#include <linux/kernel.h> #include <traceevent/event-parse.h> #include <byteswap.h> #include <unistd.h> #include <sys/types.h> #include <sys/mman.h> #include "evlist.h" #include "evsel.h" #include "session.h" #include "tool.h" #include "sort.h" #include "util.h" #include "cpumap.h" #include "perf_regs.h" #include "vdso.h" static int perf_session__open(struct perf_session *self, bool force) { struct stat input_stat; if (!strcmp(self->filename, "-")) { self->fd_pipe = true; self->fd = STDIN_FILENO; if (perf_session__read_header(self) < 0) pr_err("incompatible file format (rerun with -v to learn more)"); return 0; } self->fd = open(self->filename, O_RDONLY); if (self->fd < 0) { int err = errno; pr_err("failed to open %s: %s", self->filename, strerror(err)); if (err == ENOENT && !strcmp(self->filename, "perf.data")) pr_err(" (try 'perf record' first)"); pr_err("\n"); return -errno; } if (fstat(self->fd, &input_stat) < 0) goto out_close; if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) { pr_err("file %s not owned by current user or root\n", self->filename); goto out_close; } if (!input_stat.st_size) { pr_info("zero-sized file (%s), nothing to do!\n", self->filename); goto out_close; } if (perf_session__read_header(self) < 0) { pr_err("incompatible file format (rerun with -v to learn more)"); goto out_close; } if (!perf_evlist__valid_sample_type(self->evlist)) { pr_err("non matching sample_type"); goto out_close; } if (!perf_evlist__valid_sample_id_all(self->evlist)) { pr_err("non matching sample_id_all"); goto out_close; } if (!perf_evlist__valid_read_format(self->evlist)) { pr_err("non matching read_format"); goto out_close; } self->size = input_stat.st_size; return 0; out_close: close(self->fd); self->fd = -1; return -1; } void perf_session__set_id_hdr_size(struct perf_session *session) { u16 id_hdr_size = perf_evlist__id_hdr_size(session->evlist); machines__set_id_hdr_size(&session->machines, id_hdr_size); } int perf_session__create_kernel_maps(struct perf_session *self) { int ret = machine__create_kernel_maps(&self->machines.host); if (ret >= 0) ret = machines__create_guest_kernel_maps(&self->machines); return ret; } static void perf_session__destroy_kernel_maps(struct perf_session *self) { machines__destroy_kernel_maps(&self->machines); } struct perf_session *perf_session__new(const char *filename, int mode, bool force, bool repipe, struct perf_tool *tool) { struct perf_session *self; struct stat st; size_t len; if (!filename || !strlen(filename)) { if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode)) filename = "-"; else filename = "perf.data"; } len = strlen(filename); self = zalloc(sizeof(*self) + len); if (self == NULL) goto out; memcpy(self->filename, filename, len); self->repipe = repipe; INIT_LIST_HEAD(&self->ordered_samples.samples); INIT_LIST_HEAD(&self->ordered_samples.sample_cache); INIT_LIST_HEAD(&self->ordered_samples.to_free); machines__init(&self->machines); if (mode == O_RDONLY) { if (perf_session__open(self, force) < 0) goto out_delete; perf_session__set_id_hdr_size(self); } else if (mode == O_WRONLY) { /* * In O_RDONLY mode this will be performed when reading the * kernel MMAP event, in perf_event__process_mmap(). */ if (perf_session__create_kernel_maps(self) < 0) goto out_delete; } if (tool && tool->ordering_requires_timestamps && tool->ordered_samples && !perf_evlist__sample_id_all(self->evlist)) { dump_printf("WARNING: No sample_id_all support, falling back to unordered processing\n"); tool->ordered_samples = false; } out: return self; out_delete: perf_session__delete(self); return NULL; } static void perf_session__delete_dead_threads(struct perf_session *session) { machine__delete_dead_threads(&session->machines.host); } static void perf_session__delete_threads(struct perf_session *session) { machine__delete_threads(&session->machines.host); } static void perf_session_env__delete(struct perf_session_env *env) { free(env->hostname); free(env->os_release); free(env->version); free(env->arch); free(env->cpu_desc); free(env->cpuid); free(env->cmdline); free(env->sibling_cores); free(env->sibling_threads); free(env->numa_nodes); free(env->pmu_mappings); } void perf_session__delete(struct perf_session *self) { perf_session__destroy_kernel_maps(self); perf_session__delete_dead_threads(self); perf_session__delete_threads(self); perf_session_env__delete(&self->header.env); machines__exit(&self->machines); close(self->fd); free(self); vdso__exit(); } static int process_event_synth_tracing_data_stub(struct perf_tool *tool __maybe_unused, union perf_event *event __maybe_unused, struct perf_session *session __maybe_unused) { dump_printf(": unhandled!\n"); return 0; } static int process_event_synth_attr_stub(struct perf_tool *tool __maybe_unused, union perf_event *event __maybe_unused, struct perf_evlist **pevlist __maybe_unused) { dump_printf(": unhandled!\n"); return 0; } static int process_event_sample_stub(struct perf_tool *tool __maybe_unused, union perf_event *event __maybe_unused, struct perf_sample *sample __maybe_unused, struct perf_evsel *evsel __maybe_unused, struct machine *machine __maybe_unused) { dump_printf(": unhandled!