//===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The LiveRangeEdit class represents changes done to a virtual register when it // is spilled or split. //===----------------------------------------------------------------------===// #include "llvm/CodeGen/LiveRangeEdit.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/CalcSpillWeights.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/VirtRegMap.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" using namespace llvm; #define DEBUG_TYPE "regalloc" STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE"); STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE"); STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE"); void LiveRangeEdit::Delegate::anchor() { } LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg) { unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); if (VRM) { VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); } LiveInterval &LI = LIS.createEmptyInterval(VReg); return LI; } unsigned LiveRangeEdit::createFrom(unsigned OldReg) { unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); if (VRM) { VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); } return VReg; } bool LiveRangeEdit::checkRematerializable(VNInfo *VNI, const MachineInstr *DefMI, AliasAnalysis *aa) { assert(DefMI && "Missing instruction"); ScannedRemattable = true; if (!TII.isTriviallyReMaterializable(DefMI, aa)) return false; Remattable.insert(VNI); return true; } void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) { for (VNInfo *VNI : getParent().valnos) { if (VNI->isUnused()) continue; MachineInstr *DefMI = LIS.getInstructionFromIndex(VNI->def); if (!DefMI) continue; checkRematerializable(VNI, DefMI, aa); } ScannedRemattable = true; } bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) { if (!ScannedRemattable) scanRemattable(aa); return !Remattable.empty(); } /// allUsesAvailableAt - Return true if all registers used by OrigMI at /// OrigIdx are also available with the same value at UseIdx. bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx, SlotIndex UseIdx) const { OrigIdx = OrigIdx.getRegSlot(true); UseIdx = UseIdx.getRegSlot(true); for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = OrigMI->getOperand(i); if (!MO.isReg() || !MO.getReg() || !MO.readsReg()) continue; // We can't remat physreg uses, unless it is a constant. if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { if (MRI.isConstantPhysReg(MO.getReg(), *OrigMI->getParent()->getParent())) continue; return false; } LiveInterval &li = LIS.getInterval(MO.getReg()); const VNInfo *OVNI = li.getVNInfoAt(OrigIdx); if (!OVNI) continue; // Don't allow rematerialization immediately after the original def. // It would be incorrect if OrigMI redefines the register. // See PR14098. if (SlotIndex::isSameInstr(OrigIdx, UseIdx)) return false; if (OVNI != li.getVNInfoAt(UseIdx)) return false; } return true; } bool LiveRangeEdit::canRematerializeAt(Remat &RM, SlotIndex UseIdx, bool cheapAsAMove) { assert(ScannedRemattable && "Call anyRematerializable first"); // Use scanRemattable info. if (!Remattable.count(RM.ParentVNI)) return false; // No defining instruction provided. SlotIndex DefIdx; if (RM.OrigMI) DefIdx = LIS.getInstructionIndex(RM.OrigMI); else { DefIdx = RM.ParentVNI->def; RM.OrigMI = LIS.getInstructionFromIndex(DefIdx); assert(RM.OrigMI && "No defining instruction for remattable value"); } // If only cheap remats were requested, bail out early. if (cheapAsAMove && !TII.isAsCheapAsAMove(RM.OrigMI)) return false; // Verify that all used registers are available with the same values. if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx)) return false; return true; } SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, const Remat &RM, const TargetRegisterInfo &tri, bool Late) { assert(RM.OrigMI && "Invalid remat"); TII.reMaterialize(MBB, MI, DestReg, 0, RM.OrigMI, tri); Rematted.insert(RM.ParentVNI); return LIS.getSlotIndexes()->insertMachineInstrInMaps(--MI, Late) .getRegSlot(); } void LiveRangeEdit::eraseVirtReg(unsigned Reg) { if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg)) LIS.removeInterval(Reg); } bool LiveRangeEdit::foldAsLoad(LiveInterval *LI, SmallVectorImpl<MachineInstr*> &Dead) { MachineInstr *DefMI = nullptr, *UseMI = nullptr; // Check that there is a single def and a single use. for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) { MachineInstr *MI = MO.getParent(); if (MO.isDef()) { if (DefMI && DefMI != MI) return false; if (!MI->canFoldAsLoad()) return false; DefMI = MI; } else if (!MO.isUndef()) { if (UseMI && UseMI != MI) return false; // FIXME: Targets don't know how to fold subreg uses. if (MO.getSubReg()) return false; UseMI = MI; } } if (!DefMI || !UseMI) return false; // Since we're moving the DefMI load, make sure we're not extending any live // ranges. if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(DefMI), LIS.getInstructionIndex(UseMI))) return false; // We also need to make sure it is safe to move the load. // Assume there are stores between DefMI and UseMI. bool SawStore = true; if (!DefMI->isSafeToMove(&TII, nullptr, SawStore)) return false; DEBUG(dbgs() << "Try to fold single def: " << *DefMI << " into single use: " << *UseMI); SmallVector<unsigned, 8> Ops; if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second) return false; MachineInstr *FoldMI = TII.foldMemoryOperand(UseMI, Ops, DefMI); if (!FoldMI) return false; DEBUG(dbgs() << " folded: " << *FoldMI); LIS.ReplaceMachineInstrInMaps(UseMI, FoldMI); UseMI->eraseFromParent(); DefMI->addRegisterDead(LI->reg, nullptr); Dead.push_back(DefMI); ++NumDCEFoldedLoads; return true; } /// Find all live intervals that need to shrink, then remove the