#include "llvm/Analysis/Passes.h" #include "llvm/ExecutionEngine/Orc/CompileUtils.h" #include "llvm/ExecutionEngine/Orc/IRCompileLayer.h" #include "llvm/ExecutionEngine/Orc/LambdaResolver.h" #include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h" #include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h" #include "llvm/ExecutionEngine/Orc/OrcTargetSupport.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Transforms/Scalar.h" #include <cctype> #include <iomanip> #include <iostream> #include <map> #include <sstream> #include <string> #include <vector> using namespace llvm; using namespace llvm::orc; //===----------------------------------------------------------------------===// // Lexer //===----------------------------------------------------------------------===// // The lexer returns tokens [0-255] if it is an unknown character, otherwise one // of these for known things. enum Token { tok_eof = -1, // commands tok_def = -2, tok_extern = -3, // primary tok_identifier = -4, tok_number = -5, // control tok_if = -6, tok_then = -7, tok_else = -8, tok_for = -9, tok_in = -10, // operators tok_binary = -11, tok_unary = -12, // var definition tok_var = -13 }; static std::string IdentifierStr; // Filled in if tok_identifier static double NumVal; // Filled in if tok_number /// gettok - Return the next token from standard input. static int gettok() { static int LastChar = ' '; // Skip any whitespace. while (isspace(LastChar)) LastChar = getchar(); if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* IdentifierStr = LastChar; while (isalnum((LastChar = getchar()))) IdentifierStr += LastChar; if (IdentifierStr == "def") return tok_def; if (IdentifierStr == "extern") return tok_extern; if (IdentifierStr == "if") return tok_if; if (IdentifierStr == "then") return tok_then; if (IdentifierStr == "else") return tok_else; if (IdentifierStr == "for") return tok_for; if (IdentifierStr == "in") return tok_in; if (IdentifierStr == "binary") return tok_binary; if (IdentifierStr == "unary") return tok_unary; if (IdentifierStr == "var") return tok_var; return tok_identifier; } if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ std::string NumStr; do { NumStr += LastChar; LastChar = getchar(); } while (isdigit(LastChar) || LastChar == '.'); NumVal = strtod(NumStr.c_str(), 0); return tok_number; } if (LastChar == '#') { // Comment until end of line. do LastChar = getchar(); while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); if (LastChar != EOF) return gettok(); } // Check for end of file. Don't eat the EOF. if (LastChar == EOF) return tok_eof; // Otherwise, just return the character as its ascii value. int ThisChar = LastChar; LastChar = getchar(); return ThisChar; } //===----------------------------------------------------------------------===// // Abstract Syntax Tree (aka Parse Tree) //===----------------------------------------------------------------------===// class IRGenContext; /// ExprAST - Base class for all expression nodes. struct ExprAST { virtual ~ExprAST() {} virtual Value *IRGen(IRGenContext &C) const = 0; }; /// NumberExprAST - Expression class for numeric literals like "1.0". struct NumberExprAST : public ExprAST { NumberExprAST(double Val) : Val(Val) {} Value *IRGen(IRGenContext &C) const override; double Val; }; /// VariableExprAST - Expression class for referencing a variable, like "a". struct VariableExprAST : public ExprAST { VariableExprAST(std::string Name) : Name(std::move(Name)) {} Value *IRGen(IRGenContext &C) const override; std::string Name; }; /// UnaryExprAST - Expression class for a unary operator. struct UnaryExprAST : public ExprAST { UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand) : Opcode(std::move(Opcode)), Operand(std::move(Operand)) {} Value *IRGen(IRGenContext &C) const override; char Opcode; std::unique_ptr<ExprAST> Operand; }; /// BinaryExprAST - Expression class for a binary operator. struct BinaryExprAST : public ExprAST { BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS, std::unique_ptr<ExprAST> RHS) : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {} Value *IRGen(IRGenContext &C) const override; char Op; std::unique_ptr<ExprAST> LHS, RHS; }; /// CallExprAST - Expression class for function calls. struct CallExprAST : public ExprAST { CallExprAST(std::string CalleeName, std::vector<std::unique_ptr<ExprAST>> Args) : CalleeName(std::move(CalleeName)), Args(std::move(Args)) {} Value *IRGen(IRGenContext &C) const override; std::string CalleeName; std::vector<std::unique_ptr<ExprAST>> Args; }; /// IfExprAST - Expression class for if/then/else. struct IfExprAST : public ExprAST { IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then, std::unique_ptr<ExprAST> Else) : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {} Value *IRGen(IRGenContext &C) const override; std::unique_ptr<ExprAST> Cond, Then, Else; }; /// ForExprAST - Expression class for for/in. struct ForExprAST : public