\n"); return 0; } static int process_event_stub(struct perf_tool *tool __maybe_unused, union perf_event *event __maybe_unused, struct perf_sample *sample __maybe_unused, struct machine *machine __maybe_unused) { dump_printf(": unhandled!\n"); return 0; } static int process_finished_round_stub(struct perf_tool *tool __maybe_unused, union perf_event *event __maybe_unused, struct perf_session *perf_session __maybe_unused) { dump_printf(": unhandled!\n"); return 0; } static int process_finished_round(struct perf_tool *tool, union perf_event *event, struct perf_session *session); void perf_tool__fill_defaults(struct perf_tool *tool) { if (tool->sample == NULL) tool->sample = process_event_sample_stub; if (tool->mmap == NULL) tool->mmap = process_event_stub; if (tool->mmap2 == NULL) tool->mmap2 = process_event_stub; if (tool->comm == NULL) tool->comm = process_event_stub; if (tool->fork == NULL) tool->fork = process_event_stub; if (tool->exit == NULL) tool->exit = process_event_stub; if (tool->lost == NULL) tool->lost = perf_event__process_lost; if (tool->read == NULL) tool->read = process_event_sample_stub; if (tool->throttle == NULL) tool->throttle = process_event_stub; if (tool->unthrottle == NULL) tool->unthrottle = process_event_stub; if (tool->attr == NULL) tool->attr = process_event_synth_attr_stub; if (tool->tracing_data == NULL) tool->tracing_data = process_event_synth_tracing_data_stub; if (tool->build_id == NULL) tool->build_id = process_finished_round_stub; if (tool->finished_round == NULL) { if (tool->ordered_samples) tool->finished_round = process_finished_round; else tool->finished_round = process_finished_round_stub; } } void mem_bswap_32(void *src, int byte_size) { u32 *m = src; while (byte_size > 0) { *m = bswap_32(*m); byte_size -= sizeof(u32); ++m; } } void mem_bswap_64(void *src, int byte_size) { u64 *m = src; while (byte_size > 0) { *m = bswap_64(*m); byte_size -= sizeof(u64); ++m; } } static void swap_sample_id_all(union perf_event *event, void *data) { void *end = (void *) event + event->header.size; int size = end - data; BUG_ON(size % sizeof(u64)); mem_bswap_64(data, size); } static void perf_event__all64_swap(union perf_event *event, bool sample_id_all __maybe_unused) { struct perf_event_header *hdr = &event->header; mem_bswap_64(hdr + 1, event->header.size - sizeof(*hdr)); } static void perf_event__comm_swap(union perf_event *event, bool sample_id_all) { event->comm.pid = bswap_32(event->comm.pid); event->comm.tid = bswap_32(event->comm.tid); if (sample_id_all) { void *data = &event->comm.comm; data += PERF_ALIGN(strlen(data) + 1, sizeof(u64)); swap_sample_id_all(event, data); } } static void perf_event__mmap_swap(union perf_event *event, bool sample_id_all) { event->mmap.pid = bswap_32(event->mmap.pid); event->mmap.tid = bswap_32(event->mmap.tid); event->mmap.start = bswap_64(event->mmap.start); event->mmap.len = bswap_64(event->mmap.len); event->mmap.pgoff = bswap_64(event->mmap.pgoff); if (sample_id_all) { void *data = &event->mmap.filename; data += PERF_ALIGN(strlen(data) + 1, sizeof(u64)); swap_sample_id_all(event, data); } } static void perf_event__mmap2_swap(union perf_event *event, bool sample_id_all) { event->mmap2.pid = bswap_32(event->mmap2.pid); event->mmap2.tid = bswap_32(event->mmap2.tid); event->mmap2.start = bswap_64(event->mmap2.start); event->mmap2.len = bswap_64(event->mmap2.len); event->mmap2.pgoff = bswap_64(event->mmap2.pgoff); event->mmap2.maj = bswap_32(event->mmap2.maj); event->mmap2.min = bswap_32(event->mmap2.min); event->mmap2.ino = bswap_64(event->mmap2.ino); if (sample_id_all) { void *data = &event->mmap2.filename; data += PERF_ALIGN(strlen(data) + 1, sizeof(u64)); swap_sample_id_all(event, data); } } static void perf_event__task_swap(union perf_event *event, bool sample_id_all) { event->fork.pid = bswap_32(event->fork.pid); event->fork.tid = bswap_32(event->fork.tid); event->fork.ppid = bswap_32(event->fork.ppid); event->fork.ptid = bswap_32(event->fork.ptid); event->fork.time = bswap_64(event->fork.time); if (sample_id_all) swap_sample_id_all(event, &event->fork + 1); } static void perf_event__read_swap(union perf_event *event, bool sample_id_all) { event->read.pid = bswap_32(event->read.pid); event->read.tid = bswap_32(event->read.tid); event->read.value = bswap_64(event->read.value); event->read.time_enabled = bswap_64(event->read.time_enabled); event->read.time_running = bswap_64(event->read.time_running); event->read.id = bswap_64(event->read.id); if (sample_id_all) swap_sample_id_all(event, &event->read + 1); } static u8 revbyte(u8 b) { int rev = (b >> 4) | ((b & 0xf) << 4); rev = ((rev & 0xcc) >> 2) | ((rev & 0x33) << 2); rev = ((rev & 0xaa) >> 1) | ((rev & 0x55) << 1); return (u8) rev; } /* * XXX this is hack in attempt to carry flags bitfield * throught endian village. ABI says: * * Bit-fields are allocated from right to left (least to most significant) * on little-endian implementations and from left to right (most to least * significant) on big-endian implementations. * * The above seems to be byte specific, so we need to reverse each * byte of the bitfield. 