instruction. void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) { assert(MI->allDefsAreDead() && "Def isn't really dead"); SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); // Never delete a bundled instruction. if (MI->isBundled()) { return; } // Never delete inline asm. if (MI->isInlineAsm()) { DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI); return; } // Use the same criteria as DeadMachineInstructionElim. bool SawStore = false; if (!MI->isSafeToMove(&TII, nullptr, SawStore)) { DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI); return; } DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI); // Collect virtual registers to be erased after MI is gone. SmallVector<unsigned, 8> RegsToErase; bool ReadsPhysRegs = false; // Check for live intervals that may shrink for (MachineInstr::mop_iterator MOI = MI->operands_begin(), MOE = MI->operands_end(); MOI != MOE; ++MOI) { if (!MOI->isReg()) continue; unsigned Reg = MOI->getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) { // Check if MI reads any unreserved physregs. if (Reg && MOI->readsReg() && !MRI.isReserved(Reg)) ReadsPhysRegs = true; else if (MOI->isDef()) LIS.removePhysRegDefAt(Reg, Idx); continue; } LiveInterval &LI = LIS.getInterval(Reg); // Shrink read registers, unless it is likely to be expensive and // unlikely to change anything. We typically don't want to shrink the // PIC base register that has lots of uses everywhere. // Always shrink COPY uses that probably come from live range splitting. if (MI->readsVirtualRegister(Reg) && (MI->isCopy() || MOI->isDef() || MRI.hasOneNonDBGUse(Reg) || LI.Query(Idx).isKill())) ToShrink.insert(&LI); // Remove defined value. if (MOI->isDef()) { if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr) TheDelegate->LRE_WillShrinkVirtReg(LI.reg); LIS.removeVRegDefAt(LI, Idx); if (LI.empty()) RegsToErase.push_back(Reg); } } // Currently, we don't support DCE of physreg live ranges. If MI reads // any unreserved physregs, don't erase the instruction, but turn it into // a KILL instead. This way, the physreg live ranges don't end up // dangling. // FIXME: It would be better to have something like shrinkToUses() for // physregs. That could potentially enable more DCE and it would free up // the physreg. It would not happen often, though. if (ReadsPhysRegs) { MI->setDesc(TII.get(TargetOpcode::KILL)); // Remove all operands that aren't physregs. for (unsigned i = MI->getNumOperands(); i; --i) { const MachineOperand &MO = MI->getOperand(i-1); if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) continue; MI->RemoveOperand(i-1); } DEBUG(dbgs() << "Converted physregs to:\t" << *MI); } else { if (TheDelegate) TheDelegate->LRE_WillEraseInstruction(MI); LIS.RemoveMachineInstrFromMaps(MI); MI->eraseFromParent(); ++NumDCEDeleted; } // Erase any virtregs that are now empty and unused. There may be <undef> // uses around. Keep the empty live range in that case. for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) { unsigned Reg = RegsToErase[i]; if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) { ToShrink.remove(&LIS.getInterval(Reg)); eraseVirtReg(Reg); } } } void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead, ArrayRef<unsigned> RegsBeingSpilled) { ToShrinkSet ToShrink; for (;;) { // Erase all dead defs. while (!Dead.empty()) eliminateDeadDef(Dead.pop_back_val(), ToShrink); if (ToShrink.empty()) break; // Shrink just one live interval. Then delete new dead defs. LiveInterval *LI = ToShrink.back(); ToShrink.pop_back(); if (foldAsLoad(LI, Dead)) continue; if (TheDelegate) TheDelegate->LRE_WillShrinkVirtReg(LI->reg); if (!LIS.shrinkToUses(LI, &Dead)) continue; // Don't create new intervals for a register being spilled. // The new intervals would have to be spilled anyway so its not worth it. // Also they currently aren't spilled so creating them and not spilling // them results in incorrect code. bool BeingSpilled = false; for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) { if (LI->reg == RegsBeingSpilled[i]) { BeingSpilled = true; break; } } if (BeingSpilled) continue; // LI may have been separated, create new intervals. LI->RenumberValues(); ConnectedVNInfoEqClasses ConEQ(LIS); unsigned NumComp = ConEQ.Classify(LI); if (NumComp <= 1) continue; ++NumFracRanges; bool IsOriginal = VRM && VRM->getOriginal(LI->reg) == LI->reg; DEBUG(dbgs() << NumComp << " components: " << *LI << '\n'); SmallVector<LiveInterval*, 8> Dups(1, LI); for (unsigned i = 1; i != NumComp; ++i) { Dups.push_back(&createEmptyIntervalFrom(LI->reg)); // If LI is an original interval that hasn't been split yet, make the new // intervals their own originals instead of referring to LI. The original // interval must contain all the split products, and LI doesn't. if (IsOriginal) VRM->setIsSplitFromReg(Dups.back()->reg, 0); if (TheDelegate) TheDelegate->LRE_DidCloneVirtReg(Dups.back()->reg, LI->reg); } ConEQ.Distribute(&Dups[0], MRI); DEBUG({ for (unsigned i = 0; i != NumComp; ++i) dbgs() << '\t' << *Dups[i] << '\n'; }); } } // Keep track of new virtual registers created via // MachineRegisterInfo::createVirtualRegister. void LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg) { if (VRM) VRM->grow(); NewRegs.push_back(VReg); } void LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF, const MachineLoopInfo &Loops, const MachineBlockFrequencyInfo &MBFI) { VirtRegAuxInfo VRAI(MF, LIS, Loops, MBFI); for (unsigned I = 0, Size = size(); I < Size; ++I) { LiveInterval &LI = LIS.getInterval(get(I)); if (MRI.recomputeRegClass(LI.reg)) DEBUG({ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); dbgs() << "Inflated " << PrintReg(LI.reg) << " to " << TRI->getRegClassName(MRI.getRegClass(LI.reg)) << '\n'; }); VRAI.calculateSpillWeightAndHint(LI); } }