ExprAST { ForExprAST(std::string VarName, std::unique_ptr<ExprAST> Start, std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step, std::unique_ptr<ExprAST> Body) : VarName(std::move(VarName)), Start(std::move(Start)), End(std::move(End)), Step(std::move(Step)), Body(std::move(Body)) {} Value *IRGen(IRGenContext &C) const override; std::string VarName; std::unique_ptr<ExprAST> Start, End, Step, Body; }; /// VarExprAST - Expression class for var/in struct VarExprAST : public ExprAST { typedef std::pair<std::string, std::unique_ptr<ExprAST>> Binding; typedef std::vector<Binding> BindingList; VarExprAST(BindingList VarBindings, std::unique_ptr<ExprAST> Body) : VarBindings(std::move(VarBindings)), Body(std::move(Body)) {} Value *IRGen(IRGenContext &C) const override; BindingList VarBindings; std::unique_ptr<ExprAST> Body; }; /// PrototypeAST - This class represents the "prototype" for a function, /// which captures its argument names as well as if it is an operator. struct PrototypeAST { PrototypeAST(std::string Name, std::vector<std::string> Args, bool IsOperator = false, unsigned Precedence = 0) : Name(std::move(Name)), Args(std::move(Args)), IsOperator(IsOperator), Precedence(Precedence) {} Function *IRGen(IRGenContext &C) const; void CreateArgumentAllocas(Function *F, IRGenContext &C); bool isUnaryOp() const { return IsOperator && Args.size() == 1; } bool isBinaryOp() const { return IsOperator && Args.size() == 2; } char getOperatorName() const { assert(isUnaryOp() || isBinaryOp()); return Name[Name.size()-1]; } std::string Name; std::vector<std::string> Args; bool IsOperator; unsigned Precedence; // Precedence if a binary op. }; /// FunctionAST - This class represents a function definition itself. struct FunctionAST { FunctionAST(std::unique_ptr<PrototypeAST> Proto, std::unique_ptr<ExprAST> Body) : Proto(std::move(Proto)), Body(std::move(Body)) {} Function *IRGen(IRGenContext &C) const; std::unique_ptr<PrototypeAST> Proto; std::unique_ptr<ExprAST> Body; }; //===----------------------------------------------------------------------===// // Parser //===----------------------------------------------------------------------===// /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current /// token the parser is looking at. getNextToken reads another token from the /// lexer and updates CurTok with its results. static int CurTok; static int getNextToken() { return CurTok = gettok(); } /// BinopPrecedence - This holds the precedence for each binary operator that is /// defined. static std::map<char, int> BinopPrecedence; /// GetTokPrecedence - Get the precedence of the pending binary operator token. static int GetTokPrecedence() { if (!isascii(CurTok)) return -1; // Make sure it's a declared binop. int TokPrec = BinopPrecedence[CurTok]; if (TokPrec <= 0) return -1; return TokPrec; } template <typename T> std::unique_ptr<T> ErrorU(const std::string &Str) { std::cerr << "Error: " << Str << "\n"; return nullptr; } template <typename T> T* ErrorP(const std::string &Str) { std::cerr << "Error: " << Str << "\n"; return nullptr; } static std::unique_ptr<ExprAST> ParseExpression(); /// identifierexpr /// ::= identifier /// ::= identifier '(' expression* ')' static std::unique_ptr<ExprAST> ParseIdentifierExpr() { std::string IdName = IdentifierStr; getNextToken(); // eat identifier. if (CurTok != '(') // Simple variable ref. return llvm::make_unique<VariableExprAST>(IdName); // Call. getNextToken(); // eat ( std::vector<std::unique_ptr<ExprAST>> Args; if (CurTok != ')') { while (1) { auto Arg = ParseExpression(); if (!Arg) return nullptr; Args.push_back(std::move(Arg)); if (CurTok == ')') break; if (CurTok != ',') return ErrorU<CallExprAST>("Expected ')' or ',' in argument list"); getNextToken(); } } // Eat the ')'. getNextToken(); return llvm::make_unique<CallExprAST>(IdName, std::move(Args)); } /// numberexpr ::= number static std::unique_ptr<NumberExprAST> ParseNumberExpr() { auto Result = llvm::make_unique<NumberExprAST>(NumVal); getNextToken(); // consume the number return Result; } /// parenexpr ::= '(' expression ')' static std::unique_ptr<ExprAST> ParseParenExpr() { getNextToken(); // eat (. auto V = ParseExpression(); if (!V) return nullptr; if (CurTok != ')') return ErrorU<ExprAST>("expected ')'"); getNextToken(); // eat ). return V; } /// ifexpr ::= 'if' expression 'then' expression 'else' expression static std::unique_ptr<ExprAST> ParseIfExpr() { getNextToken(); // eat the if. // condition. auto Cond = ParseExpression(); if (!Cond) return nullptr; if (CurTok != tok_then) return ErrorU<ExprAST>("expected then"); getNextToken(); // eat the then auto Then = ParseExpression(); if (!Then) return nullptr; if (CurTok != tok_else) return ErrorU<ExprAST>("expected else"); getNextToken(); auto Else = ParseExpression(); if (!Else) return nullptr; return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then), std::move(Else)); } /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression static std::unique_ptr<ForExprAST> ParseForExpr() { getNextToken(); // eat the for. if (CurTok != tok_identifier) return ErrorU<ForExprAST>("expected identifier after for"); std::string IdName = IdentifierStr; getNextToken(); // eat identifier. if (CurTok != '=') return ErrorU<ForExprAST>("expected '=' after for"); getNextToken(); // eat '='. auto Start = ParseExpression(); if (!Start) return nullptr; if (CurTok != ',') return ErrorU<ForExprAST>("expected ',' after for start value"); getNextToken(); auto End = ParseExpression(); if (!End) return nullptr; // The step value is optional. std::unique_ptr<ExprAST> Step; if (CurTok == ',') { getNextToken(); Step = ParseExpression(); if (!Step) return nullptr; } if (CurTok != tok_in) return ErrorU<ForExprAST>("expected 'in' after for"); getNextToken(); // eat 'in'. auto Body = ParseExpression(); if (Body) return nullptr; return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End), std::move(Step), std::move(Body)); } /// varexpr ::= 'var' identifier ('=' expression)? // (',' identifier ('=' expression)?)* 'in' expression static std::unique_ptr<VarExprAST> ParseVarExpr() { getNextToken(); // eat the var. VarExprAST::BindingList VarBindings; // At least one variable name is required. if (CurTok != tok_identifier) return ErrorU<VarExprAST>("expected identifier after var"); while (1) { std::string Name = IdentifierStr; getNextToken(); // eat identifier. // Read the optional initializer. std::unique_ptr<ExprAST> Init; if (CurTok == '=') { getNextToken(); // eat the '='. Init = ParseExpression(); if (!Init) return nullptr; } VarBindings.push_back(VarExprAST::Binding(Name, std::move(Init))); // End of var list, exit loop. if (CurTok != ',') break; getNextToken(); // eat the ','. if (CurTok != tok_identifier) return ErrorU<VarExprAST>("expected identifier list after var"); } // At this point, we have to have 'in'. if (CurTok != tok_in) return ErrorU<VarExprAST>("expected 'in' keyword after 'var'"); getNextToken(); // eat 'in'. auto Body = ParseExpression(); if (!Body) return nullptr; return llvm::make_unique<VarExprAST>(std::move(VarBindings), std::move(Body)); } /// primary /// ::= identifierexpr /// ::= numberexpr /// ::= parenexpr /// ::= ifexpr /// ::= forexpr /// ::= varexpr static std::unique_ptr<ExprAST> ParsePrimary() { switch (CurTok) { default: return ErrorU<ExprAST>("unknown token when expecting an expression"); case tok_identifier: return ParseIdentifierExpr(); case tok_number: return ParseNumberExpr(); case '(': return ParseParenExpr(); case tok_if: return ParseIfExpr(); case tok_for: return ParseForExpr(); case tok_var: return ParseVarExpr(); } } /// unary /// ::= primary /// ::= '!' unary static std::unique_ptr<ExprAST> ParseUnary() { // If the current token is not an operator, it must be a primary expr. if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') return ParsePrimary(); // If this is a unary operator, read it. int Opc = CurTok; getNextToken(); if (auto Operand = ParseUnary()) return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand)); return nullptr; } /// binoprhs /// ::= ('+' unary)* static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec, std::unique_ptr<ExprAST> LHS) { // If this is a binop, find its precedence. while (1) { int TokPrec = GetTokPrecedence(); // If this is a binop that binds at least as tightly as the current binop, // consume it, otherwise we are done. if (TokPrec < ExprPrec) return LHS; // Okay, we know this is a binop. int BinOp = CurTok; getNextToken(); // eat binop // Parse the unary expression after the binary operator. auto RHS = ParseUnary(); if (!RHS) return nullptr; // If BinOp binds less tightly with RHS than the operator after RHS, let // the pending operator take RHS as its LHS. int NextPrec = GetTokPrecedence(); if (TokPrec < NextPrec) { RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS)); if (!RHS) return nullptr; } // Merge LHS/RHS. LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS)); } } /// expression /// ::= unary binoprhs /// static std::unique_ptr<ExprAST> ParseExpression() { auto LHS = ParseUnary(); if (!LHS) return nullptr; return ParseBinOpRHS(0, std::move(LHS)); } /// prototype /// ::= id '(' id* ')' /// ::= binary LETTER number? (id, id) /// ::= unary LETTER (id) static std::unique_ptr<PrototypeAST> ParsePrototype() { std::string FnName; unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. unsigned BinaryPrecedence = 30; switch (CurTok) { default: return ErrorU<PrototypeAST>("Expected function name in prototype"); case tok_identifier: FnName = IdentifierStr; Kind = 0; getNextToken(); break; case tok_unary: getNextToken(); if (!isascii(CurTok)) return ErrorU<PrototypeAST>("Expected unary operator"); FnName = "unary"; FnName += (char)CurTok; Kind = 1; getNextToken(); break; case tok_binary: getNextToken(); if (!isascii(CurTok)) return ErrorU<PrototypeAST>("Expected binary operator"); FnName = "binary"; FnName += (char)CurTok; Kind = 2; getNextToken(); // Read the precedence if present. if (CurTok == tok_number) { if (NumVal < 1 || NumVal > 100) return ErrorU<PrototypeAST>("Invalid precedecnce: must be 1..100"); BinaryPrecedence = (unsigned)NumVal; getNextToken(); } break; } if (CurTok != '(') return ErrorU<PrototypeAST>("Expected '(' in prototype"); std::vector<std::string> ArgNames; while (getNextToken() == tok_identifier) ArgNames.push_back(IdentifierStr); if (CurTok != ')') return ErrorU<PrototypeAST>("Expected ')' in prototype"); // success. getNextToken(); // eat ')'. // Verify right number of names for operator. if (Kind && ArgNames.size() != Kind) return ErrorU<PrototypeAST>("Invalid number of operands for operator"); return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0, BinaryPrecedence); } /// definition ::= 'def' prototype expression static std::unique_ptr<FunctionAST> ParseDefinition() { getNextToken(); // eat def. auto Proto = ParsePrototype(); if (!Proto) return nullptr; if (auto Body = ParseExpression()) return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(Body)); return nullptr; } /// toplevelexpr ::= expression static std::unique_ptr<FunctionAST> ParseTopLevelExpr() { if (auto E = ParseExpression()) { // Make an anonymous proto. auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr", std::vector<std::string>()); return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E)); } return nullptr; } /// external ::= 'extern' prototype static std::unique_ptr<PrototypeAST> ParseExtern() { getNextToken(); // eat extern. return ParsePrototype(); } //===----------------------------------------------------------------------===// // Code Generation //===----------------------------------------------------------------------===// // FIXME: Obviously we can do better than this std::string GenerateUniqueName(const std::string &Root) { static int i = 0; std::ostringstream NameStream; NameStream << Root << ++i; return NameStream.str(); } std::string MakeLegalFunctionName(std::string Name) { std::string NewName; assert(!Name.empty() && "Base name must not be empty"); // Start with what we have NewName = Name; // Look for a numberic first character if (NewName.find_first_of("0123456789") == 0) { NewName.insert(0, 1, 'n'); } // Replace illegal characters with their ASCII equivalent std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; size_t pos; while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) { std::ostringstream NumStream; NumStream << (int)NewName.at(pos); NewName = NewName.replace(pos, 1, NumStream.str()); } return NewName; } class SessionContext { public: SessionContext(LLVMContext &C) : Context(C), TM(EngineBuilder().selectTarget()) {} LLVMContext& getLLVMContext() const { return Context; } TargetMachine& getTarget() { return *TM; } void addPrototypeAST(std::unique_ptr<PrototypeAST> P); PrototypeAST* getPrototypeAST(const std::string &Name); private: typedef std::map<std::string, std::unique_ptr<PrototypeAST>> PrototypeMap; LLVMContext &Context; std::unique_ptr<TargetMachine> TM; PrototypeMap Prototypes; }; void SessionContext::addPrototypeAST(std::unique_ptr<PrototypeAST> P) { Prototypes[P->Name] = std::move(P); } PrototypeAST* SessionContext::getPrototypeAST(const std::string &Name) { PrototypeMap::iterator I = Prototypes.find(Name); if (I != Prototypes.end()) return I->second.get(); return nullptr; } class IRGenContext { public: IRGenContext(SessionContext &S) : Session(S), M(new Module(GenerateUniqueName("jit_module_"), Session.getLLVMContext())), Builder(Session.getLLVMContext()) { M->setDataLayout(*Session.getTarget().getDataLayout()); } SessionContext& getSession() { return Session; } Module& getM() const { return *M; } std::unique_ptr<Module> takeM() { return std::move(M); } IRBuilder<>& getBuilder() { return Builder; } LLVMContext& getLLVMContext() { return Session.getLLVMContext(); } Function* getPrototype(const std::string &Name); std::map<std::string, AllocaInst*> NamedValues; private: SessionContext &Session; std::unique_ptr<Module> M; IRBuilder<> Builder; }; Function* IRGenContext::getPrototype(const std::string &Name) { if (Function *ExistingProto = M->getFunction(Name)) return ExistingProto; if (PrototypeAST *ProtoAST = Session.getPrototypeAST(Name)) return ProtoAST->IRGen(*this); return nullptr; } /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of /// the function. This is used for mutable variables etc. static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, const std::string &VarName) { IRBuilder<> TmpB(&TheFunction->getEntryBlock(), TheFunction->getEntryBlock().begin()); return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0, VarName.c_str()); } Value *NumberExprAST::IRGen(IRGenContext &C) const { return ConstantFP::get(C.getLLVMContext(), APFloat(Val)); } Value *VariableExprAST::IRGen(IRGenContext &C) const { // Look this variable up in the function. Value *V = C.NamedValues[Name]; if (V == 0) return ErrorP<Value>("Unknown variable name '" + Name + "'"); // Load the value. return C.getBuilder().CreateLoad(V, Name.c_str()); } Value *UnaryExprAST::IRGen(IRGenContext &C) const { if (Value *OperandV = Operand->IRGen(C)) { std::string FnName = MakeLegalFunctionName(std::string("unary")+Opcode); if (Function *F = C.getPrototype(FnName)) return C.getBuilder().CreateCall(F, OperandV, "unop"); return ErrorP<Value>("Unknown unary operator"); } // Could not codegen operand - return null. return nullptr; } Value *BinaryExprAST::IRGen(IRGenContext &C) const { // Special case '=' because we don't want to emit the LHS as an expression. if (Op == '=') { // Assignment requires the LHS to be an identifier. auto LHSVar = static_cast<VariableExprAST&>(*LHS); // Codegen the RHS. Value *Val = RHS->IRGen(C); if (!Val) return nullptr; // Look up the name. if (auto Variable = C.NamedValues[LHSVar.Name]) { C.getBuilder().CreateStore(Val, Variable); return Val; } return ErrorP<Value>("Unknown variable name"); } Value *L = LHS->IRGen(C); Value *R = RHS->IRGen(C); if (!L || !R) return nullptr; switch (Op) { case '+': return C.getBuilder().CreateFAdd(L, R, "addtmp"); case '-': return C.getBuilder().CreateFSub(L, R, "subtmp"); case '*': return C.getBuilder().CreateFMul(L, R, "multmp"); case '/': return C.getBuilder().CreateFDiv(L, R, "divtmp"); case '<': L = C.getBuilder().CreateFCmpULT(L, R, "cmptmp"); // Convert bool 0/1 to double 0.0 or 1.0 return C.getBuilder().CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), "booltmp"); default: break; } // If it wasn't a builtin binary operator, it must be a user defined one. Emit // a call to it. std::string FnName = MakeLegalFunctionName(std::string("binary")+Op); if (Function *F = C.getPrototype(FnName)) { Value *Ops[] = { L, R }; return C.getBuilder().CreateCall(F, Ops, "binop"); } return ErrorP<Value>("Unknown binary operator"); } Value *CallExprAST::IRGen(IRGenContext &C) const { // Look up the name in the global module table. if (auto CalleeF = C.getPrototype(CalleeName)) { // If argument mismatch error. if (CalleeF->arg_size() != Args.size()) return ErrorP<Value>("Incorrect # arguments passed"); std::vector<Value*> ArgsV; for (unsigned i = 0, e = Args.size(); i != e; ++i) { ArgsV.push_back(Args[i]->IRGen(C)); if (!ArgsV.back()) return nullptr; } return C.getBuilder().CreateCall(CalleeF, ArgsV, "calltmp"); } return ErrorP<Value>("Unknown function referenced"); } Value *IfExprAST::IRGen(IRGenContext &C) const { Value *CondV = Cond->IRGen(C); if (!CondV) return nullptr; // Convert condition to a bool by comparing equal to 0.0. ConstantFP *FPZero = ConstantFP::get(C.getLLVMContext(), APFloat(0.0)); CondV = C.getBuilder().CreateFCmpONE(CondV, FPZero, "ifcond"); Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent(); // Create blocks for the then and else cases. Insert the 'then' block at the // end of the function. BasicBlock *ThenBB = BasicBlock::Create(C.getLLVMContext(), "then", TheFunction); BasicBlock *ElseBB = BasicBlock::Create(C.getLLVMContext(), "else"); BasicBlock *MergeBB = BasicBlock::Create(C.getLLVMContext(), "ifcont"); C.getBuilder().CreateCondBr(CondV, ThenBB, ElseBB); // Emit then value. C.getBuilder().SetInsertPoint(ThenBB); Value *ThenV = Then->IRGen(C); if (!ThenV) return nullptr; C.getBuilder().CreateBr(MergeBB); // Codegen of 'Then' can change the current block, update ThenBB for the PHI. ThenBB = C.getBuilder().GetInsertBlock(); // Emit else block. TheFunction->getBasicBlockList().push_back(ElseBB); C.getBuilder().SetInsertPoint(ElseBB); Value *ElseV = Else->IRGen(C); if (!ElseV) return nullptr; C.getBuilder().CreateBr(MergeBB); // Codegen of 'Else' can change the current block, update ElseBB for the PHI. ElseBB = C.getBuilder().GetInsertBlock(); // Emit merge block. TheFunction->getBasicBlockList().push_back(MergeBB); C.getBuilder().SetInsertPoint(MergeBB); PHINode *PN = C.getBuilder().CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, "iftmp"); PN->addIncoming(ThenV, ThenBB); PN->addIncoming(ElseV, ElseBB); return PN; } Value *ForExprAST::IRGen(IRGenContext &C) const { // Output this as: // var = alloca double // ... // start = startexpr // store start -> var // goto loop // loop: // ... // bodyexpr // ... // loopend: // step = stepexpr // endcond = endexpr // // curvar = load var // nextvar = curvar + step // store nextvar -> var // br endcond, loop, endloop // outloop: Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent(); // Create an alloca for the variable in the entry block. AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); // Emit the start code first, without 'variable' in scope. Value *StartVal = Start->IRGen(C); if (!StartVal) return nullptr; // Store the value into the alloca. C.getBuilder().CreateStore(StartVal, Alloca); // Make the new basic block for the loop header, inserting after current // block. BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction); // Insert