'Internet' also says this might be implementation * specific and we probably need proper fix and carry perf_event_attr * bitfield flags in separate data file FEAT_ section. Thought this seems * to work for now. */ static void swap_bitfield(u8 *p, unsigned len) { unsigned i; for (i = 0; i < len; i++) { *p = revbyte(*p); p++; } } /* exported for swapping attributes in file header */ void perf_event__attr_swap(struct perf_event_attr *attr) { attr->type = bswap_32(attr->type); attr->size = bswap_32(attr->size); attr->config = bswap_64(attr->config); attr->sample_period = bswap_64(attr->sample_period); attr->sample_type = bswap_64(attr->sample_type); attr->read_format = bswap_64(attr->read_format); attr->wakeup_events = bswap_32(attr->wakeup_events); attr->bp_type = bswap_32(attr->bp_type); attr->bp_addr = bswap_64(attr->bp_addr); attr->bp_len = bswap_64(attr->bp_len); swap_bitfield((u8 *) (&attr->read_format + 1), sizeof(u64)); } static void perf_event__hdr_attr_swap(union perf_event *event, bool sample_id_all __maybe_unused) { size_t size; perf_event__attr_swap(&event->attr.attr); size = event->header.size; size -= (void *)&event->attr.id - (void *)event; mem_bswap_64(event->attr.id, size); } static void perf_event__event_type_swap(union perf_event *event, bool sample_id_all __maybe_unused) { event->event_type.event_type.event_id = bswap_64(event->event_type.event_type.event_id); } static void perf_event__tracing_data_swap(union perf_event *event, bool sample_id_all __maybe_unused) { event->tracing_data.size = bswap_32(event->tracing_data.size); } typedef void (*perf_event__swap_op)(union perf_event *event, bool sample_id_all); static perf_event__swap_op perf_event__swap_ops[] = { [PERF_RECORD_MMAP] = perf_event__mmap_swap, [PERF_RECORD_MMAP2] = perf_event__mmap2_swap, [PERF_RECORD_COMM] = perf_event__comm_swap, [PERF_RECORD_FORK] = perf_event__task_swap, [PERF_RECORD_EXIT] = perf_event__task_swap, [PERF_RECORD_LOST] = perf_event__all64_swap, [PERF_RECORD_READ] = perf_event__read_swap, [PERF_RECORD_SAMPLE] = perf_event__all64_swap, [PERF_RECORD_HEADER_ATTR] = perf_event__hdr_attr_swap, [PERF_RECORD_HEADER_EVENT_TYPE] = perf_event__event_type_swap, [PERF_RECORD_HEADER_TRACING_DATA] = perf_event__tracing_data_swap, [PERF_RECORD_HEADER_BUILD_ID] = NULL, [PERF_RECORD_HEADER_MAX] = NULL, }; struct sample_queue { u64 timestamp; u64 file_offset; union perf_event *event; struct list_head list; }; static void perf_session_free_sample_buffers(struct perf_session *session) { struct ordered_samples *os = &session->ordered_samples; while (!list_empty(&os->to_free)) { struct sample_queue *sq; sq = list_entry(os->to_free.next, struct sample_queue, list); list_del(&sq->list); free(sq); } } static int perf_session_deliver_event(struct perf_session *session, union perf_event *event, struct perf_sample *sample, struct perf_tool *tool, u64 file_offset); static int flush_sample_queue(struct perf_session *s, struct perf_tool *tool) { struct ordered_samples *os = &s->ordered_samples; struct list_head *head = &os->samples; struct sample_queue *tmp, *iter; struct perf_sample sample; u64 limit = os->next_flush; u64 last_ts = os->last_sample ? os->last_sample->timestamp : 0ULL; unsigned idx = 0, progress_next = os->nr_samples / 16; bool show_progress = limit == ULLONG_MAX; int ret; if (!tool->ordered_samples || !limit) return 0; list_for_each_entry_safe(iter, tmp, head, list) { if (session_done()) return 0; if (iter->timestamp > limit) break; ret = perf_evlist__parse_sample(s->evlist, iter->event, &sample); if (ret) pr_err("Can't parse sample, err = %d\n", ret); else { ret = perf_session_deliver_event(s, iter->event, &sample, tool, iter->file_offset); if (ret) return ret; } os->last_flush = iter->timestamp; list_del(&iter->list); list_add(&iter->list, &os->sample_cache); if (show_progress && (++idx >= progress_next)) { progress_next += os->nr_samples / 16; ui_progress__update(idx, os->nr_samples, "Processing time ordered events..."); } } if (list_empty(head)) { os->last_sample = NULL; } else if (last_ts <= limit) { os->last_sample = list_entry(head->prev, struct sample_queue, list); } os->nr_samples = 0; return 0; } /* * When perf record finishes a pass on every buffers, it records this pseudo * event. * We record the max timestamp t found in the pass n. * Assuming these timestamps are monotonic across cpus, we know that if * a buffer still has events with timestamps below t, they will be all * available and then read in the pass n + 1. * Hence when we start to read the pass n + 2, we can safely flush every * events with timestamps below t. * * ============ PASS n ================= * CPU 0 | CPU 1 * | * cnt1 timestamps | cnt2 timestamps * 1 | 2 * 2 | 3 * - | 4 <--- max recorded * * ============ PASS n + 1 ============== * CPU 0 | CPU 1 * | * cnt1 timestamps | cnt2 timestamps * 3 | 5 * 4 | 6 * 5 | 7 <---- max recorded * * Flush