/* * builtin-stat.c * * Builtin stat command: Give a precise performance counters summary * overview about any workload, CPU or specific PID. * * Sample output: $ perf stat ./hackbench 10 Time: 0.118 Performance counter stats for './hackbench 10': 1708.761321 task-clock # 11.037 CPUs utilized 41,190 context-switches # 0.024 M/sec 6,735 CPU-migrations # 0.004 M/sec 17,318 page-faults # 0.010 M/sec 5,205,202,243 cycles # 3.046 GHz 3,856,436,920 stalled-cycles-frontend # 74.09% frontend cycles idle 1,600,790,871 stalled-cycles-backend # 30.75% backend cycles idle 2,603,501,247 instructions # 0.50 insns per cycle # 1.48 stalled cycles per insn 484,357,498 branches # 283.455 M/sec 6,388,934 branch-misses # 1.32% of all branches 0.154822978 seconds time elapsed * * Copyright (C) 2008-2011, Red Hat Inc, Ingo Molnar <mingo@redhat.com> * * Improvements and fixes by: * * Arjan van de Ven <arjan@linux.intel.com> * Yanmin Zhang <yanmin.zhang@intel.com> * Wu Fengguang <fengguang.wu@intel.com> * Mike Galbraith <efault@gmx.de> * Paul Mackerras <paulus@samba.org> * Jaswinder Singh Rajput <jaswinder@kernel.org> * * Released under the GPL v2. (and only v2, not any later version) */ #include "perf.h" #include "builtin.h" #include "util/util.h" #include "util/parse-options.h" #include "util/parse-events.h" #include "util/event.h" #include "util/evlist.h" #include "util/evsel.h" #include "util/debug.h" #include "util/color.h" #include "util/stat.h" #include "util/header.h" #include "util/cpumap.h" #include "util/thread.h" #include "util/thread_map.h" #include <stdlib.h> #include <sys/prctl.h> #include <locale.h> #define DEFAULT_SEPARATOR " " #define CNTR_NOT_SUPPORTED "<not supported>" #define CNTR_NOT_COUNTED "<not counted>" static void print_stat(int argc, const char **argv); static void print_counter_aggr(struct perf_evsel *counter, char *prefix); static void print_counter(struct perf_evsel *counter, char *prefix); static void print_aggr(char *prefix); static struct perf_evlist *evsel_list; static struct perf_target target = { .uid = UINT_MAX, }; enum aggr_mode { AGGR_NONE, AGGR_GLOBAL, AGGR_SOCKET, AGGR_CORE, }; static int run_count = 1; static bool no_inherit = false; static bool scale = true; static enum aggr_mode aggr_mode = AGGR_GLOBAL; static volatile pid_t child_pid = -1; static bool null_run = false; static int detailed_run = 0; static bool big_num = true; static int big_num_opt = -1; static const char *csv_sep = NULL; static bool csv_output = false; static bool group = false; static FILE *output = NULL; static const char *pre_cmd = NULL; static const char *post_cmd = NULL; static bool sync_run = false; static unsigned int interval = 0; static unsigned int initial_delay = 0; static bool forever = false; static struct timespec ref_time; static struct cpu_map *aggr_map; static int (*aggr_get_id)(struct cpu_map *m, int cpu); static volatile int done = 0; struct perf_stat { struct stats res_stats[3]; }; static inline void diff_timespec(struct timespec *r, struct timespec *a, struct timespec *b) { r->tv_sec = a->tv_sec - b->tv_sec; if (a->tv_nsec < b->tv_nsec) { r->tv_nsec = a->tv_nsec + 1000000000L - b->tv_nsec; r->tv_sec--; } else { r->tv_nsec = a->tv_nsec - b->tv_nsec ; } } static inline struct cpu_map *perf_evsel__cpus(struct perf_evsel *evsel) { return (evsel->cpus && !target.cpu_list) ? evsel->cpus : evsel_list->cpus; } static inline int perf_evsel__nr_cpus(struct perf_evsel *evsel) { return perf_evsel__cpus(evsel)->nr; } static void perf_evsel__reset_stat_priv(struct perf_evsel *evsel) { memset(evsel->priv, 0, sizeof(struct perf_stat)); } static int perf_evsel__alloc_stat_priv(struct perf_evsel *evsel) { evsel->priv = zalloc(sizeof(struct perf_stat)); return evsel->priv == NULL ? -ENOMEM : 0; } static void perf_evsel__free_stat_priv(struct perf_evsel *evsel) { free(evsel->priv); evsel->priv = NULL; } static int perf_evsel__alloc_prev_raw_counts(struct perf_evsel *evsel) { void *addr; size_t sz; sz = sizeof(*evsel->counts) + (perf_evsel__nr_cpus(evsel) * sizeof(struct perf_counts_values)); addr = zalloc(sz); if (!addr) return -ENOMEM; evsel->prev_raw_counts = addr; return 0; } static void perf_evsel__free_prev_raw_counts(struct perf_evsel *evsel) { free(evsel->prev_raw_counts); evsel->prev_raw_counts = NULL; } static void perf_evlist__free_stats(struct perf_evlist *evlist) { struct perf_evsel *evsel; list_for_each_entry(evsel, &evlist->entries, node) { perf_evsel__free_stat_priv(evsel); perf_evsel__free_counts(evsel); perf_evsel__free_prev_raw_counts(evsel); } } static int perf_evlist__alloc_stats(struct perf_evlist *evlist, bool alloc_raw) { struct perf_evsel *evsel; list_for_each_entry(evsel, &evlist->entries, node) { if (perf_evsel__alloc_stat_priv(evsel) < 0 || perf_evsel__alloc_counts(evsel, perf_evsel__nr_cpus(evsel)) < 