/* ** This file is in the public domain, so clarified as of ** 2006-07-17 by Arthur David Olson. */ /* Enable extensions and modifications for ICU. */ #define ICU /* Continue executing after link failure. Even if ICU is undefined * (for vanilla zic behavior), ICU_LINKS should be defined, since zic * appears to fail on the 2003 data the first time through during the * linking phase. Running zic twice, with ICU_LINKS defined, causes * links to be handled correctly. */ #define ICU_LINKS #define LEAVE_SOME_PRE_2011_SYSTEMS_IN_THE_LURCH #ifdef ICU /* These constants are embedded in dynamically generated header * version.h in the standard tzcode distribution. */ static char const PKGVERSION[]="N/A"; static char const TZVERSION[]="N/A"; static char const REPORT_BUGS_TO[]="N/A"; #else #include "version.h" #endif #include "private.h" #include "locale.h" #include "tzfile.h" #include <stdarg.h> #define ZIC_VERSION_PRE_2013 '2' #define ZIC_VERSION '3' typedef int_fast64_t zic_t; #define ZIC_MIN INT_FAST64_MIN #define ZIC_MAX INT_FAST64_MAX #define SCNdZIC SCNdFAST64 #ifndef ZIC_MAX_ABBR_LEN_WO_WARN #define ZIC_MAX_ABBR_LEN_WO_WARN 6 #endif /* !defined ZIC_MAX_ABBR_LEN_WO_WARN */ #if HAVE_SYS_STAT_H #include "sys/stat.h" #endif #ifdef S_IRUSR #define MKDIR_UMASK (S_IRUSR|S_IWUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) #else #define MKDIR_UMASK 0755 #endif #ifdef ICU #include "tz2icu.h" #endif /* ** On some ancient hosts, predicates like `isspace(C)' are defined ** only if isascii(C) || C == EOF. Modern hosts obey the C Standard, ** which says they are defined only if C == ((unsigned char) C) || C == EOF. ** Neither the C Standard nor Posix require that `isascii' exist. ** For portability, we check both ancient and modern requirements. ** If isascii is not defined, the isascii check succeeds trivially. */ #include "ctype.h" #ifndef isascii #define isascii(x) 1 #endif #define end(cp) (strchr((cp), '\0')) struct rule { const char * r_filename; int r_linenum; const char * r_name; zic_t r_loyear; /* for example, 1986 */ zic_t r_hiyear; /* for example, 1986 */ const char * r_yrtype; int r_lowasnum; int r_hiwasnum; int r_month; /* 0..11 */ int r_dycode; /* see below */ int r_dayofmonth; int r_wday; zic_t r_tod; /* time from midnight */ int r_todisstd; /* above is standard time if TRUE */ /* or wall clock time if FALSE */ int r_todisgmt; /* above is GMT if TRUE */ /* or local time if FALSE */ zic_t r_stdoff; /* offset from standard time */ const char * r_abbrvar; /* variable part of abbreviation */ int r_todo; /* a rule to do (used in outzone) */ zic_t r_temp; /* used in outzone */ }; /* ** r_dycode r_dayofmonth r_wday */ #define DC_DOM 0 /* 1..31 */ /* unused */ #define DC_DOWGEQ 1 /* 1..31 */ /* 0..6 (Sun..Sat) */ #define DC_DOWLEQ 2 /* 1..31 */ /* 0..6 (Sun..Sat) */ struct zone { const char * z_filename; int z_linenum; const char * z_name; zic_t z_gmtoff; const char * z_rule; const char * z_format; zic_t z_stdoff; struct rule * z_rules; int z_nrules; struct rule z_untilrule; zic_t z_untiltime; }; extern int getopt(int argc, char * const argv[], const char * options); extern int link(const char * fromname, const char * toname); extern char * optarg; extern int optind; #if ! HAVE_LINK # define link(from, to) (-1) #endif #if ! HAVE_SYMLINK # define symlink(from, to) (-1) #endif static void addtt(zic_t starttime, int type); #ifdef ICU static int addtype(const zic_t gmtoff, const zic_t rawoff, const zic_t dstoff, char *const abbr, int isdst, int ttisstd, int ttisgmt); #else static int addtype(zic_t gmtoff, const char * abbr, int isdst, int ttisstd, int ttisgmt); #endif static void leapadd(zic_t t, int positive, int rolling, int count); static void adjleap(void); static void associate(void); static void dolink(const char * fromfield, const char * tofield); static char ** getfields(char * buf); static zic_t gethms(const char * string, const char * errstrng, int signable); static void infile(const char * filename); static void inleap(char ** fields, int nfields); static void inlink(char ** fields, int nfields); static void inrule(char ** fields, int nfields); static int inzcont(char ** fields, int nfields); static int inzone(char ** fields, int nfields); static int inzsub(char ** fields, int nfields, int iscont); static int itsdir(const char * name); static int lowerit(int c); static int mkdirs(char * filename); static void newabbr(const char * abbr); static zic_t oadd(zic_t t1, zic_t t2); static void outzone(const struct zone * zp, int ntzones); static zic_t rpytime(const struct rule * rp, zic_t wantedy); static void rulesub(struct rule * rp, const char * loyearp, const char * hiyearp, const char * typep, const char * monthp, const char * dayp, const char * timep); static zic_t tadd(zic_t t1, zic_t t2); static int yearistype(int year, const char * type); #ifdef ICU static void emit_icu_zone(FILE* f, const char* zoneName, int zoneOffset, const struct rule* rule, int ruleIndex, int startYear); static void emit_icu_link(FILE* f, const char* from, const char* to); static void emit_icu_rule(FILE* f, const struct rule* r, int ruleIndex); static int add_icu_final_rules(const struct rule* r1, const struct rule* r2); #endif static int charcnt; static int errors; static const char * filename; static int leapcnt; static int leapseen; static zic_t leapminyear; static zic_t leapmaxyear; static int linenum; static int max_abbrvar_len; static int max_format_len; static zic_t max_year; static zic_t min_year; static int noise; static const char * rfilename; static int rlinenum; static const char * progname; static int timecnt; static int timecnt_alloc; static int typecnt; /* ** Line codes. */ #define LC_RULE 0 #define LC_ZONE 1 #define LC_LINK 2 #define LC_LEAP 3 /* ** Which fields are which on a Zone line. */ #define ZF_NAME 1 #define ZF_GMTOFF 2 #define ZF_RULE 3 #define ZF_FORMAT 4 #define ZF_TILYEAR 5 #define ZF_TILMONTH 6 #define ZF_TILDAY 7 #define ZF_TILTIME 8 #define ZONE_MINFIELDS 5 #define ZONE_MAXFIELDS 9 /* ** Which fields are which on a Zone continuation line. */ #define ZFC_GMTOFF 0 #define ZFC_RULE 1 #define ZFC_FORMAT 2 #define ZFC_TILYEAR 3 #define ZFC_TILMONTH 4 #define ZFC_TILDAY 5 #define ZFC_TILTIME 6 #define ZONEC_MINFIELDS 3 #define ZONEC_MAXFIELDS 7 /* ** Which files are which on a Rule line. */ #define RF_NAME 1 #define RF_LOYEAR 2 #define RF_HIYEAR 3 #define RF_COMMAND 4 #define RF_MONTH 5 #define RF_DAY 6 #define RF_TOD 7 #define RF_STDOFF 8 #define RF_ABBRVAR 9 #define RULE_FIELDS 10 /* ** Which fields are which on a Link line. */ #define LF_FROM 1 #define LF_TO 2 #define LINK_FIELDS 3 /* ** Which fields are which on a Leap line. */ #define LP_YEAR 1 #define LP_MONTH 2 #define LP_DAY 3 #define LP_TIME 4 #define LP_CORR 5 #define LP_ROLL 6 #define LEAP_FIELDS 7 /* ** Year synonyms. */ #define YR_MINIMUM 0 #define YR_MAXIMUM 1 #define YR_ONLY 2 static struct rule * rules; static int nrules; /* number of rules */ static int nrules_alloc; static struct zone * zones; static int nzones; /* number of zones */ static int nzones_alloc; struct link { const char * l_filename; int l_linenum; const char * l_from; const char * l_to; }; static struct link * links; static int nlinks; static int nlinks_alloc; struct lookup { const char * l_word; const int l_value; }; #ifdef ICU /* Indices into rules[] for final rules. They will occur in pairs, * with finalRules[i] occurring before finalRules[i+1] in the year. * Each zone need only store a start year, a standard offset, and an * index into finalRules[]. FinalRules[] are aliases into rules[]. */ static const struct rule ** finalRules = NULL; static int finalRulesCount = 0; #endif static struct lookup const * byword(const char * string, const struct lookup * lp); static struct lookup const line_codes[] = { { "Rule", LC_RULE }, { "Zone", LC_ZONE }, { "Link", LC_LINK }, { "Leap", LC_LEAP }, { NULL, 0} }; static struct lookup const mon_names[] = { { "January", TM_JANUARY }, { "February", TM_FEBRUARY }, { "March", TM_MARCH }, { "April", TM_APRIL }, { "May", TM_MAY }, { "June", TM_JUNE }, { "July", TM_JULY }, { "August", TM_AUGUST }, { "September", TM_SEPTEMBER }, { "October", TM_OCTOBER }, { "November", TM_NOVEMBER }, { "December", TM_DECEMBER }, { NULL, 0 } }; static struct lookup const wday_names[] = { { "Sunday", TM_SUNDAY }, { "Monday", TM_MONDAY }, { "Tuesday", TM_TUESDAY }, { "Wednesday", TM_WEDNESDAY }, { "Thursday", TM_THURSDAY }, { "Friday", TM_FRIDAY }, { "Saturday", TM_SATURDAY }, { NULL, 0 } }; static struct lookup const lasts[] = { { "last-Sunday", TM_SUNDAY }, { "last-Monday", TM_MONDAY }, { "last-Tuesday", TM_TUESDAY }, { "last-Wednesday", TM_WEDNESDAY }, { "last-Thursday", TM_THURSDAY }, { "last-Friday", TM_FRIDAY }, { "last-Saturday", TM_SATURDAY }, { NULL, 0 } }; static struct lookup const begin_years[] = { { "minimum", YR_MINIMUM }, { "maximum", YR_MAXIMUM }, { NULL, 0 } }; static struct lookup const end_years[] = { { "minimum", YR_MINIMUM }, { "maximum", YR_MAXIMUM }, { "only", YR_ONLY }, { NULL, 0 } }; static struct lookup const leap_types[] = { { "Rolling", TRUE }, { "Stationary", FALSE }, { NULL, 0 } }; static const int len_months[2][MONSPERYEAR] = { { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } }; static const int len_years[2] = { DAYSPERNYEAR, DAYSPERLYEAR }; static struct attype { zic_t at; unsigned char type; } * attypes; static zic_t gmtoffs[TZ_MAX_TYPES]; #ifdef ICU /* gmtoffs[i] = rawoffs[i] + dstoffs[i] */ static zic_t rawoffs[TZ_MAX_TYPES]; static zic_t dstoffs[TZ_MAX_TYPES]; #endif static char isdsts[TZ_MAX_TYPES]; static unsigned char abbrinds[TZ_MAX_TYPES]; static char ttisstds[TZ_MAX_TYPES]; static char ttisgmts[TZ_MAX_TYPES]; static char chars[TZ_MAX_CHARS]; static zic_t trans[TZ_MAX_LEAPS]; static zic_t corr[TZ_MAX_LEAPS]; static char roll[TZ_MAX_LEAPS]; /* ** Memory allocation. */ static _Noreturn void memory_exhausted(const char *msg) { fprintf(stderr, _("%s: Memory exhausted: %s\n"), progname, msg); exit(EXIT_FAILURE); } static ATTRIBUTE_PURE size_t size_product(size_t nitems, size_t itemsize) { if (SIZE_MAX / itemsize < nitems) memory_exhausted("size overflow"); return nitems * itemsize; } static ATTRIBUTE_PURE void * memcheck(void *const ptr) { if (ptr == NULL) memory_exhausted(strerror(errno)); return ptr; } #define emalloc(size) memcheck(malloc(size)) #define erealloc(ptr, size) memcheck(realloc(ptr, size)) #define ecpyalloc(ptr) memcheck(icpyalloc(ptr)) #define ecatalloc(oldp, newp) memcheck(icatalloc((oldp), (newp))) static void * growalloc(void *ptr, size_t itemsize, int nitems, int *nitems_alloc) { if (nitems < *nitems_alloc) return ptr; else { int amax = INT_MAX < SIZE_MAX ? INT_MAX : SIZE_MAX; if ((amax - 1) / 3 * 2 < *nitems_alloc) memory_exhausted("int overflow"); *nitems_alloc = *nitems_alloc + (*nitems_alloc >> 1) + 1; return erealloc(ptr, size_product(*nitems_alloc, itemsize)); } } /* ** Error handling. */ static void eats(const char *const name, const int num, const char *const rname, const int rnum) { filename = name; linenum = num; rfilename = rname; rlinenum = rnum; } static void eat(const char *const name, const int num) { eats(name, num, NULL, -1); } static void ATTRIBUTE_FORMAT((printf, 1, 0)) verror(const char *const string, va_list args) { /* ** Match the format of "cc" to allow sh users to ** zic ... 2>&1 | error -t "*" -v ** on BSD systems. */ fprintf(stderr, _("\"%s\", line %d: "), filename, linenum); vfprintf(stderr, string, args); if (rfilename != NULL) (void) fprintf(stderr, _(" (rule from \"%s\", line %d)"), rfilename, rlinenum); (void) fprintf(stderr, "\n"); ++errors; } static void ATTRIBUTE_FORMAT((printf, 1, 2)) error(const char *const string, ...) { va_list args; va_start(args, string); verror(string, args); va_end(args); } static void ATTRIBUTE_FORMAT((printf, 1, 2)) warning(const char *const string, ...) { va_list args; fprintf(stderr, _("warning: ")); va_start(args, string); verror(string, args); va_end(args); --errors; } static _Noreturn void usage(FILE *stream, int status) { (void) fprintf(stream, _("%s: usage is %s \ [ --version ] [ --help ] [ -v ] [ -l localtime ] [ -p posixrules ] \\\n\ \t[ -d directory ] [ -L leapseconds ] [ -y yearistype ] [ filename ... ]\n\ \n\ Report bugs to %s.\n"), progname, progname, REPORT_BUGS_TO); exit(status); } #ifdef ICU /* File into which we will write supplemental ICU data. */ static FILE * icuFile; static void emit_icu_zone(FILE* f, const char* zoneName, int zoneOffset, const struct rule* rule, int ruleIndex, int startYear) { /* machine-readable section */ fprintf(f, "zone %s %d %d %s", zoneName, zoneOffset, startYear, rule->r_name); /* human-readable section */ fprintf(f, " # zone %s, offset %d, year >= %d, rule %s (%d)\n", zoneName, zoneOffset, startYear, rule->r_name, ruleIndex); } static void emit_icu_link(FILE* f, const char* from, const char* to) { /* machine-readable section */ fprintf(f, "link %s %s\n", from, to); } static const char* DYCODE[] = {"DOM", "DOWGEQ", "DOWLEQ"}; static void emit_icu_rule(FILE* f, const struct rule* r, int ruleIndex) { if (r->r_yrtype != NULL) { warning("year types not supported by ICU"); fprintf(stderr, "rule %s, file %s, line %d\n", r->r_name, r->r_filename, r->r_linenum); } /* machine-readable section */ fprintf(f, "rule %s %s %d %d %d %lld %d %d %lld", r->r_name, DYCODE[r->r_dycode], r->r_month, r->r_dayofmonth, (r->r_dycode == DC_DOM ? -1 : r->r_wday), r->r_tod, r->r_todisstd, r->r_todisgmt, r->r_stdoff ); /* human-readable section */ fprintf(f, " # %d: %s, file %s, line %d", ruleIndex, r->r_name, r->r_filename, r->r_linenum); fprintf(f, ", mode %s", DYCODE[r->r_dycode]); fprintf(f, ", %s, dom %d", mon_names[r->r_month].l_word, r->r_dayofmonth); if (r->r_dycode != DC_DOM) { fprintf(f, ", %s", wday_names[r->r_wday].l_word); } fprintf(f, ", time %lld", r->r_tod); fprintf(f, ", isstd %d", r->r_todisstd); fprintf(f, ", isgmt %d", r->r_todisgmt); fprintf(f, ", offset %lld", r->r_stdoff); fprintf(f, "\n"); } static int add_icu_final_rules(const struct rule* r1, const struct rule* r2) { int i; for (i=0; i<finalRulesCount; ++i) { /* i+=2 should work too */ if (r1==finalRules[i]) return i; /* [sic] pointer comparison */ } finalRules = (const struct rule**) (void*) erealloc((char *) finalRules, (finalRulesCount + 2) * sizeof(*finalRules)); finalRules[finalRulesCount++] = r1; finalRules[finalRulesCount++] = r2; return finalRulesCount - 2; } #endif static const char * psxrules; static const char * lcltime; static const char * directory; static const char * leapsec; static const char * yitcommand; int main(int argc, char **argv) { register int i; register int j; register int c; #ifdef S_IWGRP (void) umask(umask(S_IWGRP | S_IWOTH) | (S_IWGRP | S_IWOTH)); #endif #if HAVE_GETTEXT (void) setlocale(LC_ALL, ""); #ifdef TZ_DOMAINDIR (void) bindtextdomain(TZ_DOMAIN, TZ_DOMAINDIR); #endif /* defined TEXTDOMAINDIR */ (void) textdomain(TZ_DOMAIN); #endif /* HAVE_GETTEXT */ progname = argv[0]; if (TYPE_BIT(zic_t) < 64) { (void) fprintf(stderr, "%s: %s\n", progname, _("wild compilation-time specification of zic_t")); exit(EXIT_FAILURE); } for (i = 1; i < argc; ++i) if (strcmp(argv[i], "--version") == 0) { (void) printf("zic %s%s\n", PKGVERSION, TZVERSION); exit(EXIT_SUCCESS); } else if (strcmp(argv[i], "--help") == 0) { usage(stdout, EXIT_SUCCESS); } while ((c = getopt(argc, argv, "d:l:p:L:vsy:")) != EOF && c != -1) switch (c) { default: usage(stderr, EXIT_FAILURE); case 'd': if (directory == NULL) directory = optarg; else { (void) fprintf(stderr, _("%s: More than one -d option specified\n"), progname); exit(EXIT_FAILURE); } break; case 'l': if (lcltime == NULL) lcltime = optarg; else { (void) fprintf(stderr, _("%s: More than one -l option specified\n"), progname); exit(EXIT_FAILURE); } break; case 'p': if (psxrules == NULL) psxrules = optarg; else { (void) fprintf(stderr, _("%s: More than one -p option specified\n"), progname); exit(EXIT_FAILURE); } break; case 'y': if (yitcommand == NULL) yitcommand = optarg; else { (void) fprintf(stderr, _("%s: More than one -y option specified\n"), progname); exit(EXIT_FAILURE); } break; case 'L': if (leapsec == NULL) leapsec = optarg; else { (void) fprintf(stderr, _("%s: More than one -L option specified\n"), progname); exit(EXIT_FAILURE); } break; case 'v': noise = TRUE; break; case 's': (void) printf("%s: -s ignored\n", progname); break; } if (optind == argc - 1 && strcmp(argv[optind], "=") == 0) usage(stderr, EXIT_FAILURE); /* usage message by request */ if (directory == NULL) directory = TZDIR; if (yitcommand == NULL) yitcommand = "yearistype"; if (optind < argc && leapsec != NULL) { infile(leapsec); adjleap(); } #ifdef ICU if ((icuFile = fopen(ICU_ZONE_FILE, "w")) == NULL) { const char *e = strerror(errno); (void) fprintf(stderr, _("%s: Can't open %s: %s\n"), progname, ICU_ZONE_FILE, e); (void) exit(EXIT_FAILURE); } #endif for (i = optind; i < argc; ++i) infile(argv[i]); if (errors) exit(EXIT_FAILURE); associate(); for (i = 0; i < nzones; i = j) { /* ** Find the next non-continuation zone entry. */ for (j = i + 1; j < nzones && zones[j].z_name == NULL; ++j) continue; outzone(&zones[i], j - i); } /* ** Make links. */ for (i = 0; i < nlinks; ++i) { eat(links[i].l_filename, links[i].l_linenum); dolink(links[i].l_from, links[i].l_to); #ifdef ICU emit_icu_link(icuFile, links[i].l_from, links[i].l_to); #endif if (noise) for (j = 0; j < nlinks; ++j) if (strcmp(links[i].l_to, links[j].l_from) == 0) warning(_("link to link")); } if (lcltime != NULL) { eat("command line", 1); dolink(lcltime, TZDEFAULT); } if (psxrules != NULL) { eat("command line", 1); dolink(psxrules, TZDEFRULES); } #ifdef ICU for (i=0; i<finalRulesCount; ++i) { emit_icu_rule(icuFile, finalRules[i], i); } #endif /*ICU*/ return (errors == 0) ? EXIT_SUCCESS : EXIT_FAILURE; } static void dolink(const char *const fromfield, const char *const tofield) { register char * fromname; register char * toname; if (fromfield[0] == '/') fromname = ecpyalloc(fromfield); else { fromname = ecpyalloc(directory); fromname = ecatalloc(fromname, "/"); fromname = ecatalloc(fromname, fromfield); } if (tofield[0] == '/') toname = ecpyalloc(tofield); else { toname = ecpyalloc(directory); toname = ecatalloc(toname, "/"); toname = ecatalloc(toname, tofield); } /* ** We get to be careful here since ** there's a fair chance of root running us. */ if (!itsdir(toname)) (void) remove(toname); if (link(fromname, toname) != 0 && access(fromname, F_OK) == 0 && !itsdir(fromname)) { int result; if (mkdirs(toname) != 0) exit(EXIT_FAILURE); result = link(fromname, toname); if (result != 0) { const char *s = fromfield; const char *t; register char * symlinkcontents = NULL; do t = s; while ((s = strchr(s, '/')) && ! strncmp (fromfield, tofield, ++s - fromfield)); for (s = tofield + (t - fromfield); (s = strchr(s, '/')); s++) symlinkcontents = ecatalloc(symlinkcontents, "../"); symlinkcontents = ecatalloc(symlinkcontents, t); result = symlink(symlinkcontents, toname); if (result == 0) warning(_("hard link failed, symbolic link used")); free(symlinkcontents); } if (result != 0) { FILE *fp, *tp; int c; fp = fopen(fromname, "rb"); if (!fp) { const char *e = strerror(errno); (void) fprintf(stderr, _("%s: Can't read %s: %s\n"), progname, fromname, e); exit(EXIT_FAILURE); } tp = fopen(toname, "wb"); if (!tp) { const char *e = strerror(errno); (void) fprintf(stderr, _("%s: Can't create %s: %s\n"), progname, toname, e); exit(EXIT_FAILURE); } while ((c = getc(fp)) != EOF) putc(c, tp); if (ferror(fp) || fclose(fp)) { (void) fprintf(stderr, _("%s: Error reading %s\n"), progname, fromname); exit(EXIT_FAILURE); } if (ferror(tp) || fclose(tp)) { (void) fprintf(stderr, _("%s: Error writing %s\n"), progname, toname); exit(EXIT_FAILURE); } warning(_("link failed, copy used")); #ifndef ICU_LINKS exit(EXIT_FAILURE); #endif } } free(fromname); free(toname); } #define TIME_T_BITS_IN_FILE 64 static const zic_t min_time = (zic_t) -1 << (TIME_T_BITS_IN_FILE - 1); static const zic_t max_time = -1 - ((zic_t) -1 << (TIME_T_BITS_IN_FILE - 1)); static int itsdir(const char *const name) { register char * myname; register int accres; myname = ecpyalloc(name); myname = ecatalloc(myname, "/."); accres = access(myname, F_OK); free(myname); return accres == 0; } /* ** Associate sets of rules with zones. */ /* ** Sort by rule name. */ static int rcomp(const void *cp1, const void *cp2) { return strcmp(((const struct rule *) cp1)->r_name, ((const struct rule *) cp2)->r_name); } static void associate(void) { register struct zone * zp; register struct rule * rp; register int base, out; register int i, j; if (nrules != 0) { (void) qsort(rules, nrules, sizeof *rules, rcomp); for (i = 0; i < nrules - 1; ++i) { if (strcmp(rules[i].r_name, rules[i + 1].r_name) != 0) continue; if (strcmp(rules[i].r_filename, rules[i + 1].r_filename) == 0) continue; eat(rules[i].r_filename, rules[i].r_linenum); warning(_("same rule name in multiple files")); eat(rules[i + 1].r_filename, rules[i + 1].r_linenum); warning(_("same rule name in multiple files")); for (j = i + 2; j < nrules; ++j) { if (strcmp(rules[i].r_name, rules[j].r_name) != 0) break; if (strcmp(rules[i].r_filename, rules[j].r_filename) == 0) continue; if (strcmp(rules[i + 1].r_filename, rules[j].r_filename) == 0) continue; break; } i = j - 1; } } for (i = 0; i < nzones; ++i) { zp = &zones[i]; zp->z_rules = NULL; zp->z_nrules = 0; } for (base = 0; base < nrules; base = out) { rp = &rules[base]; for (out = base + 1; out < nrules; ++out) if (strcmp(rp->r_name, rules[out].r_name) != 0) break; for (i = 0; i < nzones; ++i) { zp = &zones[i]; if (strcmp(zp->z_rule, rp->r_name) != 0) continue; zp->z_rules = rp; zp->z_nrules = out - base; } } for (i = 0; i < nzones; ++i) { zp = &zones[i]; if (zp->z_nrules == 0) { /* ** Maybe we have a local standard time offset. */ eat(zp->z_filename, zp->z_linenum); zp->z_stdoff = gethms(zp->z_rule, _("unruly zone"), TRUE); /* ** Note, though, that if there's no rule, ** a '%s' in the format is a bad thing. */ if (strchr(zp->z_format, '%') != 0) error("%s", _("%s in ruleless zone")); } } if (errors) exit(EXIT_FAILURE); } static void infile(const char *name) { register FILE * fp; register char ** fields; register char * cp; register const struct lookup * lp; register int nfields; register int wantcont; register int num; char buf[BUFSIZ]; if (strcmp(name, "-") == 0) { name = _("standard input"); fp = stdin; } else if ((fp = fopen(name, "r")) == NULL) { const char *e = strerror(errno); (void) fprintf(stderr, _("%s: Can't open %s: %s\n"), progname, name, e); exit(EXIT_FAILURE); } wantcont = FALSE; for (num = 1; ; ++num) { eat(name, num); if (fgets(buf, sizeof buf, fp) != buf) break; cp = strchr(buf, '\n'); if (cp == NULL) { error(_("line too long")); exit(EXIT_FAILURE); } *cp = '\0'; fields = getfields(buf); nfields = 0; while (fields[nfields] != NULL) { static char nada; if (strcmp(fields[nfields], "-") == 0) fields[nfields] = &nada; ++nfields; } if (nfields == 0) { /* nothing to do */ } else if (wantcont) { wantcont = inzcont(fields, nfields); } else { lp = byword(fields[0], line_codes); if (lp == NULL) error(_("input line of unknown type")); else switch ((int) (lp->l_value)) { case LC_RULE: inrule(fields, nfields); wantcont = FALSE; break; case LC_ZONE: wantcont = inzone(fields, nfields); break; case LC_LINK: inlink(fields, nfields); wantcont = FALSE; break; case LC_LEAP: if (name != leapsec) (void) fprintf(stderr, _("%s: Leap line in non leap seconds file %s\n"), progname, name); else inleap(fields, nfields); wantcont = FALSE; break; default: /* "cannot happen" */ (void) fprintf(stderr, _("%s: panic: Invalid l_value %d\n"), progname, lp->l_value); exit(EXIT_FAILURE); } } free(fields); } if (ferror(fp)) { (void) fprintf(stderr, _("%s: Error reading %s\n"), progname, filename); exit(EXIT_FAILURE); } if (fp != stdin && fclose(fp)) { const char *e = strerror(errno); (void) fprintf(stderr, _("%s: Error closing %s: %s\n"), progname, filename, e); exit(EXIT_FAILURE); } if (wantcont) error(_("expected continuation line not found")); } /* ** Convert a string of one of the forms ** h -h hh:mm -hh:mm hh:mm:ss -hh:mm:ss ** into a number of seconds. ** A null string maps to zero. ** Call error with errstring and return zero on errors. */ static zic_t gethms(const char *string, const char *const errstring, const int signable) { zic_t hh; int mm, ss, sign; if (string == NULL || *string == '\0') return 0; if (!signable) sign = 1; else if (*string == '-') { sign = -1; ++string; } else sign = 1; if (sscanf(string, scheck(string, "%"SCNdZIC), &hh) == 1) mm = ss = 0; else if (sscanf(string, scheck(string, "%"SCNdZIC":%d"), &hh, &mm) == 2) ss = 0; else if (sscanf(string, scheck(string, "%"SCNdZIC":%d:%d"), &hh, &mm, &ss) != 3) { error("%s", errstring); return 0; } if (hh < 0 || mm < 0 || mm >= MINSPERHOUR || ss < 0 || ss > SECSPERMIN) { error("%s", errstring); return 0; } if (ZIC_MAX / SECSPERHOUR < hh) { error(_("time overflow")); return 0; } if (noise && hh == HOURSPERDAY && mm == 0 && ss == 0) warning(_("24:00 not handled by pre-1998 versions of zic")); if (noise && (hh > HOURSPERDAY || (hh == HOURSPERDAY && (mm != 0 || ss != 0)))) warning(_("values over 24 hours not handled by pre-2007 versions of zic")); return oadd(sign * hh * SECSPERHOUR, sign * (mm * SECSPERMIN + ss)); } static void inrule(register char **const fields, const int nfields) { static struct rule r; if (nfields != RULE_FIELDS) { error(_("wrong number of fields on Rule line")); return; } if (*fields[RF_NAME] == '\0') { error(_("nameless rule")); return; } r.r_filename = filename; r.r_linenum = linenum; r.r_stdoff = gethms(fields[RF_STDOFF], _("invalid saved time"), TRUE); rulesub(&r, fields[RF_LOYEAR], fields[RF_HIYEAR], fields[RF_COMMAND], fields[RF_MONTH], fields[RF_DAY], fields[RF_TOD]); r.r_name = ecpyalloc(fields[RF_NAME]); r.r_abbrvar = ecpyalloc(fields[RF_ABBRVAR]); if (max_abbrvar_len < strlen(r.r_abbrvar)) max_abbrvar_len = strlen(r.r_abbrvar); rules = growalloc(rules, sizeof *rules, nrules, &nrules_alloc); rules[nrules++] = r; } static int inzone(register char **const fields, const int nfields) { register int i; if (nfields < ZONE_MINFIELDS || nfields > ZONE_MAXFIELDS) { error(_("wrong number of fields on Zone line")); return FALSE; } if (strcmp(fields[ZF_NAME], TZDEFAULT) == 0 && lcltime != NULL) { error( _("\"Zone %s\" line and -l option are mutually exclusive"), TZDEFAULT); return FALSE; } if (strcmp(fields[ZF_NAME], TZDEFRULES) == 0 && psxrules != NULL) { error( _("\"Zone %s\" line and -p option are mutually exclusive"), TZDEFRULES); return FALSE; } for (i = 0; i < nzones; ++i) if (zones[i].z_name != NULL && strcmp(zones[i].z_name, fields[ZF_NAME]) == 0) { error( _("duplicate zone name %s (file \"%s\", line %d)"), fields[ZF_NAME], zones[i].z_filename, zones[i].z_linenum); return FALSE; } return inzsub(fields, nfields, FALSE); } static int inzcont(register char **const fields, const int nfields) { if (nfields < ZONEC_MINFIELDS || nfields > ZONEC_MAXFIELDS) { error(_("wrong number of fields on Zone continuation line")); return FALSE; } return inzsub(fields, nfields, TRUE); } static int inzsub(register char **const fields, const int nfields, const int iscont) { register char * cp; static struct zone z; register int i_gmtoff, i_rule, i_format; register int i_untilyear, i_untilmonth; register int i_untilday, i_untiltime; register int hasuntil; if (iscont) { i_gmtoff = ZFC_GMTOFF; i_rule = ZFC_RULE; i_format = ZFC_FORMAT; i_untilyear = ZFC_TILYEAR; i_untilmonth = ZFC_TILMONTH; i_untilday = ZFC_TILDAY; i_untiltime = ZFC_TILTIME; z.z_name = NULL; } else { i_gmtoff = ZF_GMTOFF; i_rule = ZF_RULE; i_format = ZF_FORMAT; i_untilyear = ZF_TILYEAR; i_untilmonth = ZF_TILMONTH; i_untilday = ZF_TILDAY; i_untiltime = ZF_TILTIME; z.z_name = ecpyalloc(fields[ZF_NAME]); } z.z_filename = filename; z.z_linenum = linenum; z.z_gmtoff = gethms(fields[i_gmtoff], _("invalid UT offset"), TRUE); if ((cp = strchr(fields[i_format], '%')) != 0) { if (*++cp != 's' || strchr(cp, '%') != 0) { error(_("invalid abbreviation format")); return FALSE; } } z.z_rule = ecpyalloc(fields[i_rule]); z.z_format = ecpyalloc(fields[i_format]); if (max_format_len < strlen(z.z_format)) max_format_len = strlen(z.z_format); hasuntil = nfields > i_untilyear; if (hasuntil) { z.z_untilrule.r_filename = filename; z.z_untilrule.r_linenum = linenum; rulesub(&z.z_untilrule, fields[i_untilyear], "only", "", (nfields > i_untilmonth) ? fields[i_untilmonth] : "Jan", (nfields > i_untilday) ? fields[i_untilday] : "1", (nfields > i_untiltime) ? fields[i_untiltime] : "0"); z.z_untiltime = rpytime(&z.z_untilrule, z.z_untilrule.r_loyear); if (iscont && nzones > 0 && z.z_untiltime > min_time && z.z_untiltime < max_time && zones[nzones - 1].z_untiltime > min_time && zones[nzones - 1].z_untiltime < max_time && zones[nzones - 1].z_untiltime >= z.z_untiltime) { error(_( "Zone continuation line end time is not after end time of previous line" )); return FALSE; } } zones = growalloc(zones, sizeof *zones, nzones, &nzones_alloc); zones[nzones++] = z; /* ** If there was an UNTIL field on this line, ** there's more information about the zone on the next line. */ return hasuntil; } static void inleap(register char ** const fields, const int nfields) { register const char * cp; register const struct lookup * lp; register int i, j; zic_t year; int month, day; zic_t dayoff, tod; zic_t t; if (nfields != LEAP_FIELDS) { error(_("wrong number of fields on Leap line")); return; } dayoff = 0; cp = fields[LP_YEAR]; if (sscanf(cp, scheck(cp, "%"SCNdZIC), &year) != 1) { /* ** Leapin' Lizards! */ error(_("invalid leaping year")); return; } if (!leapseen || leapmaxyear < year) leapmaxyear = year; if (!leapseen || leapminyear > year) leapminyear = year; leapseen = TRUE; j = EPOCH_YEAR; while (j != year) { if (year > j) { i = len_years[isleap(j)]; ++j; } else { --j; i = -len_years[isleap(j)]; } dayoff = oadd(dayoff, i); } if ((lp = byword(fields[LP_MONTH], mon_names)) == NULL) { error(_("invalid month name")); return; } month = lp->l_value; j = TM_JANUARY; while (j != month) { i = len_months[isleap(year)][j]; dayoff = oadd(dayoff, i); ++j; } cp = fields[LP_DAY]; if (sscanf(cp, scheck(cp, "%d"), &day) != 1 || day <= 0 || day > len_months[isleap(year)][month]) { error(_("invalid day of month")); return; } dayoff = oadd(dayoff, day - 1); if (dayoff < 0 && !TYPE_SIGNED(zic_t)) { error(_("time before zero")); return; } if (dayoff < min_time / SECSPERDAY) { error(_("time too small")); return; } if (dayoff > max_time / SECSPERDAY) { error(_("time too large")); return; } t = (zic_t) dayoff * SECSPERDAY; tod = gethms(fields[LP_TIME], _("invalid time of day"), FALSE); cp = fields[LP_CORR]; { register int positive; int count; if (strcmp(cp, "") == 0) { /* infile() turns "-" into "" */ positive = FALSE; count = 1; } else if (strcmp(cp, "--") == 0) { positive = FALSE; count = 2; } else if (strcmp(cp, "+") == 0) { positive = TRUE; count = 1; } else if (strcmp(cp, "++") == 0) { positive = TRUE; count = 2; } else { error(_("illegal CORRECTION field on Leap line")); return; } if ((lp = byword(fields[LP_ROLL], leap_types)) == NULL) { error(_( "illegal Rolling/Stationary field on Leap line" )); return; } leapadd(tadd(t, tod), positive, lp->l_value, count); } } static void inlink(register char **const fields, const int nfields) { struct link l; if (nfields != LINK_FIELDS) { error(_("wrong number of fields on Link line")); return; } if (*fields[LF_FROM] == '\0') { error(_("blank FROM field on Link line")); return; } if (*fields[LF_TO] == '\0') { error(_("blank TO field on Link line")); return; } l.l_filename = filename; l.l_linenum = linenum; l.l_from = ecpyalloc(fields[LF_FROM]); l.l_to = ecpyalloc(fields[LF_TO]); links = growalloc(links, sizeof *links, nlinks, &nlinks_alloc); links[nlinks++] = l; } static void rulesub(register struct rule *const rp, const char *const loyearp, const char *const hiyearp, const char *const typep, const char *const monthp, const char *const dayp, const char *const timep) { register const struct lookup * lp; register const char * cp; register char * dp; register char * ep; if ((lp = byword(monthp, mon_names)) == NULL) { error(_("invalid month name")); return; } rp->r_month = lp->l_value; rp->r_todisstd = FALSE; rp->r_todisgmt = FALSE; dp = ecpyalloc(timep); if (*dp != '\0') { ep = dp + strlen(dp) - 1; switch (lowerit(*ep)) { case 's': /* Standard */ rp->r_todisstd = TRUE; rp->r_todisgmt = FALSE; *ep = '\0'; break; case 'w': /* Wall */ rp->r_todisstd = FALSE; rp->r_todisgmt = FALSE; *ep = '\0'; break; case 'g': /* Greenwich */ case 'u': /* Universal */ case 'z': /* Zulu */ rp->r_todisstd = TRUE; rp->r_todisgmt = TRUE; *ep = '\0'; break; } } rp->r_tod = gethms(dp, _("invalid time of day"), FALSE); free(dp); /* ** Year work. */ cp = loyearp; lp = byword(cp, begin_years); rp->r_lowasnum = lp == NULL; if (!rp->r_lowasnum) switch ((int) lp->l_value) { case YR_MINIMUM: rp->r_loyear = ZIC_MIN; break; case YR_MAXIMUM: rp->r_loyear = ZIC_MAX; break; default: /* "cannot happen" */ (void) fprintf(stderr, _("%s: panic: Invalid l_value %d\n"), progname, lp->l_value); exit(EXIT_FAILURE); } else if (sscanf(cp, scheck(cp, "%"SCNdZIC), &rp->r_loyear) != 1) { error(_("invalid starting year")); return; } cp = hiyearp; lp = byword(cp, end_years); rp->r_hiwasnum = lp == NULL; if (!rp->r_hiwasnum) switch ((int) lp->l_value) { case YR_MINIMUM: rp->r_hiyear = ZIC_MIN; break; case YR_MAXIMUM: rp->r_hiyear = ZIC_MAX; break; case YR_ONLY: rp->r_hiyear = rp->r_loyear; break; default: /* "cannot happen" */ (void) fprintf(stderr, _("%s: panic: Invalid l_value %d\n"), progname, lp->l_value); exit(EXIT_FAILURE); } else if (sscanf(cp, scheck(cp, "%"SCNdZIC), &rp->r_hiyear) != 1) { error(_("invalid ending year")); return; } if (rp->r_loyear > rp->r_hiyear) { error(_("starting year greater than ending year")); return; } if (*typep == '\0') rp->r_yrtype = NULL; else { if (rp->r_loyear == rp->r_hiyear) { error(_("typed single year")); return; } rp->r_yrtype = ecpyalloc(typep); } /* ** Day work. ** Accept things such as: ** 1 ** last-Sunday ** Sun<=20 ** Sun>=7 */ dp = ecpyalloc(dayp); if ((lp = byword(dp, lasts)) != NULL) { rp->r_dycode = DC_DOWLEQ; rp->r_wday = lp->l_value; rp->r_dayofmonth = len_months[1][rp->r_month]; } else { if ((ep = strchr(dp, '<')) != 0) rp->r_dycode = DC_DOWLEQ; else if ((ep = strchr(dp, '>')) != 0) rp->r_dycode = DC_DOWGEQ; else { ep = dp; rp->r_dycode = DC_DOM; } if (rp->r_dycode != DC_DOM) { *ep++ = 0; if (*ep++ != '=') { error(_("invalid day of month")); free(dp); return; } if ((lp = byword(dp, wday_names)) == NULL) { error(_("invalid weekday name")); free(dp); return; } rp->r_wday = lp->l_value; } if (sscanf(ep, scheck(ep, "%d"), &rp->r_dayofmonth) != 1 || rp->r_dayofmonth <= 0 || (rp->r_dayofmonth > len_months[1][rp->r_month])) { error(_("invalid day of month")); free(dp); return; } } free(dp); } static void convert(const int_fast32_t val, char *const buf) { register int i; register int shift; unsigned char *const b = (unsigned char *) buf; for (i = 0, shift = 24; i < 4; ++i, shift -= 8) b[i] = val >> shift; } static void convert64(const zic_t val, char *const buf) { register int i; register int shift; unsigned char *const b = (unsigned char *) buf; for (i = 0, shift = 56; i < 8; ++i, shift -= 8) b[i] = val >> shift; } static void puttzcode(const int_fast32_t val, FILE *const fp) { char buf[4]; convert(val, buf); (void) fwrite(buf, sizeof buf, 1, fp); } static void puttzcode64(const zic_t val, FILE *const fp) { char buf[8]; convert64(val, buf); (void) fwrite(buf, sizeof buf, 1, fp); } static int atcomp(const void *avp, const void *bvp) { const zic_t a = ((const struct attype *) avp)->at; const zic_t b = ((const struct attype *) bvp)->at; return (a < b) ? -1 : (a > b); } static int is32(const zic_t x) { return INT32_MIN <= x && x <= INT32_MAX; } static void writezone(const char *const name, const char *const string, char version) { register FILE * fp; register int i, j; register int leapcnt32, leapi32; register int timecnt32, timei32; register int pass; static char * fullname; static const struct tzhead tzh0; static struct tzhead tzh; zic_t *ats = emalloc(size_product(timecnt, sizeof *ats + 1)); void *typesptr = ats + timecnt; unsigned char *types = typesptr; /* ** Sort. */ if (timecnt > 1) (void) qsort(attypes, timecnt, sizeof *attypes, atcomp); /* ** Optimize. */ { int fromi; int toi; toi = 0; fromi = 0; while (fromi < timecnt && attypes[fromi].at < min_time) ++fromi; /* ** Remember that type 0 is reserved. */ if (isdsts[1] == 0) while (fromi < timecnt && attypes[fromi].type == 1) ++fromi; /* handled by default rule */ for ( ; fromi < timecnt; ++fromi) { if (toi != 0 && ((attypes[fromi].at + gmtoffs[attypes[toi - 1].type]) <= (attypes[toi - 1].at + gmtoffs[toi == 1 ? 