every events below timestamp 4 * * ============ PASS n + 2 ============== * CPU 0 | CPU 1 * | * cnt1 timestamps | cnt2 timestamps * 6 | 8 * 7 | 9 * - | 10 * * Flush every events below timestamp 7 * etc... */ static int process_finished_round(struct perf_tool *tool, union perf_event *event __maybe_unused, struct perf_session *session) { int ret = flush_sample_queue(session, tool); if (!ret) session->ordered_samples.next_flush = session->ordered_samples.max_timestamp; return ret; } /* The queue is ordered by time */ static void __queue_event(struct sample_queue *new, struct perf_session *s) { struct ordered_samples *os = &s->ordered_samples; struct sample_queue *sample = os->last_sample; u64 timestamp = new->timestamp; struct list_head *p; ++os->nr_samples; os->last_sample = new; if (!sample) { list_add(&new->list, &os->samples); os->max_timestamp = timestamp; return; } /* * last_sample might point to some random place in the list as it's * the last queued event. We expect that the new event is close to * this. */ if (sample->timestamp <= timestamp) { while (sample->timestamp <= timestamp) { p = sample->list.next; if (p == &os->samples) { list_add_tail(&new->list, &os->samples); os->max_timestamp = timestamp; return; } sample = list_entry(p, struct sample_queue, list); } list_add_tail(&new->list, &sample->list); } else { while (sample->timestamp > timestamp) { p = sample->list.prev; if (p == &os->samples) { list_add(&new->list, &os->samples); return; } sample = list_entry(p, struct sample_queue, list); } list_add(&new->list, &sample->list); } } #define MAX_SAMPLE_BUFFER (64 * 1024 / sizeof(struct sample_queue)) int perf_session_queue_event(struct perf_session *s, union perf_event *event, struct perf_sample *sample, u64 file_offset) { struct ordered_samples *os = &s->ordered_samples; struct list_head *sc = &os->sample_cache; u64 timestamp = sample->time; struct sample_queue *new; if (!timestamp || timestamp == ~0ULL) return -ETIME; if (timestamp < s->ordered_samples.last_flush) { printf("Warning: Timestamp below last timeslice flush\n"); return -EINVAL; } if (!list_empty(sc)) { new = list_entry(sc->next, struct sample_queue, list); list_del(&new->list); } else if (os->sample_buffer) { new = os->sample_buffer + os->sample_buffer_idx; if (++os->sample_buffer_idx == MAX_SAMPLE_BUFFER) os->sample_buffer = NULL; } else { os->sample_buffer = malloc(MAX_SAMPLE_BUFFER * sizeof(*new)); if (!os->sample_buffer) return -ENOMEM; list_add(&os->sample_buffer->list, &os->to_free); os->sample_buffer_idx = 2; new = os->sample_buffer + 1; } new->timestamp = timestamp; new->file_offset = file_offset; new->event = event; __queue_event(new, s); return 0; } static void callchain__printf(struct perf_sample *sample) { unsigned int i; printf("... chain: nr:%" PRIu64 "\n", sample->callchain->nr); for (i = 0; i < sample->callchain->nr; i++) printf("..... %2d: %016" PRIx64 "\n", i, sample->callchain->ips[i]); } static void branch_stack__printf(struct perf_sample *sample) { uint64_t i; printf("... branch stack: nr:%" PRIu64 "\n", sample->branch_stack->nr); for (i = 0; i < sample->branch_stack->nr; i++) printf("..... %2"PRIu64": %016" PRIx64 " -> %016" PRIx64 "\n", i, sample->branch_stack->entries[i].from, sample->branch_stack->entries[i].to); } static void regs_dump__printf(u64 mask, u64 *regs) { unsigned rid, i = 0; for_each_set_bit(rid, (unsigned long *) &mask, sizeof(mask) * 8) { u64 val = regs[i++]; printf(".... %-5s 0x%" PRIx64 "\n", perf_reg_name(rid), val); } } static void regs_user__printf(struct perf_sample *sample, u64 mask) { struct regs_dump *user_regs = &sample->user_regs; if (user_regs->regs) { printf("... user regs: mask 0x%" PRIx64 "\n", mask); regs_dump__printf(mask, user_regs->regs); } } static void stack_user__printf(struct stack_dump *dump) { printf("... ustack: size %" PRIu64 ", offset 0x%x\n", dump->size, dump->offset); } static void perf_session__print_tstamp(struct perf_session *session, union perf_event *event, struct perf_sample *sample) { u64 sample_type = __perf_evlist__combined_sample_type(session->evlist); if (event->header.type != PERF_RECORD_SAMPLE && !perf_evlist__sample_id_all(session->evlist)) { fputs("-1 -1 ", stdout); return; } if ((sample_type & PERF_SAMPLE_CPU)) printf("%u ", sample->cpu); if (sample_type & PERF_SAMPLE_TIME) printf("%" PRIu64 " ", sample->time); } static void sample_read__printf(struct perf_sample *sample, u64 read_format) { printf("... sample_read:\n"); if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) printf("...... time enabled %016" PRIx64 "\n", sample->read.time_enabled); if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) printf("...... time running %016" PRIx64 "\n", sample->read.time_running); if (read_format & PERF_FORMAT_GROUP) { u64 i; printf(".... group nr %" PRIu64 "\n", sample->read.group.nr); for (i = 0; i < sample->read.group.nr; i++) { struct sample_read_value *value; value = &sample->read.group.values[i]; printf("..... id %016" PRIx64 ", value %016" PRIx64 "\n", value->id, value->value); } } else