/****************************************************************************** * * Copyright (C) 2012 Ittiam Systems Pvt Ltd, Bangalore * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ /** ******************************************************************************* * @file * ihevc_iquant_recon.c * * @brief * Contains function definitions for inverse quantization and * reconstruction * * @author * 100470 * * @par List of Functions: * - ihevc_iquant_recon_4x4_ttype1() * - ihevc_iquant_recon_4x4() * - ihevc_iquant_recon_8x8() * - ihevc_iquant_recon_16x16() * - ihevc_iquant_recon_32x32() * * @remarks * None * ******************************************************************************* */ #include <stdio.h> #include <string.h> #include "ihevc_typedefs.h" #include "ihevc_macros.h" #include "ihevc_platform_macros.h" #include "ihevc_defs.h" #include "ihevc_trans_tables.h" #include "ihevc_iquant_recon.h" #include "ihevc_func_selector.h" #include "ihevc_trans_macros.h" /* All the functions here are replicated from ihevc_iquant_itrans_recon.c and modified to */ /* include reconstruction */ /** ******************************************************************************* * * @brief * This function performs inverse quantization type 1 and reconstruction * for 4x4 input block * * @par Description: * This function performs inverse quantization and reconstruction for 4x4 * input block * * @param[in] pi2_src * Input 4x4 coefficients * * @param[in] pu1_pred * Prediction 4x4 block * * @param[in] pi2_dequant_coeff * Dequant Coeffs * * @param[out] pu1_dst * Output 4x4 block * * @param[in] qp_div * Quantization parameter / 6 * * @param[in] qp_rem * Quantization parameter % 6 * * @param[in] src_strd * Input stride * * @param[in] pred_strd * Prediction stride * * @param[in] dst_strd * Output Stride * * @param[in] zero_cols * Zero columns in pi2_src * * @returns Void * * @remarks * None * ******************************************************************************* */ void ihevc_iquant_recon_4x4_ttype1(WORD16 *pi2_src, UWORD8 *pu1_pred, WORD16 *pi2_dequant_coeff, UWORD8 *pu1_dst, WORD32 qp_div, /* qpscaled / 6 */ WORD32 qp_rem, /* qpscaled % 6 */ WORD32 src_strd, WORD32 pred_strd, WORD32 dst_strd, WORD32 zero_cols) { { /* Inverse Quant and recon */ { WORD32 i, j; WORD32 shift_iq; WORD32 trans_size; /* Inverse Quantization constants */ { WORD32 log2_trans_size, bit_depth; log2_trans_size = 2; bit_depth = 8 + 0; shift_iq = bit_depth + log2_trans_size - 5; } trans_size = TRANS_SIZE_4; for(i = 0; i < trans_size; i++) { /* Checking for Zero Cols */ if((zero_cols & 1) == 1) { for(j = 0; j < trans_size; j++) pu1_dst[j * dst_strd] = pu1_pred[j * pred_strd]; } else { for(j = 0; j < trans_size; j++) { WORD32 iquant_out; IQUANT_4x4(iquant_out, pi2_src[j * src_strd], pi2_dequant_coeff[j * trans_size] * g_ihevc_iquant_scales[qp_rem], shift_iq, qp_div); iquant_out = (iquant_out + 16) >> 5; pu1_dst[j * dst_strd] = CLIP_U8(iquant_out + pu1_pred[j * pred_strd]); } } pi2_src++; pi2_dequant_coeff++; pu1_pred++; pu1_dst++; zero_cols = zero_cols >> 1; } } } } /** ******************************************************************************* * * @brief * This function performs inverse quantization and reconstruction for 4x4 * input block * * @par Description: * This function performs inverse quantization and reconstruction for 4x4 * input block * * @param[in] pi2_src * Input 4x4 coefficients * * @param[in] pu1_pred * Prediction 4x4 block * * @param[in] pi2_dequant_coeff * Dequant Coeffs * * @param[out] pu1_dst * Output 4x4 block * * @param[in] qp_div * Quantization parameter / 6 * * @param[in] qp_rem * Quantization