0 || (alloc_raw && perf_evsel__alloc_prev_raw_counts(evsel) < 0)) goto out_free; } return 0; out_free: perf_evlist__free_stats(evlist); return -1; } static struct stats runtime_nsecs_stats[MAX_NR_CPUS]; static struct stats runtime_cycles_stats[MAX_NR_CPUS]; static struct stats runtime_stalled_cycles_front_stats[MAX_NR_CPUS]; static struct stats runtime_stalled_cycles_back_stats[MAX_NR_CPUS]; static struct stats runtime_branches_stats[MAX_NR_CPUS]; static struct stats runtime_cacherefs_stats[MAX_NR_CPUS]; static struct stats runtime_l1_dcache_stats[MAX_NR_CPUS]; static struct stats runtime_l1_icache_stats[MAX_NR_CPUS]; static struct stats runtime_ll_cache_stats[MAX_NR_CPUS]; static struct stats runtime_itlb_cache_stats[MAX_NR_CPUS]; static struct stats runtime_dtlb_cache_stats[MAX_NR_CPUS]; static struct stats walltime_nsecs_stats; static void perf_stat__reset_stats(struct perf_evlist *evlist) { struct perf_evsel *evsel; list_for_each_entry(evsel, &evlist->entries, node) { perf_evsel__reset_stat_priv(evsel); perf_evsel__reset_counts(evsel, perf_evsel__nr_cpus(evsel)); } memset(runtime_nsecs_stats, 0, sizeof(runtime_nsecs_stats)); memset(runtime_cycles_stats, 0, sizeof(runtime_cycles_stats)); memset(runtime_stalled_cycles_front_stats, 0, sizeof(runtime_stalled_cycles_front_stats)); memset(runtime_stalled_cycles_back_stats, 0, sizeof(runtime_stalled_cycles_back_stats)); memset(runtime_branches_stats, 0, sizeof(runtime_branches_stats)); memset(runtime_cacherefs_stats, 0, sizeof(runtime_cacherefs_stats)); memset(runtime_l1_dcache_stats, 0, sizeof(runtime_l1_dcache_stats)); memset(runtime_l1_icache_stats, 0, sizeof(runtime_l1_icache_stats)); memset(runtime_ll_cache_stats, 0, sizeof(runtime_ll_cache_stats)); memset(runtime_itlb_cache_stats, 0, sizeof(runtime_itlb_cache_stats)); memset(runtime_dtlb_cache_stats, 0, sizeof(runtime_dtlb_cache_stats)); memset(&walltime_nsecs_stats, 0, sizeof(walltime_nsecs_stats)); } static int create_perf_stat_counter(struct perf_evsel *evsel) { struct perf_event_attr *attr = &evsel->attr; if (scale) attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED | PERF_FORMAT_TOTAL_TIME_RUNNING; attr->inherit = !no_inherit; if (perf_target__has_cpu(&target)) return perf_evsel__open_per_cpu(evsel, perf_evsel__cpus(evsel)); if (!perf_target__has_task(&target) && perf_evsel__is_group_leader(evsel)) { attr->disabled = 1; if (!initial_delay) attr->enable_on_exec = 1; } return perf_evsel__open_per_thread(evsel, evsel_list->threads); } /* * Does the counter have nsecs as a unit? */ static inline int nsec_counter(struct perf_evsel *evsel) { if (perf_evsel__match(evsel, SOFTWARE, SW_CPU_CLOCK) || perf_evsel__match(evsel, SOFTWARE, SW_TASK_CLOCK)) return 1; return 0; } /* * Update various tracking values we maintain to print * more semantic information such as miss/hit ratios, * instruction rates, etc: */ static void update_shadow_stats(struct perf_evsel *counter, u64 *count) { if (perf_evsel__match(counter, SOFTWARE, SW_TASK_CLOCK)) update_stats(&runtime_nsecs_stats[0], count[0]); else if (perf_evsel__match(counter, HARDWARE, HW_CPU_CYCLES)) update_stats(&runtime_cycles_stats[0], count[0]); else if (perf_evsel__match(counter, HARDWARE, HW_STALLED_CYCLES_FRONTEND)) update_stats(&runtime_stalled_cycles_front_stats[0], count[0]); else if (perf_evsel__match(counter, HARDWARE, HW_STALLED_CYCLES_BACKEND)) update_stats(&runtime_stalled_cycles_back_stats[0], count[0]); else if (perf_evsel__match(counter, HARDWARE, HW_BRANCH_INSTRUCTIONS)) update_stats(&runtime_branches_stats[0], count[0]); else if (perf_evsel__match(counter, HARDWARE, HW_CACHE_REFERENCES)) update_stats(&runtime_cacherefs_stats[0], count[0]); else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_L1D)) update_stats(&runtime_l1_dcache_stats[0], count[0]); else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_L1I)) update_stats(&runtime_l1_icache_stats[0], count[0]); else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_LL)) update_stats(&runtime_ll_cache_stats[0], count[0]); else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_DTLB)) update_stats(&runtime_dtlb_cache_stats[0], count[0]); else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_ITLB)) update_stats(&runtime_itlb_cache_stats[0], count[0]); } /* * Read out the results of a single counter: * aggregate counts across CPUs in system-wide mode */ static int read_counter_aggr(struct perf_evsel *counter) { struct perf_stat *ps = counter->priv; u64 *count = counter->counts->aggr.values; int i; if (__perf_evsel__read(counter, perf_evsel__nr_cpus(counter), thread_map__nr(evsel_list->threads), scale) < 0) return -1; for (i = 0; i < 3; i++) update_stats(&ps->res_stats[i], count[i]); if (verbose) { fprintf(output, "%s: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n", perf_evsel__name(counter), count[0], count[1], count[2]); } /* * Save the full runtime - to allow normalization during printout: */ update_shadow_stats(counter, count); return 0; } /* * Read out the results of a single counter: * do not aggregate counts across CPUs in system-wide mode */ static int read_counter(struct perf_evsel *counter) { u64 *count; int cpu; for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) { if (__perf_evsel__read_on_cpu(counter, cpu, 0, scale) < 0) return -1; count = counter->counts->cpu[cpu].values; update_shadow_stats(counter, count); } return 0; } static void print_interval(void) { static int num_print_interval; struct perf_evsel *counter; struct perf_stat *ps; struct timespec ts, rs; char prefix[64]; if (aggr_mode == AGGR_GLOBAL) { list_for_each_entry(counter, &evsel_list->entries, node) { ps = counter->priv; memset(ps->res_stats, 0, sizeof(ps->res_stats)); read_counter_aggr(counter); } } else { list_for_each_entry(counter, &evsel_list->entries, node) { ps = counter->priv; memset(ps->res_stats, 0, sizeof(ps->res_stats)); read_counter(counter); } } clock_gettime(CLOCK_MONOTONIC, &ts); diff_timespec(&rs, &ts, &ref_time); sprintf(prefix, "%6lu.%09lu%s", rs.tv_sec, rs.tv_nsec, csv_sep); if (num_print_interval == 0 && !csv_output) { switch (aggr_mode) { case AGGR_SOCKET: fprintf(output, "# time socket cpus counts events\n"); break; case AGGR_CORE: fprintf(output, "# time core cpus counts events\n"); break; case AGGR_NONE: fprintf(output, "# time CPU counts events\n"); break; case AGGR_GLOBAL: default: fprintf(output, "# time counts events\n"); } } if (++num_print_interval == 25) num_print_interval = 0; switch (aggr_mode) { case AGGR_CORE: case AGGR_SOCKET: print_aggr(prefix); break; case AGGR_NONE: list_for_each_entry(counter, &evsel_list->entries, node) print_counter(counter, prefix); break; case AGGR_GLOBAL: default: list_for_each_entry(counter, &evsel_list->entries, node) print_counter_aggr(counter, prefix); } fflush(output); } static void handle_initial_delay(void) { struct perf_evsel *counter; if (initial_delay) { const int ncpus = cpu_map__nr(evsel_list->cpus), nthreads = thread_map__nr(evsel_list->threads); usleep(initial_delay * 1000); list_for_each_entry(counter, &evsel_list->entries, node) perf_evsel__enable(counter, ncpus, nthreads); } } static int __run_perf_stat(int argc, const char **argv) { char msg[512]; unsigned long long t0, t1; struct perf_evsel *counter; struct timespec ts; int status = 0; const bool forks = (argc > 0); if (interval) { ts.tv_sec = interval / 1000; ts.tv_nsec = (interval % 1000) * 1000000; } else { ts.tv_sec = 1; ts.tv_nsec = 0; } if (forks) { if (perf_evlist__prepare_workload(evsel_list, &target, argv, false, false) < 0) { perror("failed to prepare workload"); return -1; } child_pid = evsel_list->workload.pid; } if (group) perf_evlist__set_leader(evsel_list); list_for_each_entry(counter, &evsel_list->entries, node) { if (create_perf_stat_counter(counter) < 0) { /* * PPC returns ENXIO for HW counters until 2.6.37 * (behavior changed with commit b0a873e). */ if (errno == EINVAL || errno == ENOSYS || errno == ENOENT || errno == EOPNOTSUPP || errno == ENXIO) { if (verbose) ui__warning("%s event is not supported by the kernel.\n", perf_evsel__name(counter)); counter->supported = false; continue; } perf_evsel__open_strerror(counter, &target, errno, msg, sizeof(msg)); ui__error("%s\n", msg); if (child_pid != -1) kill(child_pid, SIGTERM); return -1; } counter->supported = true; } if (perf_evlist__apply_filters(evsel_list)) { error("failed to set filter with %d (%s)\n", errno, strerror(errno)); return -1; } /* * Enable counters and exec the command: */ t0 = rdclock(); clock_gettime(CLOCK_MONOTONIC, &ref_time); if (forks) { perf_evlist__start_workload(evsel_list); handle_initial_delay(); if (interval) { while (!waitpid(child_pid, &status, WNOHANG)) { nanosleep(&ts, NULL); print_interval(); } } wait(&status); if (WIFSIGNALED(status)) psignal(WTERMSIG(status), argv[0]); } else { handle_initial_delay(); while (!done) { nanosleep(&ts, NULL); if (interval) print_interval(); } } t1 = rdclock(); update_stats(&walltime_nsecs_stats, t1 - t0); if (aggr_mode == AGGR_GLOBAL) { list_for_each_entry(counter, &evsel_list->entries, node) { read_counter_aggr(counter); perf_evsel__close_fd(counter, perf_evsel__nr_cpus(counter), thread_map__nr(evsel_list->threads)); } } else { list_for_each_entry(counter, &evsel_list->entries, node) { read_counter(counter); perf_evsel__close_fd(counter, perf_evsel__nr_cpus(counter), 1); } } return WEXITSTATUS(status); } static int run_perf_stat(int argc __maybe_unused, const char **argv) { int ret; if (pre_cmd) { ret = system(pre_cmd); if (ret) return ret; } if (sync_run) sync(); ret = __run_perf_stat(argc, argv); if (ret) return ret; if (post_cmd) { ret = system(post_cmd); if (ret) return ret; } return ret; } static void print_noise_pct(double total, double avg) { double pct = rel_stddev_stats(total, avg); if (csv_output) fprintf(output, "%s%.2f%%", csv_sep, pct); else if (pct) fprintf(output, " ( +-%6.2f%% )", pct); } static void print_noise(struct perf_evsel *evsel, double avg) { struct perf_stat *ps; if (run_count == 1) return; ps = evsel->priv; print_noise_pct(stddev_stats(&ps->res_stats[0]), avg); } static void aggr_printout(struct perf_evsel *evsel, int id, int nr) { switch (aggr_mode) { case AGGR_CORE: fprintf(output, "S%d-C%*d%s%*d%s", cpu_map__id_to_socket(id), csv_output ? 0 : -8, cpu_map__id_to_cpu(id), csv_sep, csv_output ? 0 : 4, nr, csv_sep); break; case AGGR_SOCKET: fprintf(output, "S%*d%s%*d%s", csv_output ? 0 : -5, id, csv_sep, csv_output ? 0 : 4, nr, csv_sep); break; case AGGR_NONE: fprintf(output, "CPU%*d%s", csv_output ? 0 : -4, perf_evsel__cpus(evsel)->map[id], csv_sep); break; case AGGR_GLOBAL: default: break; } } static void nsec_printout(int cpu, int nr, struct perf_evsel *evsel, double avg) { double msecs = avg / 1e6; const char *fmt = csv_output ? "%.6f%s%s" : "%18.6f%s%-25s"; aggr_printout(evsel, cpu, nr); fprintf(output, fmt, msecs, csv_sep, perf_evsel__name(evsel)); if (evsel->cgrp) fprintf(output, "%s%s", csv_sep, evsel->cgrp->name); if (csv_output || interval) return; if (perf_evsel__match(evsel, SOFTWARE, SW_TASK_CLOCK)) fprintf(output, " # %8.3f CPUs utilized ", avg / avg_stats(&walltime_nsecs_stats)); else fprintf(output, " "); } /* used for get_ratio_color() */ enum grc_type { GRC_STALLED_CYCLES_FE, GRC_STALLED_CYCLES_BE, GRC_CACHE_MISSES, GRC_MAX_NR }; static const char *get_ratio_color(enum grc_type type, double ratio) { static const double grc_table[GRC_MAX_NR][3] = { [GRC_STALLED_CYCLES_FE] = { 50.0, 30.0, 10.0 }, [GRC_STALLED_CYCLES_BE] = { 75.0, 50.0, 20.0 }, [GRC_CACHE_MISSES] = { 20.0, 10.0, 5.0 }, }; const char *color = PERF_COLOR_NORMAL; if (ratio > grc_table[type][0]) color = PERF_COLOR_RED; else if (ratio > grc_table[type][1]) color = PERF_COLOR_MAGENTA; else if (ratio > grc_table[type][2]) color = PERF_COLOR_YELLOW; return color; } static void print_stalled_cycles_frontend(int cpu, struct perf_evsel *evsel __maybe_unused, double avg) { double total, ratio = 0.0; const char *color; total = avg_stats(&runtime_cycles_stats[cpu]); if (total) ratio = avg / total * 100.0; color = get_ratio_color(GRC_STALLED_CYCLES_FE, ratio); fprintf(output, " # "); color_fprintf(output, color, "%6.2f%%", ratio); fprintf(output, " frontend cycles idle "); } static void print_stalled_cycles_backend(int cpu, struct perf_evsel *evsel __maybe_unused, double avg) { double total, ratio = 0.0; const char *color; total = avg_stats(&runtime_cycles_stats[cpu]); if (total) ratio = avg / total * 100.0; color = get_ratio_color(GRC_STALLED_CYCLES_BE, ratio); fprintf(output, " # "); color_fprintf(output, color, "%6.2f%%", ratio); fprintf(output, " backend cycles idle "); } static void print_branch_misses(int cpu, struct perf_evsel *evsel __maybe_unused, double avg) { double total, ratio = 0.0; const char *color; total = avg_stats(&runtime_branches_stats[cpu]); if (total) ratio = avg / total * 100.0; color = get_ratio_color(GRC_CACHE_MISSES, ratio); fprintf(output, " # "); color_fprintf(output, color, "%6.2f%%", ratio); fprintf(output, " of all branches "); } static void print_l1_dcache_misses(int cpu, struct perf_evsel *evsel __maybe_unused, double avg) { double total, ratio = 0.0; const char *color; total = avg_stats(&runtime_l1_dcache_stats[cpu]); if (total) ratio = avg / total * 100.0; color = get_ratio_color(GRC_CACHE_MISSES, ratio); fprintf(output, " # "); color_fprintf(output, color, "%6.2f%%", ratio); fprintf(output, " of all L1-dcache hits "); } static void print_l1_icache_misses(int cpu, struct perf_evsel *evsel __maybe_unused, double avg) { double total, ratio = 0.0; const char *color; total = avg_stats(&runtime_l1_icache_stats[cpu]); if (total) ratio = avg / total * 100.0; color = get_ratio_color(GRC_CACHE_MISSES, ratio); fprintf(output, " # "); color_fprintf(output, color, "%6.2f%%", ratio); fprintf(output, " of all L1-icache hits "); } static void print_dtlb_cache_misses(int cpu, struct perf_evsel *evsel __maybe_unused, double avg) { double total, ratio = 0.0; const char *color; total = avg_stats(&runtime_dtlb_cache_stats[cpu]); if (total) ratio = avg / total * 100.0; color = get_ratio_color(GRC_CACHE_MISSES, ratio); fprintf(output, " # "); color_fprintf(output, color, "%6.2f%%", ratio); fprintf(output, " of all dTLB cache hits "); } static void print_itlb_cache_misses(int cpu, struct perf_evsel *evsel __maybe_unused, double