printf("..... id %016" PRIx64 ", value %016" PRIx64 "\n", sample->read.one.id, sample->read.one.value); } static void dump_event(struct perf_session *session, union perf_event *event, u64 file_offset, struct perf_sample *sample) { if (!dump_trace) return; printf("\n%#" PRIx64 " [%#x]: event: %d\n", file_offset, event->header.size, event->header.type); trace_event(event); if (sample) perf_session__print_tstamp(session, event, sample); printf("%#" PRIx64 " [%#x]: PERF_RECORD_%s", file_offset, event->header.size, perf_event__name(event->header.type)); } static void dump_sample(struct perf_evsel *evsel, union perf_event *event, struct perf_sample *sample) { u64 sample_type; if (!dump_trace) return; printf("(IP, %d): %d/%d: %#" PRIx64 " period: %" PRIu64 " addr: %#" PRIx64 "\n", event->header.misc, sample->pid, sample->tid, sample->ip, sample->period, sample->addr); sample_type = evsel->attr.sample_type; if (sample_type & PERF_SAMPLE_CALLCHAIN) callchain__printf(sample); if (sample_type & PERF_SAMPLE_BRANCH_STACK) branch_stack__printf(sample); if (sample_type & PERF_SAMPLE_REGS_USER) regs_user__printf(sample, evsel->attr.sample_regs_user); if (sample_type & PERF_SAMPLE_STACK_USER) stack_user__printf(&sample->user_stack); if (sample_type & PERF_SAMPLE_WEIGHT) printf("... weight: %" PRIu64 "\n", sample->weight); if (sample_type & PERF_SAMPLE_DATA_SRC) printf(" . data_src: 0x%"PRIx64"\n", sample->data_src); if (sample_type & PERF_SAMPLE_READ) sample_read__printf(sample, evsel->attr.read_format); } static struct machine * perf_session__find_machine_for_cpumode(struct perf_session *session, union perf_event *event, struct perf_sample *sample) { const u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; struct machine *machine; if (perf_guest && ((cpumode == PERF_RECORD_MISC_GUEST_KERNEL) || (cpumode == PERF_RECORD_MISC_GUEST_USER))) { u32 pid; if (event->header.type == PERF_RECORD_MMAP || event->header.type == PERF_RECORD_MMAP2) pid = event->mmap.pid; else pid = sample->pid; machine = perf_session__find_machine(session, pid); if (!machine) machine = perf_session__findnew_machine(session, DEFAULT_GUEST_KERNEL_ID); return machine; } return &session->machines.host; } static int deliver_sample_value(struct perf_session *session, struct perf_tool *tool, union perf_event *event, struct perf_sample *sample, struct sample_read_value *v, struct machine *machine) { struct perf_sample_id *sid; sid = perf_evlist__id2sid(session->evlist, v->id); if (sid) { sample->id = v->id; sample->period = v->value - sid->period; sid->period = v->value; } if (!sid || sid->evsel == NULL) { ++session->stats.nr_unknown_id; return 0; } return tool->sample(tool, event, sample, sid->evsel, machine); } static int deliver_sample_group(struct perf_session *session, struct perf_tool *tool, union perf_event *event, struct perf_sample *sample, struct machine *machine) { int ret = -EINVAL; u64 i; for (i = 0; i < sample->read.group.nr; i++) { ret = deliver_sample_value(session, tool, event, sample, &sample->read.group.values[i], machine); if (ret) break; } return ret; } static int perf_session__deliver_sample(struct perf_session *session, struct perf_tool *tool, union perf_event *event, struct perf_sample *sample, struct perf_evsel *evsel, struct machine *machine) { /* We know evsel != NULL. */ u64 sample_type = evsel->attr.sample_type; u64 read_format = evsel->attr.read_format; /* Standard sample delievery. */ if (!(sample_type & PERF_SAMPLE_READ)) return tool->sample(tool, event, sample, evsel, machine); /* For PERF_SAMPLE_READ we have either single or group mode. */ if (read_format & PERF_FORMAT_GROUP) return deliver_sample_group(session, tool, event, sample, machine); else return deliver_sample_value(session, tool, event, sample, &sample->read.one, machine); } static int perf_session_deliver_event(struct perf_session *session, union perf_event *event, struct perf_sample *sample, struct perf_tool *tool, u64 file_offset) { struct perf_evsel *evsel; struct machine *machine; dump_event(session, event, file_offset, sample); evsel = perf_evlist__id2evsel(session->evlist, sample->id); if (evsel != NULL && event->header.type != PERF_RECORD_SAMPLE) { /* * XXX We're leaving PERF_RECORD_SAMPLE unnacounted here * because the tools right now may apply filters, discarding * some of the samples. For consistency, in the future we * should have something like nr_filtered_samples and remove * the sample->period from total_sample_period, etc, KISS for * now tho. * * Also testing against NULL allows us to handle files without * attr.sample_id_all and/or without PERF_SAMPLE_ID. In the * future probably it'll be a good idea to restrict event * processing via perf_session to files with both set. */ hists__inc_nr_events(&evsel->hists, event->header.type); } machine = perf_session__find_machine_for_cpumode(session, event, sample); switch (event->header.type) { case PERF_RECORD_SAMPLE: dump_sample(evsel, event, sample); if (evsel == NULL) { ++session->stats.nr_unknown_id; return 0; } if (machine == NULL) { ++session->stats.nr_unprocessable_samples; return 