "outlined finally call should be direct"); auto *Action = new CleanupHandler(BB); Action->setHandlerBlockOrFunc(Fin); Actions.insertCleanupHandler(Action); CleanupHandlerMap[BB] = Action; DEBUG(dbgs() << " Found frontend-outlined finally call to " << Fin->getName() << " in block " << Action->getStartBlock()->getName() << "\n"); // Split the block if there were more interesting instructions and look // for finally calls in the normal successor block. BasicBlock *SuccBB = BB; if (FinallyCall.getInstruction() != BB->getTerminator() && FinallyCall.getInstruction()->getNextNode() != BB->getTerminator()) { SuccBB = BB->splitBasicBlock(FinallyCall.getInstruction()->getNextNode()); } else { if (FinallyCall.isInvoke()) { SuccBB = cast<InvokeInst>(FinallyCall.getInstruction())->getNormalDest(); } else { SuccBB = BB->getUniqueSuccessor(); assert(SuccBB && "splitOutlinedFinallyCalls didn't insert a branch"); } } BB = SuccBB; if (BB == EndBB) return; continue; } } // Anything else is either a catch block or interesting cleanup code. for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); II != IE; ++II) { Instruction *Inst = II; if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst)) continue; // Unconditional branches fall through to this loop. if (Inst == Branch) continue; // If this is a catch block, there is no cleanup code to be found. if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>())) return; // If this a nested landing pad, it may contain an endcatch call. if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>())) return; // Anything else makes this interesting cleanup code. return createCleanupHandler(Actions, CleanupHandlerMap, BB); } // Only unconditional branches in empty blocks should get this far. assert(Branch && Branch->isUnconditional()); if (BB == EndBB) return; BB = Branch->getSuccessor(0); } } // This is a public function, declared in WinEHFuncInfo.h and is also // referenced by WinEHNumbering in FunctionLoweringInfo.cpp. void llvm::parseEHActions(const IntrinsicInst *II, SmallVectorImpl<ActionHandler *> &Actions) { for (unsigned I = 0, E = II->getNumArgOperands(); I != E;) { uint64_t ActionKind = cast<ConstantInt>(II->getArgOperand(I))->getZExtValue(); if (ActionKind == /*catch=*/1) { auto *Selector = cast<Constant>(II->getArgOperand(I + 1)); ConstantInt *EHObjIndex = cast<ConstantInt>(II->getArgOperand(I + 2)); int64_t EHObjIndexVal = EHObjIndex->getSExtValue(); Constant *Handler = cast<Constant>(II->getArgOperand(I + 3)); I += 4; auto *CH = new CatchHandler(/*BB=*/nullptr, Selector, /*NextBB=*/nullptr); CH->setHandlerBlockOrFunc(Handler); CH->setExceptionVarIndex(EHObjIndexVal); Actions.push_back(CH); } else if (ActionKind == 0) { Constant *Handler = cast<Constant>(II->getArgOperand(I + 1)); I += 2; auto *CH = new CleanupHandler(/*BB=*/nullptr); CH->setHandlerBlockOrFunc(Handler); Actions.push_back(CH); } else { llvm_unreachable("Expected either a catch or cleanup handler!"); } } std::reverse(Actions.begin(), Actions.end()); }