an explicit fall through from the current block to the LoopBB. C.getBuilder().CreateBr(LoopBB); // Start insertion in LoopBB. C.getBuilder().SetInsertPoint(LoopBB); // Within the loop, the variable is defined equal to the PHI node. If it // shadows an existing variable, we have to restore it, so save it now. AllocaInst *OldVal = C.NamedValues[VarName]; C.NamedValues[VarName] = Alloca; // Emit the body of the loop. This, like any other expr, can change the // current BB. Note that we ignore the value computed by the body, but don't // allow an error. if (!Body->IRGen(C)) return nullptr; // Emit the step value. Value *StepVal; if (Step) { StepVal = Step->IRGen(C); if (!StepVal) return nullptr; } else { // If not specified, use 1.0. StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); } // Compute the end condition. Value *EndCond = End->IRGen(C); if (EndCond == 0) return EndCond; // Reload, increment, and restore the alloca. This handles the case where // the body of the loop mutates the variable. Value *CurVar = C.getBuilder().CreateLoad(Alloca, VarName.c_str()); Value *NextVar = C.getBuilder().CreateFAdd(CurVar, StepVal, "nextvar"); C.getBuilder().CreateStore(NextVar, Alloca); // Convert condition to a bool by comparing equal to 0.0. EndCond = C.getBuilder().CreateFCmpONE(EndCond, ConstantFP::get(getGlobalContext(), APFloat(0.0)), "loopcond"); // Create the "after loop" block and insert it. BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); // Insert the conditional branch into the end of LoopEndBB. C.getBuilder().CreateCondBr(EndCond, LoopBB, AfterBB); // Any new code will be inserted in AfterBB. C.getBuilder().SetInsertPoint(AfterBB); // Restore the unshadowed variable. if (OldVal) C.NamedValues[VarName] = OldVal; else C.NamedValues.erase(VarName); // for expr always returns 0.0. return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); } Value *VarExprAST::IRGen(IRGenContext &C) const { std::vector<AllocaInst *> OldBindings; Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent(); // Register all variables and emit their initializer. for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) { auto &VarName = VarBindings[i].first; auto &Init = VarBindings[i].second; // Emit the initializer before adding the variable to scope, this prevents // the initializer from referencing the variable itself, and permits stuff // like this: // var a = 1 in // var a = a in ... # refers to outer 'a'. Value *InitVal; if (Init) { InitVal = Init->IRGen(C); if (!InitVal) return nullptr; } else // If not specified, use 0.0. InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0)); AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); C.getBuilder().CreateStore(InitVal, Alloca); // Remember the old variable binding so that we can restore the binding when // we unrecurse. OldBindings.push_back(C.NamedValues[VarName]); // Remember this binding. C.NamedValues[VarName] = Alloca; } // Codegen the body, now that all vars are in scope. Value *BodyVal = Body->IRGen(C); if (!BodyVal) return nullptr; // Pop all our variables from scope. for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) C.NamedValues[VarBindings[i].first] = OldBindings[i]; // Return the body computation. return BodyVal; } Function *PrototypeAST::IRGen(IRGenContext &C) const { std::string FnName = MakeLegalFunctionName(Name); // Make the function type: double(double,double) etc. std::vector<Type*> Doubles(Args.size(), Type::getDoubleTy(getGlobalContext())); FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), Doubles, false); Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, &C.getM()); // If F conflicted, there was already something named 'FnName'. If it has a // body, don't allow redefinition or reextern. if (F->getName() != FnName) { // Delete the one we just made and get the existing one. F->eraseFromParent(); F = C.getM().getFunction(Name); // If F already has a body, reject this. if (!F->empty()) { ErrorP<Function>("redefinition of function"); return nullptr; } // If F took a different number of args, reject. if (F->arg_size() != Args.size()) { ErrorP<Function>("redefinition of function with different # args"); return nullptr; } } // Set names for all arguments. unsigned Idx = 0; for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); ++AI, ++Idx) AI->setName(Args[Idx]); return F; } /// CreateArgumentAllocas - Create an alloca for each argument and register the /// argument in the symbol table so that references to it will succeed. void PrototypeAST::CreateArgumentAllocas(Function *F, IRGenContext &C) { Function::arg_iterator AI = F->arg_begin(); for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { // Create an alloca for this variable. AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); // Store the initial value into the alloca. C.getBuilder().CreateStore(AI, Alloca); // Add arguments to variable symbol table. C.NamedValues[Args[Idx]] = Alloca; } } Function *FunctionAST::IRGen(IRGenContext &C) const { C.NamedValues.clear(); Function *TheFunction = Proto->IRGen(C); if (!TheFunction) return nullptr; // If this is an operator, install it. if (Proto->isBinaryOp()) BinopPrecedence[Proto->getOperatorName()] = Proto->Precedence; // Create a new basic block to start insertion into. BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); C.getBuilder().SetInsertPoint(BB); // Add all arguments to the symbol table and create their allocas. Proto->CreateArgumentAllocas(TheFunction, C); if (Value *RetVal = Body->IRGen(C)) { // Finish off the function. C.getBuilder().CreateRet(RetVal); // Validate the generated code, checking for consistency. verifyFunction(*TheFunction); return TheFunction; } // Error reading body, remove function. TheFunction->eraseFromParent(); if (Proto->isBinaryOp()) BinopPrecedence.erase(Proto->getOperatorName()); return nullptr; } //===----------------------------------------------------------------------===// // Top-Level parsing and JIT Driver //===----------------------------------------------------------------------===// static std::unique_ptr<llvm::Module> IRGen(SessionContext &S, const FunctionAST &F) { IRGenContext C(S); auto LF = F.IRGen(C); if (!LF) return nullptr; #ifndef MINIMAL_STDERR_OUTPUT fprintf(stderr, "Read function definition:"); LF->dump(); #endif return C.takeM(); } template <typename T> static std::vector<T> singletonSet(T t) { std::vector<T> Vec; Vec.push_back(std::move(t)); return Vec; } static void EarthShatteringKaboom() { fprintf(stderr, "Earth shattering kaboom."); exit(1); } class KaleidoscopeJIT { public: typedef ObjectLinkingLayer<> ObjLayerT; typedef IRCompileLayer<ObjLayerT> CompileLayerT; typedef LazyEmittingLayer<CompileLayerT> LazyEmitLayerT; typedef LazyEmitLayerT::ModuleSetHandleT ModuleHandleT; KaleidoscopeJIT(SessionContext &Session) : Session(Session), Mang(Session.getTarget().getDataLayout()), CompileLayer(ObjectLayer, SimpleCompiler(Session.getTarget())), LazyEmitLayer(CompileLayer), CompileCallbacks(LazyEmitLayer, CCMgrMemMgr, Session.getLLVMContext(), reinterpret_cast<uintptr_t>(EarthShatteringKaboom), 64) {} std::string mangle(const std::string &Name) { std::string MangledName; { raw_string_ostream MangledNameStream(MangledName); Mang.getNameWithPrefix(MangledNameStream, Name); } return MangledName; } void addFunctionAST(std::unique_ptr<FunctionAST> FnAST) { std::cerr << "Adding AST: " << FnAST->Proto->Name << "\n"; FunctionDefs[mangle(FnAST->Proto->Name)] = std::move(FnAST); } ModuleHandleT addModule(std::unique_ptr<Module> M) { // We need a memory manager to allocate memory and resolve symbols for this // new module. Create one that resolves symbols by looking back into the // JIT. auto Resolver = createLambdaResolver( [&](const std::string &Name) { // First try to find 'Name' within the JIT. if (auto Symbol = findSymbol(Name)) return RuntimeDyld::SymbolInfo(Symbol.getAddress(), Symbol.getFlags()); // If we don't already have a definition of 'Name' then search // the ASTs. return searchFunctionASTs(Name); }, [](const std::string &S) { return nullptr; } ); return LazyEmitLayer.addModuleSet(singletonSet(std::move(M)), make_unique<SectionMemoryManager>(), std::move(Resolver)); } void removeModule(ModuleHandleT H) { LazyEmitLayer.removeModuleSet(H); } JITSymbol findSymbol(const std::string &Name) { return LazyEmitLayer.findSymbol(Name, true); } JITSymbol findSymbolIn(ModuleHandleT H, const std::string &Name) { return LazyEmitLayer.findSymbolIn(H, Name, true); } JITSymbol findUnmangledSymbol(const std::string &Name) { return findSymbol(mangle(Name)); } JITSymbol findUnmangledSymbolIn(ModuleHandleT H, const std::string &Name) { return findSymbolIn(H, mangle(Name)); } private: // This method searches the FunctionDefs map for a definition of 'Name'. If it // finds one it generates a stub for it and returns the address of the stub. RuntimeDyld::SymbolInfo searchFunctionASTs(const std::string &Name) { auto DefI = FunctionDefs.find(Name); if (DefI == FunctionDefs.end()) return 0; // Return the address of the stub. // Take the FunctionAST out of the map. auto FnAST = std::move(DefI->second); FunctionDefs.erase(DefI); // IRGen the AST, add it to the JIT, and return the address for it. auto H = irGenStub(std::move(FnAST)); auto Sym = findSymbolIn(H, Name); return RuntimeDyld::SymbolInfo(Sym.getAddress(), Sym.getFlags()); } // This method will take the AST for a function definition and IR-gen a stub // for that function that will, on first call, IR-gen the actual body of the // function. ModuleHandleT irGenStub(std::unique_ptr<FunctionAST> FnAST) { // Step 1) IRGen a prototype for the stub. This will have the same type as // the function. IRGenContext C(Session); Function *F = FnAST->Proto->IRGen(C); // Step 2) Get a compile callback that can be used to compile the body of // the function. The resulting CallbackInfo type will let us set the // compile and update actions