0; } return perf_session__deliver_sample(session, tool, event, sample, evsel, machine); case PERF_RECORD_MMAP: return tool->mmap(tool, event, sample, machine); case PERF_RECORD_MMAP2: return tool->mmap2(tool, event, sample, machine); case PERF_RECORD_COMM: return tool->comm(tool, event, sample, machine); case PERF_RECORD_FORK: return tool->fork(tool, event, sample, machine); case PERF_RECORD_EXIT: return tool->exit(tool, event, sample, machine); case PERF_RECORD_LOST: if (tool->lost == perf_event__process_lost) session->stats.total_lost += event->lost.lost; return tool->lost(tool, event, sample, machine); case PERF_RECORD_READ: return tool->read(tool, event, sample, evsel, machine); case PERF_RECORD_THROTTLE: return tool->throttle(tool, event, sample, machine); case PERF_RECORD_UNTHROTTLE: return tool->unthrottle(tool, event, sample, machine); default: ++session->stats.nr_unknown_events; return -1; } } static int perf_session__process_user_event(struct perf_session *session, union perf_event *event, struct perf_tool *tool, u64 file_offset) { int err; dump_event(session, event, file_offset, NULL); /* These events are processed right away */ switch (event->header.type) { case PERF_RECORD_HEADER_ATTR: err = tool->attr(tool, event, &session->evlist); if (err == 0) perf_session__set_id_hdr_size(session); return err; case PERF_RECORD_HEADER_TRACING_DATA: /* setup for reading amidst mmap */ lseek(session->fd, file_offset, SEEK_SET); return tool->tracing_data(tool, event, session); case PERF_RECORD_HEADER_BUILD_ID: return tool->build_id(tool, event, session); case PERF_RECORD_FINISHED_ROUND: return tool->finished_round(tool, event, session); default: return -EINVAL; } } static void event_swap(union perf_event *event, bool sample_id_all) { perf_event__swap_op swap; swap = perf_event__swap_ops[event->header.type]; if (swap) swap(event, sample_id_all); } static int perf_session__process_event(struct perf_session *session, union perf_event *event, struct perf_tool *tool, u64 file_offset) { struct perf_sample sample; int ret; if (session->header.needs_swap) event_swap(event, perf_evlist__sample_id_all(session->evlist)); if (event->header.type >= PERF_RECORD_HEADER_MAX) return -EINVAL; events_stats__inc(&session->stats, event->header.type); if (event->header.type >= PERF_RECORD_USER_TYPE_START) return perf_session__process_user_event(session, event, tool, file_offset); /* * For all kernel events we get the sample data */ ret = perf_evlist__parse_sample(session->evlist, event, &sample); if (ret) return ret; if (tool->ordered_samples) { ret = perf_session_queue_event(session, event, &sample, file_offset); if (ret != -ETIME) return ret; } return perf_session_deliver_event(session, event, &sample, tool, file_offset); } void perf_event_header__bswap(struct perf_event_header *self) { self->type = bswap_32(self->type); self->misc = bswap_16(self->misc); self->size = bswap_16(self->size); } struct thread *perf_session__findnew(struct perf_session *session, pid_t pid) { return machine__findnew_thread(&session->machines.host, 0, pid); } static struct thread *perf_session__register_idle_thread(struct perf_session *self) { struct thread *thread = perf_session__findnew(self, 0); if (thread == NULL || thread__set_comm(thread, "swapper")) { pr_err("problem inserting idle task.\n"); thread = NULL; } return thread; } static void perf_session__warn_about_errors(const struct perf_session *session, const struct perf_tool *tool) { if (tool->lost == perf_event__process_lost && session->stats.nr_events[PERF_RECORD_LOST] != 0) { ui__warning("Processed %d events and lost %d chunks!\n\n" "Check IO/CPU overload!\n\n", session->stats.nr_events[0], session->stats.nr_events[PERF_RECORD_LOST]); } if (session->stats.nr_unknown_events != 0) { ui__warning("Found %u unknown events!\n\n" "Is this an older tool processing a perf.data " "file generated by a more recent tool?\n\n" "If that is not the case, consider " "reporting to linux-kernel@vger.kernel.org.\n\n", session->stats.nr_unknown_events); } if (session->stats.nr_unknown_id != 0) { ui__warning("%u samples with id not present in the header\n", session->stats.nr_unknown_id); } if (session->stats.nr_invalid_chains != 0) { ui__warning("Found invalid callchains!\n\n" "%u out of %u events were discarded for this reason.\n\n" "Consider reporting to linux-kernel@vger.kernel.org.\n\n", session->stats.nr_invalid_chains, session->stats.nr_events[PERF_RECORD_SAMPLE]); } if (session->stats.nr_unprocessable_samples != 0) { ui__warning("%u unprocessable samples recorded.\n" "Do you have a KVM guest running and not using 'perf kvm'?