/* * builtin-timechart.c - make an svg timechart of system activity * * (C) Copyright 2009 Intel Corporation * * Authors: * Arjan van de Ven <arjan@linux.intel.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; version 2 * of the License. */ #include <traceevent/event-parse.h> #include "builtin.h" #include "util/util.h" #include "util/color.h" #include <linux/list.h> #include "util/cache.h" #include "util/evlist.h" #include "util/evsel.h" #include <linux/rbtree.h> #include "util/symbol.h" #include "util/callchain.h" #include "util/strlist.h" #include "perf.h" #include "util/header.h" #include "util/parse-options.h" #include "util/parse-events.h" #include "util/event.h" #include "util/session.h" #include "util/svghelper.h" #include "util/tool.h" #define SUPPORT_OLD_POWER_EVENTS 1 #define PWR_EVENT_EXIT -1 static unsigned int numcpus; static u64 min_freq; /* Lowest CPU frequency seen */ static u64 max_freq; /* Highest CPU frequency seen */ static u64 turbo_frequency; static u64 first_time, last_time; static bool power_only; struct per_pid; struct per_pidcomm; struct cpu_sample; struct power_event; struct wake_event; struct sample_wrapper; /* * Datastructure layout: * We keep an list of "pid"s, matching the kernels notion of a task struct. * Each "pid" entry, has a list of "comm"s. * this is because we want to track different programs different, while * exec will reuse the original pid (by design). * Each comm has a list of samples that will be used to draw * final graph. */ struct per_pid { struct per_pid *next; int pid; int ppid; u64 start_time; u64 end_time; u64 total_time; int display; struct per_pidcomm *all; struct per_pidcomm *current; }; struct per_pidcomm { struct per_pidcomm *next; u64 start_time; u64 end_time; u64 total_time; int Y; int display; long state; u64 state_since; char *comm; struct cpu_sample *samples; }; struct sample_wrapper { struct sample_wrapper *next; u64 timestamp; unsigned char data[0]; }; #define TYPE_NONE 0 #define TYPE_RUNNING 1 #define TYPE_WAITING 2 #define TYPE_BLOCKED 3 struct cpu_sample { struct cpu_sample *next; u64 start_time; u64 end_time; int type; int cpu; }; static struct per_pid *all_data; #define CSTATE 1 #define PSTATE 2 struct power_event { struct power_event *next; int type; int state; u64 start_time; u64 end_time; int cpu; }; struct wake_event { struct wake_event *next; int waker; int wakee; u64 time; }; static struct power_event *power_events; static struct wake_event *wake_events; struct process_filter; struct process_filter { char *name; int pid; struct process_filter *next; }; static struct process_filter *process_filter; static struct per_pid *find_create_pid(int pid) { struct per_pid *cursor = all_data; while (cursor) { if (cursor->pid == pid) return cursor; cursor = cursor->next; } cursor = zalloc(sizeof(*cursor)); assert(cursor != NULL); cursor->pid = pid; cursor->next = all_data; all_data = cursor; return cursor; } static void pid_set_comm(int pid, char *comm) { struct per_pid *p; struct per_pidcomm *c; p = find_create_pid(pid); c = p->all; while (c) { if (c->comm && strcmp(c->comm, comm) == 0) { p->current = c; return; } if (!c->comm) { c->comm = strdup(comm); p->current = c; return; } c = c->next; } c = zalloc(sizeof(*c)); assert(c != NULL); c->comm = strdup(comm); p->current = c; c->next = p->all; p->all = c; } static void pid_fork(int pid, int ppid, u64 timestamp) { struct per_pid *p, *pp; p = find_create_pid(pid); pp = find_create_pid(ppid); p->ppid = ppid; if (pp->current && pp->current->comm && !p->current) pid_set_comm(pid, pp->current->comm); p->start_time = timestamp; if (p->current) { p->current->start_time = timestamp; p->current->state_since = timestamp; } } static void pid_exit(int pid, u64 timestamp) { struct per_pid *p; p = find_create_pid(pid); p->end_time = timestamp; if (p->current) p->current->end_time = timestamp; } static void pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end) { struct per_pid *p; struct per_pidcomm *c; struct cpu_sample *sample; p = find_create_pid(pid); c = p->current; if (!c) { c = zalloc(sizeof(*c)); assert(c != NULL); p->current = c; c->next = p->all; p->all = c; } sample = zalloc(sizeof(*sample)); assert(sample != NULL); sample->start_time = start; sample->end_time = end; sample->type = type; sample->next = c->samples; sample->cpu = cpu; c->samples = sample; if (sample->type == TYPE_RUNNING && end > start && start > 0) { c->total_time += (end-start); p->total_time += (end-start); } if (c->start_time == 0 || c->start_time > start) c->start_time = start; if (p->start_time == 0 || p->start_time > start) p->start_time = start; } #define MAX_CPUS 4096 static u64 cpus_cstate_start_times[MAX_CPUS]; static int cpus_cstate_state[MAX_CPUS]; static u64 cpus_pstate_start_times[MAX_CPUS]; static u64 cpus_pstate_state[MAX_CPUS]; static int process_comm_event(struct perf_tool *tool __maybe_unused, union perf_event *event, struct perf_sample *sample __maybe_unused, struct machine *machine __maybe_unused) { pid_set_comm(event->comm.tid, event->comm.comm); return 0; } static int process_fork_event(struct perf_tool *tool __maybe_unused, union perf_event *event, struct perf_sample *sample __maybe_unused, struct machine *machine __maybe_unused) { pid_fork(event->fork.pid, event->fork.ppid, event->fork.time); return 0; } static int process_exit_event(struct perf_tool *tool __maybe_unused, union perf_event *event, struct perf_sample *sample __maybe_unused, struct machine *machine __maybe_unused) { pid_exit(event->fork.pid, event->fork.time); return 0; } struct trace_entry { unsigned short type; unsigned char flags; unsigned char preempt_count; int pid; int lock_depth; }; #ifdef SUPPORT_OLD_POWER_EVENTS static int use_old_power_events; struct power_entry_old { struct trace_entry te; u64 type; u64 value; u64 cpu_id; }; #endif struct power_processor_entry { struct trace_entry te; u32 state; u32 cpu_id; }; #define TASK_COMM_LEN 16 struct wakeup_entry { struct trace_entry te; char comm[TASK_COMM_LEN]; int pid; int prio; int success; }; struct sched_switch { struct trace_entry te; char prev_comm[TASK_COMM_LEN]; int prev_pid; int prev_prio; long prev_state; /* Arjan weeps. */ char next_comm[TASK_COMM_LEN]; int next_pid; int next_prio; }; static void c_state_start(int cpu, u64 timestamp, int state) { cpus_cstate_start_times[cpu] = timestamp; cpus_cstate_state[cpu] = state; } static void c_state_end(int cpu, u64 timestamp) { struct power_event *pwr = zalloc(sizeof(*pwr)); if (!pwr) return; pwr->state = cpus_cstate_state[cpu]; pwr->start_time = cpus_cstate_start_times[cpu]; pwr->end_time = timestamp; pwr->cpu = cpu; pwr->type = CSTATE; pwr->next = power_events; power_events = pwr; } static void p_state_change(int cpu, u64 timestamp, u64 new_freq) { struct power_event *pwr; if (new_freq > 8000000) /* detect invalid data */ return; pwr = zalloc(sizeof(*pwr)); if (!pwr) return; pwr->state = cpus_pstate_state[cpu]; pwr->start_time = cpus_pstate_start_times[cpu]; pwr->end_time = timestamp; pwr->cpu = cpu; pwr->type = PSTATE; pwr->next = power_events; if (!pwr->start_time) pwr->start_time = first_time; power_events = pwr; cpus_pstate_state[cpu] = new_freq; cpus_pstate_start_times[cpu] = timestamp; if ((u64)new_freq > max_freq) max_freq = new_freq; if (new_freq < min_freq || min_freq == 0) min_freq = new_freq; if (new_freq == max_freq - 1000) turbo_frequency = max_freq; } static void sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te) { struct per_pid *p; struct wakeup_entry *wake = (void *)te; struct wake_event *we = zalloc(sizeof(*we)); if (!we) return; we->time = timestamp; we->waker = pid; if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ)) we->waker = -1; we->wakee = wake->pid; we->next = wake_events; wake_events = we; p = find_create_pid(we->wakee); if (p && p->current && p->current->state == TYPE_NONE) { p->current->state_since = timestamp; p->current->state = TYPE_WAITING; } if (p && p->current && p->current->state == TYPE_BLOCKED) { pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp); p->current->state_since = timestamp; p->current->state = TYPE_WAITING; } } static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te) { struct per_pid *p = NULL, *prev_p; struct sched_switch *sw = (void *)te; prev_p = find_create_pid(sw->prev_pid); p = find_create_pid(sw->next_pid); if (prev_p->current && prev_p->current->state != TYPE_NONE) pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp); if (p && p->current) { if (p->current->state != TYPE_NONE) pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp); p->current->state_since = timestamp; p->current->state = TYPE_RUNNING; } if (prev_p->current) { prev_p->current->state = TYPE_NONE; prev_p->current->state_since = timestamp; if (sw->prev_state & 2) prev_p->current->state = TYPE_BLOCKED; if (sw->prev_state == 0) prev_p->current->state = TYPE_WAITING; } } typedef int (*tracepoint_handler)(struct perf_evsel *evsel, struct perf_sample *sample); static int process_sample_event(struct perf_tool *tool __maybe_unused, union perf_event *event __maybe_unused, struct perf_sample *sample, struct perf_evsel *evsel, struct machine *machine __maybe_unused) { if (evsel->attr.sample_type & PERF_SAMPLE_TIME) { if (!first_time || first_time > sample->time) first_time = sample->time; if (last_time < sample->time) last_time = sample->time; } if (sample->cpu > numcpus) numcpus = sample->cpu; if (evsel->handler.func != NULL) { tracepoint_handler f = evsel->handler.func; return f(evsel, sample); } return 0; } static int process_sample_cpu_idle(struct perf_evsel *evsel __maybe_unused, struct perf_sample *sample) { struct power_processor_entry *ppe = sample->raw_data; if (ppe->state == (u32) PWR_EVENT_EXIT) c_state_end(ppe->cpu_id, sample->time); else c_state_start(ppe->cpu_id, sample->time, ppe->state); return 0; } static int process_sample_cpu_frequency(struct perf_evsel *evsel __maybe_unused, struct perf_sample *sample) { struct power_processor_entry *ppe = sample->raw_data; p_state_change(ppe->cpu_id, sample->time, ppe->state); return 0; } static int process_sample_sched_wakeup(struct perf_evsel *evsel __maybe_unused, struct perf_sample *sample) { struct trace_entry *te = sample->raw_data; sched_wakeup(sample->cpu, sample->time, sample->pid, te); return 0; } static int process_sample_sched_switch(struct perf_evsel *evsel __maybe_unused, struct perf_sample *sample) { struct trace_entry *te = sample->raw_data; sched_switch(sample->cpu, sample->time, te); return 0; } #ifdef SUPPORT_OLD_POWER_EVENTS static int process_sample_power_start(struct perf_evsel *evsel __maybe_unused, struct perf_sample *sample) { struct power_entry_old *peo = sample->raw_data; c_state_start(peo->cpu_id, sample->time, peo->value); return 0; } static int process_sample_power_end(struct perf_evsel *evsel __maybe_unused, struct perf_sample *sample) { c_state_end(sample->cpu, sample->time); return 0; } static int