avg) { double total, ratio = 0.0; const char *color; total = avg_stats(&runtime_itlb_cache_stats[cpu]); if (total) ratio = avg / total * 100.0; color = get_ratio_color(GRC_CACHE_MISSES, ratio); fprintf(output, " # "); color_fprintf(output, color, "%6.2f%%", ratio); fprintf(output, " of all iTLB cache hits "); } static void print_ll_cache_misses(int cpu, struct perf_evsel *evsel __maybe_unused, double avg) { double total, ratio = 0.0; const char *color; total = avg_stats(&runtime_ll_cache_stats[cpu]); if (total) ratio = avg / total * 100.0; color = get_ratio_color(GRC_CACHE_MISSES, ratio); fprintf(output, " # "); color_fprintf(output, color, "%6.2f%%", ratio); fprintf(output, " of all LL-cache hits "); } static void abs_printout(int cpu, int nr, struct perf_evsel *evsel, double avg) { double total, ratio = 0.0; const char *fmt; if (csv_output) fmt = "%.0f%s%s"; else if (big_num) fmt = "%'18.0f%s%-25s"; else fmt = "%18.0f%s%-25s"; aggr_printout(evsel, cpu, nr); if (aggr_mode == AGGR_GLOBAL) cpu = 0; fprintf(output, fmt, avg, csv_sep, perf_evsel__name(evsel)); if (evsel->cgrp) fprintf(output, "%s%s", csv_sep, evsel->cgrp->name); if (csv_output || interval) return; if (perf_evsel__match(evsel, HARDWARE, HW_INSTRUCTIONS)) { total = avg_stats(&runtime_cycles_stats[cpu]); if (total) ratio = avg / total; fprintf(output, " # %5.2f insns per cycle ", ratio); total = avg_stats(&runtime_stalled_cycles_front_stats[cpu]); total = max(total, avg_stats(&runtime_stalled_cycles_back_stats[cpu])); if (total && avg) { ratio = total / avg; fprintf(output, "\n # %5.2f stalled cycles per insn", ratio); } } else if (perf_evsel__match(evsel, HARDWARE, HW_BRANCH_MISSES) && runtime_branches_stats[cpu].n != 0) { print_branch_misses(cpu, evsel, avg); } else if ( evsel->attr.type == PERF_TYPE_HW_CACHE && evsel->attr.config == ( PERF_COUNT_HW_CACHE_L1D | ((PERF_COUNT_HW_CACHE_OP_READ) << 8) | ((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) && runtime_l1_dcache_stats[cpu].n != 0) { print_l1_dcache_misses(cpu, evsel, avg); } else if ( evsel->attr.type == PERF_TYPE_HW_CACHE && evsel->attr.config == ( PERF_COUNT_HW_CACHE_L1I | ((PERF_COUNT_HW_CACHE_OP_READ) << 8) | ((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) && runtime_l1_icache_stats[cpu].n != 0) { print_l1_icache_misses(cpu, evsel, avg); } else if ( evsel->attr.type == PERF_TYPE_HW_CACHE && evsel->attr.config == ( PERF_COUNT_HW_CACHE_DTLB | ((PERF_COUNT_HW_CACHE_OP_READ) << 8) | ((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) && runtime_dtlb_cache_stats[cpu].n != 0) { print_dtlb_cache_misses(cpu, evsel, avg); } else if ( evsel->attr.type == PERF_TYPE_HW_CACHE && evsel->attr.config == ( PERF_COUNT_HW_CACHE_ITLB | ((PERF_COUNT_HW_CACHE_OP_READ) << 8) | ((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) && runtime_itlb_cache_stats[cpu].n != 0) { print_itlb_cache_misses(cpu, evsel, avg); } else if ( evsel->attr.type == PERF_TYPE_HW_CACHE && evsel->attr.config == ( PERF_COUNT_HW_CACHE_LL | ((PERF_COUNT_HW_CACHE_OP_READ) << 8) | ((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) && runtime_ll_cache_stats[cpu].n != 0) { print_ll_cache_misses(cpu, evsel, avg); } else if (perf_evsel__match(evsel, HARDWARE, HW_CACHE_MISSES) && runtime_cacherefs_stats[cpu].n != 0) { total = avg_stats(&runtime_cacherefs_stats[cpu]); if (total) ratio = avg * 100 / total; fprintf(output, " # %8.3f %% of all cache refs ", ratio); } else if (perf_evsel__match(evsel, HARDWARE, HW_STALLED_CYCLES_FRONTEND)) { print_stalled_cycles_frontend(cpu, evsel, avg); } else if (perf_evsel__match(evsel, HARDWARE, HW_STALLED_CYCLES_BACKEND)) { print_stalled_cycles_backend(cpu, evsel, avg); } else if (perf_evsel__match(evsel, HARDWARE, HW_CPU_CYCLES)) { total = avg_stats(&runtime_nsecs_stats[cpu]); if (total) ratio = 1.0 * avg / total; fprintf(output, " # %8.3f GHz ", ratio); } else if (runtime_nsecs_stats[cpu].n != 0) { char unit = 'M'; total = avg_stats(&runtime_nsecs_stats[cpu]); if (total) ratio = 1000.0 * avg / total; if (ratio < 0.001) { ratio *= 1000; unit = 'K'; } fprintf(output, " # %8.3f %c/sec ", ratio, unit); } else { fprintf(output, " "); } } static void print_aggr(char *prefix) { struct perf_evsel *counter; int cpu, cpu2, s, s2, id, nr; u64 ena, run, val; if (!(aggr_map || aggr_get_id)) return; for (s = 0; s < aggr_map->nr; s++) { id = aggr_map->map[s]; list_for_each_entry(counter, &evsel_list->entries, node) { val = ena = run = 0; nr = 0; for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) { cpu2 = perf_evsel__cpus(counter)->map[cpu]; s2 = aggr_get_id(evsel_list->cpus, cpu2); if (s2 != id) continue; val += counter->counts->cpu[cpu].val; ena += counter->counts->cpu[cpu].ena; run += counter->counts->cpu[cpu].run; nr++; } if (prefix) fprintf(output, "%s", prefix); if (run == 0 || ena == 0) { aggr_printout(counter, id, nr); fprintf(output, "%*s%s%*s", csv_output ? 