for the callback, and get a pointer to // the jit trampoline that we need to call to trigger those actions. auto CallbackInfo = CompileCallbacks.getCompileCallback(F->getContext()); // Step 3) Create a stub that will indirectly call the body of this // function once it is compiled. Initially, set the function // pointer for the indirection to point at the trampoline. std::string BodyPtrName = (F->getName() + "$address").str(); GlobalVariable *FunctionBodyPointer = createImplPointer(*F->getType(), *F->getParent(), BodyPtrName, createIRTypedAddress(*F->getFunctionType(), CallbackInfo.getAddress())); makeStub(*F, *FunctionBodyPointer); // Step 4) Add the module containing the stub to the JIT. auto H = addModule(C.takeM()); // Step 5) Set the compile and update actions. // // The compile action will IRGen the function and add it to the JIT, then // request its address, which will trigger codegen. Since we don't need the // AST after this, we pass ownership of the AST into the compile action: // compile actions (and update actions) are deleted after they're run, so // this will free the AST for us. // // The update action will update FunctionBodyPointer to point at the newly // compiled function. std::shared_ptr<FunctionAST> Fn = std::move(FnAST); CallbackInfo.setCompileAction([this, Fn]() { auto H = addModule(IRGen(Session, *Fn)); return findUnmangledSymbolIn(H, Fn->Proto->Name).getAddress(); }); CallbackInfo.setUpdateAction( getLocalFPUpdater(LazyEmitLayer, H, mangle(BodyPtrName))); return H; } SessionContext &Session; Mangler Mang; SectionMemoryManager CCMgrMemMgr; ObjLayerT ObjectLayer; CompileLayerT CompileLayer; LazyEmitLayerT LazyEmitLayer; std::map<std::string, std::unique_ptr<FunctionAST>> FunctionDefs; JITCompileCallbackManager<LazyEmitLayerT, OrcX86_64> CompileCallbacks; }; static void HandleDefinition(SessionContext &S, KaleidoscopeJIT &J) { if (auto F = ParseDefinition()) { S.addPrototypeAST(llvm::make_unique<PrototypeAST>(*F->Proto)); J.addFunctionAST(std::move(F)); } else { // Skip token for error recovery. getNextToken(); } } static void HandleExtern(SessionContext &S) { if (auto P = ParseExtern()) S.addPrototypeAST(std::move(P)); else { // Skip token for error recovery. getNextToken(); } } static void HandleTopLevelExpression(SessionContext &S, KaleidoscopeJIT &J) { // Evaluate a top-level expression into an anonymous function. if (auto F = ParseTopLevelExpr()) { IRGenContext C(S); if (auto ExprFunc = F->IRGen(C)) { #ifndef MINIMAL_STDERR_OUTPUT std::cerr << "Expression function:\n"; ExprFunc->dump(); #endif // Add the CodeGen'd module to the JIT. Keep a handle to it: We can remove // this module as soon as we've executed Function ExprFunc. auto H = J.addModule(C.takeM()); // Get the address of the JIT'd function in memory. auto ExprSymbol = J.findUnmangledSymbol("__anon_expr"); // Cast it to the right type (takes no arguments, returns a double) so we // can call it as a native function. double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress(); #ifdef MINIMAL_STDERR_OUTPUT FP(); #else std::cerr << "Evaluated to " << FP() << "\n"; #endif // Remove the function. J.removeModule(H); } } else { // Skip token for error recovery. getNextToken(); } } /// top ::= definition | external | expression | ';' static void MainLoop() { SessionContext S(getGlobalContext()); KaleidoscopeJIT J(S); while (1) { switch (CurTok) { case tok_eof: return; case ';': getNextToken(); continue; // ignore top-level semicolons. case tok_def: HandleDefinition(S, J); break; case tok_extern: HandleExtern(S); break; default: HandleTopLevelExpression(S, J); break; } #ifndef MINIMAL_STDERR_OUTPUT std::cerr << "ready> "; #endif } } //===----------------------------------------------------------------------===// // "Library" functions that can be "extern'd" from user code. //===----------------------------------------------------------------------===// /// putchard - putchar that takes a double and returns 0. extern "C" double putchard(double X) { putchar((char)X); return 0; } /// printd - printf that takes a double prints it as "%f\n", returning 0. extern "C" double printd(double X) { printf("%f", X); return 0; } extern "C" double printlf() { printf("\n"); return 0; } //===----------------------------------------------------------------------===// // Main driver code. //===----------------------------------------------------------------------===// int main() { InitializeNativeTarget(); InitializeNativeTargetAsmPrinter(); InitializeNativeTargetAsmParser(); // Install standard binary operators. // 1 is lowest precedence. BinopPrecedence['='] = 2; BinopPrecedence['<'] = 10; BinopPrecedence['+'] = 20; BinopPrecedence['-'] = 20; BinopPrecedence['/'] = 40; BinopPrecedence['*'] = 40; // highest. // Prime the first token. #ifndef MINIMAL_STDERR_OUTPUT std::cerr << "ready> "; #endif getNextToken(); std::cerr << std::fixed; // Run the main "interpreter loop" now. MainLoop(); return 0; }