0 : attypes[toi - 2].type]))) { attypes[toi - 1].type = attypes[fromi].type; continue; } if (toi == 0 || attypes[toi - 1].type != attypes[fromi].type) attypes[toi++] = attypes[fromi]; } timecnt = toi; } /* ** Transfer. */ for (i = 0; i < timecnt; ++i) { ats[i] = attypes[i].at; types[i] = attypes[i].type; } /* ** Correct for leap seconds. */ for (i = 0; i < timecnt; ++i) { j = leapcnt; while (--j >= 0) if (ats[i] > trans[j] - corr[j]) { ats[i] = tadd(ats[i], corr[j]); break; } } /* ** Figure out 32-bit-limited starts and counts. */ timecnt32 = timecnt; timei32 = 0; leapcnt32 = leapcnt; leapi32 = 0; while (timecnt32 > 0 && !is32(ats[timecnt32 - 1])) --timecnt32; while (timecnt32 > 0 && !is32(ats[timei32])) { --timecnt32; ++timei32; } while (leapcnt32 > 0 && !is32(trans[leapcnt32 - 1])) --leapcnt32; while (leapcnt32 > 0 && !is32(trans[leapi32])) { --leapcnt32; ++leapi32; } fullname = erealloc(fullname, strlen(directory) + 1 + strlen(name) + 1); (void) sprintf(fullname, "%s/%s", directory, name); /* ** Remove old file, if any, to snap links. */ if (!itsdir(fullname) && remove(fullname) != 0 && errno != ENOENT) { const char *e = strerror(errno); (void) fprintf(stderr, _("%s: Can't remove %s: %s\n"), progname, fullname, e); exit(EXIT_FAILURE); } if ((fp = fopen(fullname, "wb")) == NULL) { if (mkdirs(fullname) != 0) exit(EXIT_FAILURE); if ((fp = fopen(fullname, "wb")) == NULL) { const char *e = strerror(errno); (void) fprintf(stderr, _("%s: Can't create %s: %s\n"), progname, fullname, e); exit(EXIT_FAILURE); } } for (pass = 1; pass <= 2; ++pass) { register int thistimei, thistimecnt; register int thisleapi, thisleapcnt; register int thistimelim, thisleaplim; int writetype[TZ_MAX_TYPES]; int typemap[TZ_MAX_TYPES]; register int thistypecnt; char thischars[TZ_MAX_CHARS]; char thischarcnt; int indmap[TZ_MAX_CHARS]; if (pass == 1) { thistimei = timei32; thistimecnt = timecnt32; thisleapi = leapi32; thisleapcnt = leapcnt32; } else { thistimei = 0; thistimecnt = timecnt; thisleapi = 0; thisleapcnt = leapcnt; } thistimelim = thistimei + thistimecnt; thisleaplim = thisleapi + thisleapcnt; /* ** Remember that type 0 is reserved. */ writetype[0] = FALSE; for (i = 1; i < typecnt; ++i) writetype[i] = thistimecnt == timecnt; if (thistimecnt == 0) { /* ** No transition times fall in the current ** (32- or 64-bit) window. */ if (typecnt != 0) writetype[typecnt - 1] = TRUE; } else { for (i = thistimei - 1; i < thistimelim; ++i) if (i >= 0) writetype[types[i]] = TRUE; /* ** For America/Godthab and Antarctica/Palmer */ /* ** Remember that type 0 is reserved. */ if (thistimei == 0) writetype[1] = TRUE; } #ifndef LEAVE_SOME_PRE_2011_SYSTEMS_IN_THE_LURCH /* ** For some pre-2011 systems: if the last-to-be-written ** standard (or daylight) type has an offset different from the ** most recently used offset, ** append an (unused) copy of the most recently used type ** (to help get global "altzone" and "timezone" variables ** set correctly). */ { register int mrudst, mrustd, hidst, histd, type; hidst = histd = mrudst = mrustd = -1; for (i = thistimei; i < thistimelim; ++i) if (isdsts[types[i]]) mrudst = types[i]; else mrustd = types[i]; for (i = 0; i < typecnt; ++i) if (writetype[i]) { if (isdsts[i]) hidst = i; else histd = i; } if (hidst >= 0 && mrudst >= 0 && hidst != mrudst && gmtoffs[hidst] != gmtoffs[mrudst]) { isdsts[mrudst] = -1; type = addtype(gmtoffs[mrudst], #ifdef ICU rawoffs[mrudst], dstoffs[mrudst], #endif &chars[abbrinds[mrudst]], TRUE, ttisstds[mrudst], ttisgmts[mrudst]); isdsts[mrudst] = TRUE; writetype[type] = TRUE; } if (histd >= 0 && mrustd >= 0 && histd != mrustd && gmtoffs[histd] != gmtoffs[mrustd]) { isdsts[mrustd] = -1; type = addtype(gmtoffs[mrustd], #ifdef ICU rawoffs[mrudst], dstoffs[mrudst], #endif &chars[abbrinds[mrustd]], FALSE, ttisstds[mrustd], ttisgmts[mrustd]); isdsts[mrustd] = FALSE; writetype[type] = TRUE; } } #endif /* !defined LEAVE_SOME_PRE_2011_SYSTEMS_IN_THE_LURCH */ thistypecnt = 0; /* ** Potentially, set type 0 to that of lowest-valued time. */ if (thistimei > 0) { for (i = 1; i < typecnt; ++i) if (writetype[i] && !isdsts[i]) break; if (i != types[thistimei - 1]) { i = types[thistimei - 1]; gmtoffs[0] = gmtoffs[i]; isdsts[0] = isdsts[i]; ttisstds[0] = ttisstds[i]; ttisgmts[0] = ttisgmts[i]; abbrinds[0] = abbrinds[i]; writetype[0] = TRUE; writetype[i] = FALSE; } } for (i = 0; i < typecnt; ++i) typemap[i] = writetype[i] ? thistypecnt++ : 0; for (i = 0; i < sizeof indmap / sizeof indmap[0]; ++i) indmap[i] = -1; thischarcnt = 0; for (i = 0; i < typecnt; ++i) { register char * thisabbr; if (!writetype[i]) continue; if (indmap[abbrinds[i]] >= 0) continue; thisabbr = &chars[abbrinds[i]]; for (j = 0; j < thischarcnt; ++j) if (strcmp(&thischars[j], thisabbr) == 0) break; if (j == thischarcnt) { (void) strcpy(&thischars[(int) thischarcnt], thisabbr); thischarcnt += strlen(thisabbr) + 1; } indmap[abbrinds[i]] = j; } #define DO(field) ((void) fwrite(tzh.field, sizeof tzh.field, 1, fp)) tzh = tzh0; #ifdef ICU * (ICUZoneinfoVersion*) &tzh.tzh_reserved = TZ_ICU_VERSION; (void) strncpy(tzh.tzh_magic, TZ_ICU_MAGIC, sizeof tzh.tzh_magic); #else (void) strncpy(tzh.tzh_magic, TZ_MAGIC, sizeof tzh.tzh_magic); #endif tzh.tzh_version[0] = version; convert(thistypecnt, tzh.tzh_ttisgmtcnt); convert(thistypecnt, tzh.tzh_ttisstdcnt); convert(thisleapcnt, tzh.tzh_leapcnt); convert(thistimecnt, tzh.tzh_timecnt); convert(thistypecnt, tzh.tzh_typecnt); convert(thischarcnt, tzh.tzh_charcnt); DO(tzh_magic); DO(tzh_version); DO(tzh_reserved); DO(tzh_ttisgmtcnt); DO(tzh_ttisstdcnt); DO(tzh_leapcnt); DO(tzh_timecnt); DO(tzh_typecnt); DO(tzh_charcnt); #undef DO for (i = thistimei; i < thistimelim; ++i) if (pass == 1) puttzcode(ats[i], fp); else puttzcode64(ats[i], fp); for (i = thistimei; i < thistimelim; ++i) { unsigned char uc; uc = typemap[types[i]]; (void) fwrite(&uc, sizeof uc, 1, fp); } for (i = 0; i < typecnt; ++i) if (writetype[i]) { #ifdef ICU puttzcode(rawoffs[i], fp); puttzcode(dstoffs[i], fp); #else puttzcode(gmtoffs[i], fp); #endif (void) putc(isdsts[i], fp); (void) putc((unsigned char) indmap[abbrinds[i]], fp); } if (thischarcnt != 0) (void) fwrite(thischars, sizeof thischars[0], thischarcnt, fp); for (i = thisleapi; i < thisleaplim; ++i) { register zic_t todo; if (roll[i]) { if (timecnt == 0 || trans[i] < ats[0]) { j = 0; while (isdsts[j]) if (++j >= typecnt) { j = 0; break; } } else { j = 1; while (j < timecnt && trans[i] >= ats[j]) ++j; j = types[j - 1]; } todo = tadd(trans[i], -gmtoffs[j]); } else todo = trans[i]; if (pass == 1) puttzcode(todo, fp); else puttzcode64(todo, fp); puttzcode(corr[i], fp); } for (i = 0; i < typecnt; ++i) if (writetype[i]) (void) putc(ttisstds[i], fp); for (i = 0; i < typecnt; ++i) if (writetype[i]) (void) putc(ttisgmts[i], fp); } (void) fprintf(fp, "\n%s\n", string); if (ferror(fp) || fclose(fp)) { (void) fprintf(stderr, _("%s: Error writing %s\n"), progname, fullname); exit(EXIT_FAILURE); } free(ats); } static void doabbr(char *const abbr, const char *const format, const char *const letters, const int isdst, const int doquotes) { register char * cp; register char * slashp; register int len; slashp = strchr(format, '/'); if (slashp == NULL) { if (letters == NULL) (void) strcpy(abbr, format); else (void) sprintf(abbr, format, letters); } else if (isdst) { (void) strcpy(abbr, slashp + 1); } else { if (slashp > format) (void) strncpy(abbr, format, slashp - format); abbr[slashp - format] = '\0'; } if (!doquotes) return; for (cp = abbr; *cp != '\0'; ++cp) if (strchr("ABCDEFGHIJKLMNOPQRSTUVWXYZ", *cp) == NULL && strchr("abcdefghijklmnopqrstuvwxyz", *cp) == NULL) break; len = strlen(abbr); if (len > 0 && *cp == '\0') return; abbr[len + 2] = '\0'; abbr[len + 1] = '>'; for ( ; len > 0; --len) abbr[len] = abbr[len - 1]; abbr[0] = '<'; } static void updateminmax(const zic_t x) { if (min_year > x) min_year = x; if (max_year < x) max_year = x; } static int stringoffset(char *result, zic_t offset) { register int hours; register int minutes; register int seconds; result[0] = '\0'; if (offset < 0) { (void) strcpy(result, "-"); offset = -offset; } seconds = offset % SECSPERMIN; offset /= SECSPERMIN; minutes = offset % MINSPERHOUR; offset /= MINSPERHOUR; hours = offset; if (hours >= HOURSPERDAY * DAYSPERWEEK) { result[0] = '\0'; return -1; } (void) sprintf(end(result), "%d", hours); if (minutes != 0 || seconds != 0) { (void) sprintf(end(result), ":%02d", minutes); if (seconds != 0) (void) sprintf(end(result), ":%02d", seconds); } return 0; } static int stringrule(char *result, const struct rule *const rp, const zic_t dstoff, const zic_t gmtoff) { register zic_t tod = rp->r_tod; register int compat = 0; result = end(result); if (rp->r_dycode == DC_DOM) { register int month, total; if (rp->r_dayofmonth == 29 && rp->r_month == TM_FEBRUARY) return -1; total = 0; for (month = 0; month < rp->r_month; ++month) total += len_months[0][month]; /* Omit the "J" in Jan and Feb, as that's shorter. */ if (rp->r_month <= 1) (void) sprintf(result, "%d", total + rp->r_dayofmonth - 1); else (void) sprintf(result, "J%d", total + rp->r_dayofmonth); } else { register int week; register int wday = rp->r_wday; register int wdayoff; if (rp->r_dycode == DC_DOWGEQ) { wdayoff = (rp->r_dayofmonth - 1) % DAYSPERWEEK; if (wdayoff) compat = 2013; wday -= wdayoff; tod += wdayoff * SECSPERDAY; week = 1 + (rp->r_dayofmonth - 1) / DAYSPERWEEK; } else if (rp->r_dycode == DC_DOWLEQ) { if (rp->r_dayofmonth == len_months[1][rp->r_month]) week = 5; else { wdayoff = rp->r_dayofmonth % DAYSPERWEEK; if (wdayoff) compat = 2013; wday -= wdayoff; tod += wdayoff * SECSPERDAY; week = rp->r_dayofmonth / DAYSPERWEEK; } } else return -1; /* "cannot happen" */ if (wday < 0) wday += DAYSPERWEEK; (void) sprintf(result, "M%d.%d.%d", rp->r_month + 1, week, wday); } if (rp->r_todisgmt) tod += gmtoff; if (rp->r_todisstd && rp->r_stdoff == 0) tod += dstoff; if (tod != 2 * SECSPERMIN * MINSPERHOUR) { (void) strcat(result, "/"); if (stringoffset(end(result), tod) != 0) return -1; if (tod < 0) { if (compat < 2013) compat = 2013; } else if (SECSPERDAY <= tod) { if (compat < 1994) compat = 1994; } } return compat; } static int rule_cmp(struct rule const *a, struct rule const *b) { if (!a) return -!!b; if (!b) return 1; if (a->r_hiyear != b->r_hiyear) return a->r_hiyear < b->r_hiyear ? -1 : 1; if (a->r_month - b->r_month != 0) return a->r_month - b->r_month; return a->r_dayofmonth - b->r_dayofmonth; } enum { YEAR_BY_YEAR_ZONE = 1 }; static int stringzone(char *result, const struct zone *const zpfirst, const int zonecount) { register const struct zone * zp; register struct rule * rp; register struct rule * stdrp; register struct rule * dstrp; register int i; register const char * abbrvar; register int compat = 0; register int c; struct rule stdr, dstr; result[0] = '\0'; zp = zpfirst + zonecount - 1; stdrp = dstrp = NULL; for (i = 0; i < zp->z_nrules; ++i) { rp = &zp->z_rules[i]; if (rp->r_hiwasnum || rp->r_hiyear != ZIC_MAX) continue; if (rp->r_yrtype != NULL) continue; if (rp->r_stdoff == 0) { if (stdrp == NULL) stdrp = rp; else return -1; } else { if (dstrp == NULL) dstrp = rp; else return -1; } } if (stdrp == NULL && dstrp == NULL) { /* ** There are no rules running through "max". ** Find the latest std rule in stdabbrrp ** and latest rule of any type in stdrp. */ register struct rule *stdabbrrp = NULL; for (i = 0; i < zp->z_nrules; ++i) { rp = &zp->z_rules[i]; if (rp->r_stdoff == 0 && rule_cmp(stdabbrrp, rp) < 0) stdabbrrp = rp; if (rule_cmp(stdrp, rp) < 0) stdrp = rp; } /* ** Horrid special case: if year is 2037, ** presume this is a zone handled on a year-by-year basis; ** do not try to apply a rule to the zone. */ if (stdrp != NULL && stdrp->r_hiyear == 2037) return YEAR_BY_YEAR_ZONE; if (stdrp != NULL && stdrp->r_stdoff != 0) { /* Perpetual DST. */ dstr.r_month = TM_JANUARY; dstr.r_dycode = DC_DOM; dstr.r_dayofmonth = 1; dstr.r_tod = 0; dstr.r_todisstd = dstr.r_todisgmt = FALSE; dstr.r_stdoff = stdrp->r_stdoff; dstr.r_abbrvar = stdrp->r_abbrvar; stdr.r_month = TM_DECEMBER; stdr.r_dycode = DC_DOM; stdr.r_dayofmonth = 31; stdr.r_tod = SECSPERDAY + stdrp->r_stdoff; stdr.r_todisstd = stdr.r_todisgmt = FALSE; stdr.r_stdoff = 0; stdr.r_abbrvar = (stdabbrrp ? stdabbrrp->r_abbrvar : ""); dstrp = &dstr; stdrp = &stdr; } } if (stdrp == NULL && (zp->z_nrules != 0 || zp->z_stdoff != 0)) return -1; abbrvar = (stdrp == NULL) ? "" : stdrp->r_abbrvar; doabbr(result, zp->z_format, abbrvar, FALSE, TRUE); if (stringoffset(end(result), -zp->z_gmtoff) != 0) { result[0] = '\0'; return -1; } if (dstrp == NULL) return compat; doabbr(end(result), zp->z_format, dstrp->r_abbrvar, TRUE, TRUE); if (dstrp->r_stdoff != SECSPERMIN * MINSPERHOUR) if (stringoffset(end(result), -(zp->z_gmtoff + dstrp->r_stdoff)) != 0) { result[0] = '\0'; return -1; } (void) strcat(result, ","); c = stringrule(result, dstrp, dstrp->r_stdoff, zp->z_gmtoff); if (c < 0) { result[0] = '\0'; return -1; } if (compat < c) compat = c; (void) strcat(result, ","); c = stringrule(result, stdrp, dstrp->r_stdoff, zp->z_gmtoff); if (c < 0) { result[0] = '\0'; return -1; } if (compat < c) compat = c; return compat; } static void outzone(const struct zone * const zpfirst, const int zonecount) { register const struct zone * zp; register struct rule * rp; register int i, j; register int usestart, useuntil; register zic_t starttime, untiltime; register zic_t gmtoff; register zic_t stdoff; register zic_t year; register zic_t startoff; register int startttisstd; register int startttisgmt; register int type; register char * startbuf; register char * ab; register char * envvar; register int max_abbr_len; register int max_envvar_len; register int prodstic; /* all rules are min to max */ register int compat; register int do_extend; register char version; #ifdef ICU int finalRuleYear, finalRuleIndex; const struct rule* finalRule1; const struct