0 : 18, counter->supported ? CNTR_NOT_COUNTED : CNTR_NOT_SUPPORTED, csv_sep, csv_output ? 0 : -24, perf_evsel__name(counter)); if (counter->cgrp) fprintf(output, "%s%s", csv_sep, counter->cgrp->name); fputc('\n', output); continue; } if (nsec_counter(counter)) nsec_printout(id, nr, counter, val); else abs_printout(id, nr, counter, val); if (!csv_output) { print_noise(counter, 1.0); if (run != ena) fprintf(output, " (%.2f%%)", 100.0 * run / ena); } fputc('\n', output); } } } /* * Print out the results of a single counter: * aggregated counts in system-wide mode */ static void print_counter_aggr(struct perf_evsel *counter, char *prefix) { struct perf_stat *ps = counter->priv; double avg = avg_stats(&ps->res_stats[0]); int scaled = counter->counts->scaled; if (prefix) fprintf(output, "%s", prefix); if (scaled == -1) { fprintf(output, "%*s%s%*s", csv_output ? 0 : 18, counter->supported ? CNTR_NOT_COUNTED : CNTR_NOT_SUPPORTED, csv_sep, csv_output ? 0 : -24, perf_evsel__name(counter)); if (counter->cgrp) fprintf(output, "%s%s", csv_sep, counter->cgrp->name); fputc('\n', output); return; } if (nsec_counter(counter)) nsec_printout(-1, 0, counter, avg); else abs_printout(-1, 0, counter, avg); print_noise(counter, avg); if (csv_output) { fputc('\n', output); return; } if (scaled) { double avg_enabled, avg_running; avg_enabled = avg_stats(&ps->res_stats[1]); avg_running = avg_stats(&ps->res_stats[2]); fprintf(output, " [%5.2f%%]", 100 * avg_running / avg_enabled); } fprintf(output, "\n"); } /* * Print out the results of a single counter: * does not use aggregated count in system-wide */ static void print_counter(struct perf_evsel *counter, char *prefix) { u64 ena, run, val; int cpu; for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) { val = counter->counts->cpu[cpu].val; ena = counter->counts->cpu[cpu].ena; run = counter->counts->cpu[cpu].run; if (prefix) fprintf(output, "%s", prefix); if (run == 0 || ena == 0) { fprintf(output, "CPU%*d%s%*s%s%*s", csv_output ? 0 : -4, perf_evsel__cpus(counter)->map[cpu], csv_sep, csv_output ? 0 : 18, counter->supported ? CNTR_NOT_COUNTED : CNTR_NOT_SUPPORTED, csv_sep, csv_output ? 0 : -24, perf_evsel__name(counter)); if (counter->cgrp) fprintf(output, "%s%s", csv_sep, counter->cgrp->name); fputc('\n', output); continue; } if (nsec_counter(counter)) nsec_printout(cpu, 0, counter, val); else abs_printout(cpu, 0, counter, val); if (!csv_output) { print_noise(counter, 1.0); if (run != ena) fprintf(output, " (%.2f%%)", 100.0 * run / ena); } fputc('\n', output); } } static void print_stat(int argc, const char **argv) { struct perf_evsel *counter; int i; fflush(stdout); if (!csv_output) { fprintf(output, "\n"); fprintf(output, " Performance counter stats for "); if (!perf_target__has_task(&target)) { fprintf(output, "\'%s", argv[0]); for (i = 1; i < argc; i++) fprintf(output, " %s", argv[i]); } else if (target.pid) fprintf(output, "process id \'%s", target.pid); else fprintf(output, "thread id \'%s", target.tid); fprintf(output, "\'"); if (run_count > 1) fprintf(output, " (%d runs)", run_count); fprintf(output, ":\n\n"); } switch (aggr_mode) { case AGGR_CORE: case AGGR_SOCKET: print_aggr(NULL); break; case AGGR_GLOBAL: list_for_each_entry(counter, &evsel_list->entries, node) print_counter_aggr(counter, NULL); break; case AGGR_NONE: list_for_each_entry(counter, &evsel_list->entries, node) print_counter(counter, NULL); break; default: break; } if (!csv_output) { if (!null_run) fprintf(output, "\n"); fprintf(output, " %17.9f seconds time elapsed", avg_stats(&walltime_nsecs_stats)/1e9); if (run_count > 1) { fprintf(output, " "); print_noise_pct(stddev_stats(&walltime_nsecs_stats), avg_stats(&walltime_nsecs_stats)); } fprintf(output, "\n\n"); } } static volatile int signr = -1; static void skip_signal(int signo) { if ((child_pid == -1) || interval) done = 1; signr = signo; /* * render child_pid harmless * won't send SIGTERM to a random * process in case of race condition * and fast PID recycling */ child_pid = -1; } static void sig_atexit(void) { sigset_t set, oset; /* * avoid race condition with SIGCHLD handler * in skip_signal() which is modifying child_pid * goal is to avoid send SIGTERM to a random * process */ sigemptyset(&set); sigaddset(&set, SIGCHLD); sigprocmask(SIG_BLOCK, &set, &oset); if (child_pid != -1) kill(child_pid, SIGTERM); sigprocmask(SIG_SETMASK, &oset, NULL); if (signr == -1) return; signal(signr, SIG_DFL); kill(getpid(), signr); } static int stat__set_big_num(const struct option *opt __maybe_unused, const char *s __maybe_unused, int unset) { big_num_opt = unset ? 