process_sample_power_frequency(struct perf_evsel *evsel __maybe_unused, struct perf_sample *sample) { struct power_entry_old *peo = sample->raw_data; p_state_change(peo->cpu_id, sample->time, peo->value); return 0; } #endif /* SUPPORT_OLD_POWER_EVENTS */ /* * After the last sample we need to wrap up the current C/P state * and close out each CPU for these. */ static void end_sample_processing(void) { u64 cpu; struct power_event *pwr; for (cpu = 0; cpu <= numcpus; cpu++) { /* C state */ #if 0 pwr = zalloc(sizeof(*pwr)); if (!pwr) return; pwr->state = cpus_cstate_state[cpu]; pwr->start_time = cpus_cstate_start_times[cpu]; pwr->end_time = last_time; pwr->cpu = cpu; pwr->type = CSTATE; pwr->next = power_events; power_events = pwr; #endif /* P state */ pwr = zalloc(sizeof(*pwr)); if (!pwr) return; pwr->state = cpus_pstate_state[cpu]; pwr->start_time = cpus_pstate_start_times[cpu]; pwr->end_time = last_time; pwr->cpu = cpu; pwr->type = PSTATE; pwr->next = power_events; if (!pwr->start_time) pwr->start_time = first_time; if (!pwr->state) pwr->state = min_freq; power_events = pwr; } } /* * Sort the pid datastructure */ static void sort_pids(void) { struct per_pid *new_list, *p, *cursor, *prev; /* sort by ppid first, then by pid, lowest to highest */ new_list = NULL; while (all_data) { p = all_data; all_data = p->next; p->next = NULL; if (new_list == NULL) { new_list = p; p->next = NULL; continue; } prev = NULL; cursor = new_list; while (cursor) { if (cursor->ppid > p->ppid || (cursor->ppid == p->ppid && cursor->pid > p->pid)) { /* must insert before */ if (prev) { p->next = prev->next; prev->next = p; cursor = NULL; continue; } else { p->next = new_list; new_list = p; cursor = NULL; continue; } } prev = cursor; cursor = cursor->next; if (!cursor) prev->next = p; } } all_data = new_list; } static void draw_c_p_states(void) { struct power_event *pwr; pwr = power_events; /* * two pass drawing so that the P state bars are on top of the C state blocks */ while (pwr) { if (pwr->type == CSTATE) svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); pwr = pwr->next; } pwr = power_events; while (pwr) { if (pwr->type == PSTATE) { if (!pwr->state) pwr->state = min_freq; svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); } pwr = pwr->next; } } static void draw_wakeups(void) { struct wake_event *we; struct per_pid *p; struct per_pidcomm *c; we = wake_events; while (we) { int from = 0, to = 0; char *task_from = NULL, *task_to = NULL; /* locate the column of the waker and wakee */ p = all_data; while (p) { if (p->pid == we->waker || p->pid == we->wakee) { c = p->all; while (c) { if (c->Y && c->start_time <= we->time && c->end_time >= we->time) { if (p->pid == we->waker && !from) { from = c->Y; task_from = strdup(c->comm); } if (p->pid == we->wakee && !to) { to = c->Y; task_to = strdup(c->comm); } } c = c->next; } c = p->all; while (c) { if (p->pid == we->waker && !from) { from = c->Y; task_from = strdup(c->comm); } if (p->pid == we->wakee && !to) { to = c->Y; task_to = strdup(c->comm); } c = c->next; } } p = p->next; } if (!task_from) { task_from = malloc(40); sprintf(task_from, "[%i]", we->waker); } if (!task_to) { task_to = malloc(40); sprintf(task_to, "[%i]", we->wakee); } if (we->waker == -1) svg_interrupt(we->time, to); else if (from && to && abs(from - to) == 1) svg_wakeline(we->time, from, to); else svg_partial_wakeline(we->time, from, task_from, to, task_to); we = we->next; free(task_from); free(task_to); } } static void draw_cpu_usage(void) { struct per_pid *p; struct per_pidcomm *c; struct cpu_sample *sample; p = all_data; while (p) { c = p->all; while (c) { sample = c->samples; while (sample) { if (sample->type == TYPE_RUNNING) svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm); sample = sample->next; } c = c->next; } p = p->next; } } static void draw_process_bars(void) { struct per_pid *p; struct per_pidcomm *c; struct cpu_sample *sample; int Y = 0; Y = 2 * numcpus + 2; p = all_data; while (p) { c = p->all; while (c) { if (!c->display) { c->Y = 0; c = c->next; continue; } svg_box(Y, c->start_time, c->end_time, "process"); sample = c->samples; while (sample) { if (sample->type == TYPE_RUNNING) svg_sample(Y, sample->cpu, sample->start_time, sample->end_time); if (sample->type == TYPE_BLOCKED) svg_box(Y, sample->start_time, sample->end_time, "blocked"); if (sample->type == TYPE_WAITING) svg_waiting(Y, sample->start_time, sample->end_time); sample = sample->next; } if (c->comm) { char comm[256]; if (c->total_time > 5000000000) /* 5 seconds */ sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0); else sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0); svg_text(Y, c->start_time, comm); } c->Y = Y; Y++; c = c->next; } p = p->next; } } static void add_process_filter(const char *string) { int pid = strtoull(string, NULL, 10); struct process_filter *filt = malloc(sizeof(*filt)); if (!filt) return; filt->name = strdup(string); filt->pid = pid; filt->next = process_filter; process_filter = filt; } static int passes_filter(struct per_pid *p, struct per_pidcomm *c) { struct process_filter *filt; if (!process_filter) return 1; filt = process_filter; while (filt) { if (filt->pid && p->pid == filt->pid) return 1; if (strcmp(filt->name, c->comm) == 0) return 1; filt = filt->next; } return 0; } static int determine_display_tasks_filtered(void) { struct per_pid *p; struct per_pidcomm *c; int count = 0; p = all_data; while (p) { p->display = 0; if (p->start_time == 1) p->start_time = first_time; /* no exit marker, task kept running to the end */ if (p->end_time == 0) p->end_time = last_time; c = p->all; while (c) { c->display = 0; if (c->start_time == 1) c->start_time = first_time; if (passes_filter(p, c)) { c->display = 1; p->display = 1; count++; } if (c->end_time == 0) c->end_time = last_time; c = c->next; } p = p->next; } return count; } static int determine_display_tasks(u64 threshold) { struct per_pid *p; struct per_pidcomm *c; int count = 0; if (process_filter) return determine_display_tasks_filtered(); p = all_data; while (p) { p->display = 0; if (p->start_time == 1) p->start_time = first_time; /* no exit marker, task kept running to the end */ if (p->end_time == 0) p->end_time = last_time; if (p->total_time >= threshold && !power_only) p->display = 1; c = p->all; while (c) { c->display = 0; if (c->start_time == 1) c->start_time = first_time; if (c->total_time >= threshold && !power_only) { c->display = 1; count++; } if (c->end_time == 0) c->end_time = last_time; c = c->next; } p = p->next; } return count; } #define TIME_THRESH 10000000 static void write_svg_file(const char *filename) { u64 i; int count; numcpus++; count = determine_display_tasks(TIME_THRESH); /* We'd like to show at least 15 tasks; be less picky if we have fewer */ if (count < 15) count = determine_display_tasks(TIME_THRESH / 10); open_svg(filename, numcpus, count, first_time, last_time); svg_time_grid(); svg_legenda(); for (i = 0; i < numcpus; i++) svg_cpu_box(i, max_freq, turbo_frequency); draw_cpu_usage(); draw_process_bars(); draw_c_p_states(); draw_wakeups(); svg_close(); } static int __cmd_timechart(const char *output_name) { struct perf_tool perf_timechart = { .comm = process_comm_event, .fork = process_fork_event, .exit = process_exit_event, .sample = process_sample_event, .ordered_samples = true, }; const struct perf_evsel_str_handler power_tracepoints[] = { { "power:cpu_idle", process_sample_cpu_idle }, { "power:cpu_frequency", process_sample_cpu_frequency }, { "sched:sched_wakeup", process_sample_sched_wakeup }, { "sched:sched_switch", process_sample_sched_switch }, #ifdef SUPPORT_OLD_POWER_EVENTS { "power:power_start", process_sample_power_start }, { "power:power_end", process_sample_power_end }, { "power:power_frequency", process_sample_power_frequency }, #endif }; struct perf_session *session = perf_session__new(input_name, O_RDONLY, 0, false, &perf_timechart); int ret = -EINVAL; if (session == NULL) return -ENOMEM; if (!perf_session__has_traces(session, "timechart record")) goto out_delete; if (perf_session__set_tracepoints_handlers(session, power_tracepoints)) { pr_err("Initializing session tracepoint handlers failed\n"); goto out_delete; } ret = perf_session__process_events(session, &perf_timechart); if (ret) goto out_delete; end_sample_processing(); sort_pids(); write_svg_file(output_name); pr_info("Written %2.1f seconds of trace to %s.\n", (last_time - first_time) / 1000000000.0, output_name); out_delete: perf_session__delete(session); return ret; } static int __cmd_record(int argc, const char **argv) { #ifdef SUPPORT_OLD_POWER_EVENTS const char * const record_old_args[] = { "record", "-a", "-R", "-c", "1", "-e", "power:power_start", "-e", "power:power_end", "-e", "power:power_frequency", "-e", "sched:sched_wakeup", "-e", "sched:sched_switch", }; #endif const char * const record_new_args[] = { "record", "-a", "-R", "-c", "1", "-e", "power:cpu_frequency", "-e", "power:cpu_idle", "-e", "sched:sched_wakeup", "-e", "sched:sched_switch", }; unsigned int rec_argc, i, j; const char **rec_argv; const char * const *record_args = record_new_args; unsigned int record_elems = ARRAY_SIZE(record_new_args); #ifdef SUPPORT_OLD_POWER_EVENTS if (!is_valid_tracepoint("power:cpu_idle") && is_valid_tracepoint("power:power_start")) { use_old_power_events = 1; record_args = record_old_args; record_elems = ARRAY_SIZE(record_old_args); } #endif rec_argc = record_elems + argc - 1; rec_argv = calloc(rec_argc + 1, sizeof(char *)); if (rec_argv == NULL) return -ENOMEM; for (i = 0; i < record_elems; i++) rec_argv[i] = strdup(record_args[i]); for (j = 1; j < (unsigned int)argc; j++, i++) rec_argv[i] = argv[j]; return cmd_record(i, rec_argv, NULL); } static int parse_process(const struct option *opt __maybe_unused, const char *arg, int __maybe_unused unset) { if (arg) add_process_filter(arg); return 0; } int cmd_timechart(int argc, const char **argv, const char *prefix __maybe_unused) { const char *output_name = "output.svg"; const struct option options[] = { OPT_STRING('i', "input", &input_name, "file", "input file name"), OPT_STRING('o', "output", &output_name, "file", "output file name"), OPT_INTEGER('w', "width", &svg_page_width, "page width"), OPT_BOOLEAN('P', "power-only", &power_only, "output power data only"), OPT_CALLBACK('p', "process", NULL, "process", "process selector. Pass a pid or process name.", parse_process), OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory", "Look for files with symbols relative to this directory"), OPT_END() }; const char * const timechart_usage[] = { "perf timechart [<options>] {record}", NULL }; argc = parse_options(argc, argv, options, timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION); symbol__init(); if (argc && !strncmp(argv[0], "rec", 3)) return __cmd_record(argc, argv); else if (argc) usage_with_options(timechart_usage, options); setup_pager(); return __cmd_timechart(output_name); }