\n", session->stats.nr_unprocessable_samples); } } volatile int session_done; static int __perf_session__process_pipe_events(struct perf_session *self, struct perf_tool *tool) { union perf_event *event; uint32_t size, cur_size = 0; void *buf = NULL; int skip = 0; u64 head; int err; void *p; perf_tool__fill_defaults(tool); head = 0; cur_size = sizeof(union perf_event); buf = malloc(cur_size); if (!buf) return -errno; more: event = buf; err = readn(self->fd, event, sizeof(struct perf_event_header)); if (err <= 0) { if (err == 0) goto done; pr_err("failed to read event header\n"); goto out_err; } if (self->header.needs_swap) perf_event_header__bswap(&event->header); size = event->header.size; if (size < sizeof(struct perf_event_header)) { pr_err("bad event header size\n"); goto out_err; } if (size > cur_size) { void *new = realloc(buf, size); if (!new) { pr_err("failed to allocate memory to read event\n"); goto out_err; } buf = new; cur_size = size; event = buf; } p = event; p += sizeof(struct perf_event_header); if (size - sizeof(struct perf_event_header)) { err = readn(self->fd, p, size - sizeof(struct perf_event_header)); if (err <= 0) { if (err == 0) { pr_err("unexpected end of event stream\n"); goto done; } pr_err("failed to read event data\n"); goto out_err; } } if ((skip = perf_session__process_event(self, event, tool, head)) < 0) { pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n", head, event->header.size, event->header.type); err = -EINVAL; goto out_err; } head += size; if (skip > 0) head += skip; if (!session_done()) goto more; done: err = 0; out_err: free(buf); perf_session__warn_about_errors(self, tool); perf_session_free_sample_buffers(self); return err; } static union perf_event * fetch_mmaped_event(struct perf_session *session, u64 head, size_t mmap_size, char *buf) { union perf_event *event; /* * Ensure we have enough space remaining to read * the size of the event in the headers. */ if (head + sizeof(event->header) > mmap_size) return NULL; event = (union perf_event *)(buf + head); if (session->header.needs_swap) perf_event_header__bswap(&event->header); if (head + event->header.size > mmap_size) { /* We're not fetching the event so swap back again */ if (session->header.needs_swap) perf_event_header__bswap(&event->header); return NULL; } return event; } /* * On 64bit we can mmap the data file in one go. No need for tiny mmap * slices. On 32bit we use 32MB. */ #if BITS_PER_LONG == 64 #define MMAP_SIZE ULLONG_MAX #define NUM_MMAPS 1 #else #define MMAP_SIZE (32 * 1024 * 1024ULL) #define NUM_MMAPS 128 #endif int __perf_session__process_events(struct perf_session *session, u64 data_offset, u64 data_size, u64 file_size, struct perf_tool *tool) { u64 head, page_offset, file_offset, file_pos, progress_next; int err, mmap_prot, mmap_flags, map_idx = 0; size_t mmap_size; char *buf, *mmaps[NUM_MMAPS]; union perf_event *event; uint32_t size; perf_tool__fill_defaults(tool); page_offset = page_size * (data_offset / page_size); file_offset = page_offset; head = data_offset - page_offset; if (data_size && (data_offset + data_size < file_size)) file_size = data_offset + data_size; progress_next = file_size / 16; mmap_size = MMAP_SIZE; if (mmap_size > file_size) mmap_size = file_size; memset(mmaps, 0, sizeof(mmaps)); mmap_prot = PROT_READ; mmap_flags = MAP_SHARED; if (session->header.needs_swap) { mmap_prot |= PROT_WRITE; mmap_flags = MAP_PRIVATE; } remap: buf = mmap(NULL, mmap_size, mmap_prot, mmap_flags, session->fd, file_offset); if (buf == MAP_FAILED) { pr_err("failed to mmap file\n"); err = -errno; goto out_err; } mmaps[map_idx] = buf; map_idx = (map_idx + 1) & (ARRAY_SIZE(mmaps) - 1); file_pos = file_offset + head; more: event = fetch_mmaped_event(session, head, mmap_size, buf); if (!event) { if (mmaps[map_idx]) { munmap(mmaps[map_idx], mmap_size); mmaps[map_idx] = NULL; } page_offset = page_size * (head / page_size); file_offset += page_offset; head -= page_offset; goto remap; } size = event->header.size; if (size < sizeof(struct perf_event_header) || perf_session__process_event(session, event, tool, file_pos) < 0) { pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n", file_offset + head, event->header.size, event->header.type); err = -EINVAL; goto out_err; } head += size; file_pos += size; if (file_pos >= progress_next) { progress_next += file_size / 16; ui_progress__update(file_pos, file_size, "Processing events..."); } err = 0; if (session_done()) goto out_err; if (file_pos < file_size) goto more; /* do the final flush for ordered samples */ session->ordered_samples.next_flush = ULLONG_MAX; err = flush_sample_queue(session, tool); out_err: ui_progress__finish(); perf_session__warn_about_errors(session, tool); perf_session_free_sample_buffers(session); return err; } int perf_session__process_events(struct perf_session *self, struct perf_tool *tool) { int err; if (perf_session__register_idle_thread(self) == NULL) return -ENOMEM; if (!self->fd_pipe) err = __perf_session__process_events(self, self->header.data_offset, self->header.data_size, self->size, tool); else err = __perf_session__process_pipe_events(self, tool); return err; } bool perf_session__has_traces(struct perf_session *session, const char *msg) { struct perf_evsel *evsel; list_for_each_entry(evsel, &session->evlist->entries, node) { if (evsel->attr.type == PERF_TYPE_TRACEPOINT) return true; } pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg); return false; } int maps__set_kallsyms_ref_reloc_sym(struct