0 : 1; return 0; } static int perf_stat_init_aggr_mode(void) { switch (aggr_mode) { case AGGR_SOCKET: if (cpu_map__build_socket_map(evsel_list->cpus, &aggr_map)) { perror("cannot build socket map"); return -1; } aggr_get_id = cpu_map__get_socket; break; case AGGR_CORE: if (cpu_map__build_core_map(evsel_list->cpus, &aggr_map)) { perror("cannot build core map"); return -1; } aggr_get_id = cpu_map__get_core; break; case AGGR_NONE: case AGGR_GLOBAL: default: break; } return 0; } /* * Add default attributes, if there were no attributes specified or * if -d/--detailed, -d -d or -d -d -d is used: */ static int add_default_attributes(void) { struct perf_event_attr default_attrs[] = { { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK }, { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES }, { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS }, { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS }, { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES }, { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_FRONTEND }, { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_BACKEND }, { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS }, { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS }, { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_MISSES }, }; /* * Detailed stats (-d), covering the L1 and last level data caches: */ struct perf_event_attr detailed_attrs[] = { { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_L1D << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_L1D << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_LL << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_LL << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, }; /* * Very detailed stats (-d -d), covering the instruction cache and the TLB caches: */ struct perf_event_attr very_detailed_attrs[] = { { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_L1I << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_L1I << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_DTLB << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_DTLB << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_ITLB << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_ITLB << 0 | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, }; /* * Very, very detailed stats (-d -d -d), adding prefetch events: */ struct perf_event_attr very_very_detailed_attrs[] = { { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_L1D << 0 | (PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) | (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, { .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_L1D << 0 | (PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) | (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, }; /* Set attrs if no event is selected and !null_run: */ if (null_run) return 0; if (!evsel_list->nr_entries) { if (perf_evlist__add_default_attrs(evsel_list, default_attrs) < 0) return -1; } /* Detailed events get appended to the event list: */ if (detailed_run < 1) return 0; /* Append detailed run extra attributes: */ if (perf_evlist__add_default_attrs(evsel_list, detailed_attrs) < 0) return -1; if (detailed_run < 2) return 0; /* Append very detailed run extra attributes: */ if (perf_evlist__add_default_attrs(evsel_list, very_detailed_attrs) < 0) return -1; if (detailed_run < 3) return 0; /* Append very, very detailed run extra attributes: */ return perf_evlist__add_default_attrs(evsel_list, very_very_detailed_attrs); } int cmd_stat(int argc, const char **argv, const char *prefix __maybe_unused) { bool append_file = false; int output_fd = 0; const char *output_name = NULL; const struct option options[] = { OPT_CALLBACK('e', "event", &evsel_list, "event", "event selector. use 'perf list' to list available events", parse_events_option), OPT_CALLBACK(0, "filter", &evsel_list, "filter", "event filter", parse_filter), OPT_BOOLEAN('i', "no-inherit", &no_inherit, "child tasks do not inherit counters"), OPT_STRING('p', "pid", &target.pid, "pid", "stat events on existing process id"), OPT_STRING('t', "tid", &target.tid, "tid", "stat events on existing thread id"), OPT_BOOLEAN('a', "all-cpus", &target.system_wide, "system-wide collection from all CPUs"), OPT_BOOLEAN('g', "group", &group, "put the counters into a counter group"), OPT_BOOLEAN('c', "scale", &scale, "scale/normalize counters"), OPT_INCR('v', "verbose", &verbose, "be more verbose (show counter open errors, etc)"), OPT_INTEGER('r', "repeat", &run_count, "repeat command and print average + stddev (max: 100, forever: 0)"), OPT_BOOLEAN('n', "null", &null_run, "null run - dont start any counters"), OPT_INCR('d', "detailed", &detailed_run, "detailed run - start a lot of events"), OPT_BOOLEAN('S', "sync", &sync_run, "call sync() before starting a run"), OPT_CALLBACK_NOOPT('B', "big-num", NULL, NULL, "print