parameter % 6 * * @param[in] src_strd * Input stride * * @param[in] pred_strd * Prediction stride * * @param[in] dst_strd * Output Stride * * @param[in] zero_cols * Zero columns in pi2_src * * @returns Void * * @remarks * None * ******************************************************************************* */ void ihevc_iquant_recon_4x4(WORD16 *pi2_src, UWORD8 *pu1_pred, WORD16 *pi2_dequant_coeff, UWORD8 *pu1_dst, WORD32 qp_div, /* qpscaled / 6 */ WORD32 qp_rem, /* qpscaled % 6 */ WORD32 src_strd, WORD32 pred_strd, WORD32 dst_strd, WORD32 zero_cols) { { /* Inverse Quant and recon */ { WORD32 i, j; WORD32 shift_iq; WORD32 trans_size; /* Inverse Quantization constants */ { WORD32 log2_trans_size, bit_depth; log2_trans_size = 2; bit_depth = 8 + 0; shift_iq = bit_depth + log2_trans_size - 5; } trans_size = TRANS_SIZE_4; for(i = 0; i < trans_size; i++) { /* Checking for Zero Cols */ if((zero_cols & 1) == 1) { for(j = 0; j < trans_size; j++) pu1_dst[j * dst_strd] = pu1_pred[j * pred_strd]; } else { for(j = 0; j < trans_size; j++) { WORD32 iquant_out; IQUANT_4x4(iquant_out, pi2_src[j * src_strd], pi2_dequant_coeff[j * trans_size] * g_ihevc_iquant_scales[qp_rem], shift_iq, qp_div); iquant_out = (iquant_out + 16) >> 5; pu1_dst[j * dst_strd] = CLIP_U8(iquant_out + pu1_pred[j * pred_strd]); } } pi2_src++; pi2_dequant_coeff++; pu1_pred++; pu1_dst++; zero_cols = zero_cols >> 1; } } } } /** ******************************************************************************* * * @brief * This function performs inverse quantization and reconstruction for 8x8 * input block * * @par Description: * This function performs inverse quantization and reconstruction for 8x8 * input block * * @param[in] pi2_src * Input 8x8 coefficients * * @param[in] pu1_pred * Prediction 8x8 block * * @param[in] pi2_dequant_coeff * Dequant Coeffs * * @param[out] pu1_dst * Output 8x8 block * * @param[in] qp_div * Quantization parameter / 6 * * @param[in] qp_rem * Quantization parameter % 6 * * @param[in] src_strd * Input stride * * @param[in] pred_strd * Prediction stride * * @param[in] dst_strd * Output Stride * * @param[in] zero_cols * Zero columns in pi2_src * * @returns Void * * @remarks * None * ******************************************************************************* */ void ihevc_iquant_recon_8x8(WORD16 *pi2_src, UWORD8 *pu1_pred, WORD16 *pi2_dequant_coeff, UWORD8 *pu1_dst, WORD32 qp_div, /* qpscaled / 6 */ WORD32 qp_rem, /* qpscaled % 6 */ WORD32 src_strd, WORD32 pred_strd, WORD32 dst_strd, WORD32 zero_cols) { { /* Inverse Quant and recon */ { WORD32 i, j; WORD32 shift_iq; WORD32 trans_size; /* Inverse Quantization constants */ { WORD32 log2_trans_size, bit_depth; log2_trans_size = 3; bit_depth = 8 + 0; shift_iq = bit_depth + log2_trans_size - 5; } trans_size = TRANS_SIZE_8; for(i = 0; i < trans_size; i++) { /* Checking for Zero Cols */ if((zero_cols & 1) == 1) { for(j = 0; j < trans_size; j++) pu1_dst[j * dst_strd] = pu1_pred[j * pred_strd]; } else { for(j = 0; j < trans_size; j++) { WORD32 iquant_out; IQUANT(iquant_out, pi2_src[j * src_strd], pi2_dequant_coeff[j * trans_size] * g_ihevc_iquant_scales[qp_rem], shift_iq, qp_div); iquant_out = (iquant_out + 16) >> 5; pu1_dst[j * dst_strd] = CLIP_U8(iquant_out + pu1_pred[j * pred_strd]); } } pi2_src++; pi2_dequant_coeff++; pu1_pred++; pu1_dst++; zero_cols = zero_cols >> 1; } } } } /** ******************************************************************************* * * @brief * This function performs inverse quantization and reconstruction for 16x16 * input block * * @par Description: * This function performs inverse quantization and reconstruction for 16x16 * input block * * @param[in] pi2_src * Input 16x16 coefficients * * @param[in] pu1_pred * Prediction 16x16 block * * @param[in] pi2_dequant_coeff * Dequant Coeffs * * @param[out] pu1_dst * Output 16x16 block * * @param[in] qp_div * Quantization parameter / 6 * * @param[in] qp_rem * Quantization parameter % 6 * * @param[in] src_strd * Input stride * * @param[in] pred_strd * Prediction stride * * @param[in] dst_strd * Output Stride * * @param[in] zero_cols * Zero columns in pi2_src * * @returns Void * * @remarks * None * ******************************************************************************* */ void ihevc_iquant_recon_16x16(WORD16 *pi2_src, UWORD8 *pu1_pred, WORD16 *pi2_dequant_coeff, UWORD8 *pu1_dst, WORD32 qp_div, /* qpscaled / 6 */ WORD32 qp_rem, /* qpscaled % 6 */ WORD32 src_strd, WORD32 pred_strd, WORD32 dst_strd, WORD32 zero_cols) { { /* Inverse Quant and recon */ { WORD32 i, j; WORD32 shift_iq; WORD32 trans_size; /* Inverse Quantization constants */ { WORD32 log2_trans_size, bit_depth; log2_trans_size = 4; bit_depth = 8 + 0; shift_iq = bit_depth + log2_trans_size - 5; } trans_size = TRANS_SIZE_16; for(i = 0; i < trans_size; i++) { /* Checking for Zero Cols */ if((zero_cols & 1) == 1) { for(j = 0; j < trans_size; j++) pu1_dst[j * dst_strd] = pu1_pred[j * pred_strd]; } else { for(j = 0; j < trans_size; j++) { WORD32 iquant_out; IQUANT(iquant_out, pi2_src[j * src_strd], pi2_dequant_coeff[j * trans_size] * g_ihevc_iquant_scales[qp_rem], shift_iq, qp_div); iquant_out = (iquant_out + 16) >> 5; pu1_dst[j * dst_strd] = CLIP_U8(iquant_out + pu1_pred[j * pred_strd]); } } pi2_src++; pi2_dequant_coeff++; pu1_pred++; pu1_dst++; zero_cols = zero_cols >> 1; } } } } /** ******************************************************************************* * * @brief * This function performs inverse quantization and reconstruction for 32x32 * input block * * @par Description: * This function performs inverse quantization and reconstruction for 32x32 * input block * * @param[in] pi2_src * Input 32x32 coefficients * * @param[in] pu1_pred * Prediction 32x32 block * * @param[in] pi2_dequant_coeff * Dequant Coeffs * * @param[out] pu1_dst * Output 32x32 block * * @param[in] qp_div * Quantization parameter / 6 * * @param[in] qp_rem * Quantization parameter % 6 * * @param[in] src_strd * Input stride * * @param[in] pred_strd * Prediction stride * * @param[in] dst_strd * Output Stride * * @param[in] zero_cols * Zero columns in pi2_src * * @returns Void * * @remarks * None * ******************************************************************************* */ void ihevc_iquant_recon_32x32(WORD16 *pi2_src, UWORD8 *pu1_pred, WORD16 *pi2_dequant_coeff, UWORD8 *pu1_dst, WORD32 qp_div, /* qpscaled / 6 */ WORD32 qp_rem, /* qpscaled % 6 */ WORD32 src_strd, WORD32 pred_strd, WORD32 dst_strd, WORD32 zero_cols) { { /* Inverse Quant and recon */ { WORD32 i, j; WORD32 shift_iq; WORD32 trans_size; /* Inverse Quantization constants */ { WORD32 log2_trans_size, bit_depth; log2_trans_size = 5; bit_depth = 8 + 0; shift_iq = bit_depth + log2_trans_size - 5; } trans_size = TRANS_SIZE_32; for(i = 0; i < trans_size; i++) { /* Checking for Zero Cols */ if((zero_cols & 1) == 1) { for(j = 0; j < trans_size; j++) pu1_dst[j * dst_strd] = pu1_pred[j * pred_strd]; } else { for(j = 0; j < trans_size; j++) { WORD32 iquant_out; IQUANT(iquant_out, pi2_src[j * src_strd], pi2_dequant_coeff[j * trans_size] * g_ihevc_iquant_scales[qp_rem], shift_iq, qp_div); iquant_out = (iquant_out + 16) >> 5; pu1_dst[j * dst_strd] = CLIP_U8(iquant_out + pu1_pred[j * pred_strd]); } } pi2_src++; pi2_dequant_coeff++; pu1_pred++; pu1_dst++; zero_cols = zero_cols >> 1; } } } }