map **maps, const char *symbol_name, u64 addr) { char *bracket; enum map_type i; struct ref_reloc_sym *ref; ref = zalloc(sizeof(struct ref_reloc_sym)); if (ref == NULL) return -ENOMEM; ref->name = strdup(symbol_name); if (ref->name == NULL) { free(ref); return -ENOMEM; } bracket = strchr(ref->name, ']'); if (bracket) *bracket = '\0'; ref->addr = addr; for (i = 0; i < MAP__NR_TYPES; ++i) { struct kmap *kmap = map__kmap(maps[i]); kmap->ref_reloc_sym = ref; } return 0; } size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp) { return machines__fprintf_dsos(&self->machines, fp); } size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp, bool (skip)(struct dso *dso, int parm), int parm) { return machines__fprintf_dsos_buildid(&self->machines, fp, skip, parm); } size_t perf_session__fprintf_nr_events(struct perf_session *session, FILE *fp) { struct perf_evsel *pos; size_t ret = fprintf(fp, "Aggregated stats:\n"); ret += events_stats__fprintf(&session->stats, fp); list_for_each_entry(pos, &session->evlist->entries, node) { ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos)); ret += events_stats__fprintf(&pos->hists.stats, fp); } return ret; } size_t perf_session__fprintf(struct perf_session *session, FILE *fp) { /* * FIXME: Here we have to actually print all the machines in this * session, not just the host... */ return machine__fprintf(&session->machines.host, fp); } struct perf_evsel *perf_session__find_first_evtype(struct perf_session *session, unsigned int type) { struct perf_evsel *pos; list_for_each_entry(pos, &session->evlist->entries, node) { if (pos->attr.type == type) return pos; } return NULL; } void perf_evsel__print_ip(struct perf_evsel *evsel, union perf_event *event, struct perf_sample *sample, struct machine *machine, unsigned int print_opts, unsigned int stack_depth) { struct addr_location al; struct callchain_cursor_node *node; int print_ip = print_opts & PRINT_IP_OPT_IP; int print_sym = print_opts & PRINT_IP_OPT_SYM; int print_dso = print_opts & PRINT_IP_OPT_DSO; int print_symoffset = print_opts & PRINT_IP_OPT_SYMOFFSET; int print_oneline = print_opts & PRINT_IP_OPT_ONELINE; char s = print_oneline ? ' ' : '\t'; if (perf_event__preprocess_sample(event, machine, &al, sample) < 0) { error("problem processing %d event, skipping it.\n", event->header.type); return; } if (symbol_conf.use_callchain && sample->callchain) { if (machine__resolve_callchain(machine, evsel, al.thread, sample, NULL, NULL) != 0) { if (verbose) error("Failed to resolve callchain. Skipping\n"); return; } callchain_cursor_commit(&callchain_cursor); while (stack_depth) { node = callchain_cursor_current(&callchain_cursor); if (!node) break; if (print_ip) printf("%c%16" PRIx64, s, node->ip); if (print_sym) { printf(" "); if (print_symoffset) { al.addr = node->ip; al.map = node->map; symbol__fprintf_symname_offs(node->sym, &al, stdout); } else symbol__fprintf_symname(node->sym, stdout); } if (print_dso) { printf(" ("); map__fprintf_dsoname(node->map, stdout); printf(")"); } if (!print_oneline) printf("\n"); callchain_cursor_advance(&callchain_cursor); stack_depth--; } } else { if (print_ip) printf("%16" PRIx64, sample->ip); if (print_sym) { printf(" "); if (print_symoffset) symbol__fprintf_symname_offs(al.sym, &al, stdout); else symbol__fprintf_symname(al.sym, stdout); } if (print_dso) { printf(" ("); map__fprintf_dsoname(al.map, stdout); printf(")"); } } } int perf_session__cpu_bitmap(struct perf_session *session, const char *cpu_list, unsigned long *cpu_bitmap) { int i; struct cpu_map *map; for (i = 0; i < PERF_TYPE_MAX; ++i) { struct perf_evsel *evsel; evsel = perf_session__find_first_evtype(session, i); if (!evsel) continue; if (!(evsel->attr.sample_type & PERF_SAMPLE_CPU)) { pr_err("File does not contain CPU events. " "Remove -c option to proceed.\n"); return -1; } } map = cpu_map__new(cpu_list); if (map == NULL) { pr_err("Invalid cpu_list\n"); return -1; } for (i = 0; i < map->nr; i++) { int cpu = map->map[i]; if (cpu >= MAX_NR_CPUS) { pr_err("Requested CPU %d too large. " "Consider raising MAX_NR_CPUS\n", cpu); return -1; } set_bit(cpu, cpu_bitmap); } return 0; } void perf_session__fprintf_info(struct perf_session *session, FILE *fp, bool full) { struct stat st; int ret; if (session == NULL || fp == NULL) return; ret = fstat(session->fd, &st); if (ret == -1) return; fprintf(fp, "# ========\n"); fprintf(fp, "# captured on: %s", ctime(&st.st_ctime)); perf_header__fprintf_info(session, fp, full); fprintf(fp, "# ========\n#\n"); } int __perf_session__set_tracepoints_handlers(struct perf_session *session, const struct perf_evsel_str_handler *assocs, size_t nr_assocs) { struct perf_evsel *evsel; size_t i; int err; for (i = 0; i < nr_assocs; i++) { /* * Adding a handler for an event not in the session, * just ignore it. */ evsel = perf_evlist__find_tracepoint_by_name(session->evlist, assocs[i].name); if (evsel == NULL) continue; err = -EEXIST; if (evsel->handler.func != NULL) goto out; evsel->handler.func = assocs[i].handler; } err = 0; out: return err; }