large numbers with thousands\' separators", stat__set_big_num), OPT_STRING('C', "cpu", &target.cpu_list, "cpu", "list of cpus to monitor in system-wide"), OPT_SET_UINT('A', "no-aggr", &aggr_mode, "disable CPU count aggregation", AGGR_NONE), OPT_STRING('x', "field-separator", &csv_sep, "separator", "print counts with custom separator"), OPT_CALLBACK('G', "cgroup", &evsel_list, "name", "monitor event in cgroup name only", parse_cgroups), OPT_STRING('o', "output", &output_name, "file", "output file name"), OPT_BOOLEAN(0, "append", &append_file, "append to the output file"), OPT_INTEGER(0, "log-fd", &output_fd, "log output to fd, instead of stderr"), OPT_STRING(0, "pre", &pre_cmd, "command", "command to run prior to the measured command"), OPT_STRING(0, "post", &post_cmd, "command", "command to run after to the measured command"), OPT_UINTEGER('I', "interval-print", &interval, "print counts at regular interval in ms (>= 100)"), OPT_SET_UINT(0, "per-socket", &aggr_mode, "aggregate counts per processor socket", AGGR_SOCKET), OPT_SET_UINT(0, "per-core", &aggr_mode, "aggregate counts per physical processor core", AGGR_CORE), OPT_UINTEGER('D', "delay", &initial_delay, "ms to wait before starting measurement after program start"), OPT_END() }; const char * const stat_usage[] = { "perf stat [<options>] [<command>]", NULL }; int status = -ENOMEM, run_idx; const char *mode; setlocale(LC_ALL, ""); evsel_list = perf_evlist__new(); if (evsel_list == NULL) return -ENOMEM; argc = parse_options(argc, argv, options, stat_usage, PARSE_OPT_STOP_AT_NON_OPTION); output = stderr; if (output_name && strcmp(output_name, "-")) output = NULL; if (output_name && output_fd) { fprintf(stderr, "cannot use both --output and --log-fd\n"); usage_with_options(stat_usage, options); } if (output_fd < 0) { fprintf(stderr, "argument to --log-fd must be a > 0\n"); usage_with_options(stat_usage, options); } if (!output) { struct timespec tm; mode = append_file ? "a" : "w"; output = fopen(output_name, mode); if (!output) { perror("failed to create output file"); return -1; } clock_gettime(CLOCK_REALTIME, &tm); fprintf(output, "# started on %s\n", ctime(&tm.tv_sec)); } else if (output_fd > 0) { mode = append_file ? "a" : "w"; output = fdopen(output_fd, mode); if (!output) { perror("Failed opening logfd"); return -errno; } } if (csv_sep) { csv_output = true; if (!strcmp(csv_sep, "\\t")) csv_sep = "\t"; } else csv_sep = DEFAULT_SEPARATOR; /* * let the spreadsheet do the pretty-printing */ if (csv_output) { /* User explicitly passed -B? */ if (big_num_opt == 1) { fprintf(stderr, "-B option not supported with -x\n"); usage_with_options(stat_usage, options); } else /* Nope, so disable big number formatting */ big_num = false; } else if (big_num_opt == 0) /* User passed --no-big-num */ big_num = false; if (!argc && !perf_target__has_task(&target)) usage_with_options(stat_usage, options); if (run_count < 0) { usage_with_options(stat_usage, options); } else if (run_count == 0) { forever = true; run_count = 1; } /* no_aggr, cgroup are for system-wide only */ if ((aggr_mode != AGGR_GLOBAL || nr_cgroups) && !perf_target__has_cpu(&target)) { fprintf(stderr, "both cgroup and no-aggregation " "modes only available in system-wide mode\n"); usage_with_options(stat_usage, options); return -1; } if (add_default_attributes()) goto out; perf_target__validate(&target); if (perf_evlist__create_maps(evsel_list, &target) < 0) { if (perf_target__has_task(&target)) pr_err("Problems finding threads of monitor\n"); if (perf_target__has_cpu(&target)) perror("failed to parse CPUs map"); usage_with_options(stat_usage, options); return -1; } if (interval && interval < 100) { pr_err("print interval must be >= 100ms\n"); usage_with_options(stat_usage, options); return -1; } if (perf_evlist__alloc_stats(evsel_list, interval)) goto out_free_maps; if (perf_stat_init_aggr_mode()) goto out; /* * We dont want to block the signals - that would cause * child tasks to inherit that and Ctrl-C would not work. * What we want is for Ctrl-C to work in the exec()-ed * task, but being ignored by perf stat itself: */ atexit(sig_atexit); if (!forever) signal(SIGINT, skip_signal); signal(SIGCHLD, skip_signal); signal(SIGALRM, skip_signal); signal(SIGABRT, skip_signal); status = 0; for (run_idx = 0; forever || run_idx < run_count; run_idx++) { if (run_count != 1 && verbose) fprintf(output, "[ perf stat: executing run #%d ... ]\n", run_idx + 1); status = run_perf_stat(argc, argv); if (forever && status != -1) { print_stat(argc, argv); perf_stat__reset_stats(evsel_list); } } if (!forever && status != -1 && !interval) print_stat(argc, argv); perf_evlist__free_stats(evsel_list); out_free_maps: perf_evlist__delete_maps(evsel_list); out: perf_evlist__delete(evsel_list); return status; }