rule* finalRule2; #endif max_abbr_len = 2 + max_format_len + max_abbrvar_len; max_envvar_len = 2 * max_abbr_len + 5 * 9; startbuf = emalloc(max_abbr_len + 1); ab = emalloc(max_abbr_len + 1); envvar = emalloc(max_envvar_len + 1); INITIALIZE(untiltime); INITIALIZE(starttime); /* ** Now. . .finally. . .generate some useful data! */ timecnt = 0; typecnt = 0; charcnt = 0; prodstic = zonecount == 1; /* ** Thanks to Earl Chew ** for noting the need to unconditionally initialize startttisstd. */ startttisstd = FALSE; startttisgmt = FALSE; min_year = max_year = EPOCH_YEAR; if (leapseen) { updateminmax(leapminyear); updateminmax(leapmaxyear + (leapmaxyear < ZIC_MAX)); } /* ** Reserve type 0. */ gmtoffs[0] = isdsts[0] = ttisstds[0] = ttisgmts[0] = abbrinds[0] = -1; typecnt = 1; for (i = 0; i < zonecount; ++i) { zp = &zpfirst[i]; if (i < zonecount - 1) updateminmax(zp->z_untilrule.r_loyear); for (j = 0; j < zp->z_nrules; ++j) { rp = &zp->z_rules[j]; if (rp->r_lowasnum) updateminmax(rp->r_loyear); if (rp->r_hiwasnum) updateminmax(rp->r_hiyear); if (rp->r_lowasnum || rp->r_hiwasnum) prodstic = FALSE; } } /* ** Generate lots of data if a rule can't cover all future times. */ compat = stringzone(envvar, zpfirst, zonecount); version = compat < 2013 ? ZIC_VERSION_PRE_2013 : ZIC_VERSION; do_extend = compat < 0 || compat == YEAR_BY_YEAR_ZONE; #ifdef ICU do_extend = 0; #endif if (noise) { if (!*envvar) warning("%s %s", _("no POSIX environment variable for zone"), zpfirst->z_name); else if (compat != 0 && compat != YEAR_BY_YEAR_ZONE) { /* Circa-COMPAT clients, and earlier clients, might not work for this zone when given dates before 1970 or after 2038. */ warning(_("%s: pre-%d clients may mishandle" " distant timestamps"), zpfirst->z_name, compat); } } if (do_extend) { /* ** Search through a couple of extra years past the obvious ** 400, to avoid edge cases. For example, suppose a non-POSIX ** rule applies from 2012 onwards and has transitions in March ** and September, plus some one-off transitions in November ** 2013. If zic looked only at the last 400 years, it would ** set max_year=2413, with the intent that the 400 years 2014 ** through 2413 will be repeated. The last transition listed ** in the tzfile would be in 2413-09, less than 400 years ** after the last one-off transition in 2013-11. Two years ** might be overkill, but with the kind of edge cases ** available we're not sure that one year would suffice. */ enum { years_of_observations = YEARSPERREPEAT + 2 }; if (min_year >= ZIC_MIN + years_of_observations) min_year -= years_of_observations; else min_year = ZIC_MIN; if (max_year <= ZIC_MAX - years_of_observations) max_year += years_of_observations; else max_year = ZIC_MAX; /* ** Regardless of any of the above, ** for a "proDSTic" zone which specifies that its rules ** always have and always will be in effect, ** we only need one cycle to define the zone. */ if (prodstic) { min_year = 1900; max_year = min_year + years_of_observations; } } /* ** For the benefit of older systems, ** generate data from 1900 through 2037. */ if (min_year > 1900) min_year = 1900; if (max_year < 2037) max_year = 2037; for (i = 0; i < zonecount; ++i) { /* ** A guess that may well be corrected later. */ stdoff = 0; zp = &zpfirst[i]; usestart = i > 0 && (zp - 1)->z_untiltime > min_time; useuntil = i < (zonecount - 1); if (useuntil && zp->z_untiltime <= min_time) continue; gmtoff = zp->z_gmtoff; eat(zp->z_filename, zp->z_linenum); *startbuf = '\0'; startoff = zp->z_gmtoff; #ifdef ICU finalRuleYear = finalRuleIndex = -1; finalRule1 = finalRule2 = NULL; if (i == (zonecount - 1)) { /* !useuntil */ /* Look for exactly 2 rules that end at 'max' and * note them. Determine max(r_loyear) for the 2 of * them. */ for (j=0; j<zp->z_nrules; ++j) { rp = &zp->z_rules[j]; if (rp->r_hiyear == ZIC_MAX) { if (rp->r_loyear > finalRuleYear) { finalRuleYear = rp->r_loyear; } if (finalRule1 == NULL) { finalRule1 = rp; } else if (finalRule2 == NULL) { finalRule2 = rp; } else { error("more than two max rules found (ICU)"); exit(EXIT_FAILURE); } } else if (rp->r_hiyear >= finalRuleYear) { /* There might be an overriding non-max rule * to be applied to a specific year after one of * max rule's start year. For example, * * Rule Foo 2010 max ... * Rule Foo 2015 only ... * * In this case, we need to change the start year of * the final (max) rules to the next year. */ finalRuleYear = rp->r_hiyear + 1; /* When above adjustment is done, max_year might need * to be adjusted, so the final rule will be properly * evaluated and emitted by the later code block. * * Note: This may push the start year of the final * rules ahead by 1 year unnecessarily. For example, * If there are two rules, non-max rule and max rule * starting in the same year, such as * * Rule Foo 2010 only .... * Rule Foo 2010 max .... * * In this case, the final (max) rule actually starts * in 2010, instead of 2010. We could make this tool * more intelligent to detect such situation. But pushing * final rule start year to 1 year ahead (in the worst case) * will just populate a few extra transitions, and it still * works fine. So for now, we're not trying to put additional * logic to optimize the case. */ if (max_year < finalRuleYear) { max_year = finalRuleYear; } } } if (finalRule1 != NULL) { if (finalRule2 == NULL) { warning("only one max rule found (ICU)"); finalRuleYear = finalRuleIndex = -1; finalRule1 = NULL; } else { if (finalRule1->r_stdoff == finalRule2->r_stdoff) { /* America/Resolute in 2009a uses a pair of rules * which does not change the offset. ICU ignores * such rules without actual time transitions. */ finalRuleYear = finalRuleIndex = -1; finalRule1 = finalRule2 = NULL; } else { /* Swap if necessary so finalRule1 occurs before * finalRule2 */ if (finalRule1->r_month > finalRule2->r_month) { const struct rule* t = finalRule1; finalRule1 = finalRule2; finalRule2 = t; } /* Add final rule to our list */ finalRuleIndex = add_icu_final_rules(finalRule1, finalRule2); } } } } #endif if (zp->z_nrules == 0) { stdoff = zp->z_stdoff; doabbr(startbuf, zp->z_format, NULL, stdoff != 0, FALSE); type = addtype(oadd(zp->z_gmtoff, stdoff), #ifdef ICU zp->z_gmtoff, stdoff, #endif startbuf, stdoff != 0, startttisstd, startttisgmt); if (usestart) { addtt(starttime, type); usestart = FALSE; } else if (stdoff != 0) addtt(min_time, type); } else for (year = min_year; year <= max_year; ++year) { if (useuntil && year > zp->z_untilrule.r_hiyear) break; /* ** Mark which rules to do in the current year. ** For those to do, calculate rpytime(rp, year); */ for (j = 0; j < zp->z_nrules; ++j) { rp = &zp->z_rules[j]; eats(zp->z_filename, zp->z_linenum, rp->r_filename, rp->r_linenum); rp->r_todo = year >= rp->r_loyear && year <= rp->r_hiyear && yearistype(year, rp->r_yrtype); if (rp->r_todo) rp->r_temp = rpytime(rp, year); } for ( ; ; ) { register int k; register zic_t jtime, ktime; register zic_t offset; INITIALIZE(ktime); if (useuntil) { /* ** Turn untiltime into UT ** assuming the current gmtoff and ** stdoff values. */ untiltime = zp->z_untiltime; if (!zp->z_untilrule.r_todisgmt) untiltime = tadd(untiltime, -gmtoff); if (!zp->z_untilrule.r_todisstd) untiltime = tadd(untiltime, -stdoff); } /* ** Find the rule (of those to do, if any) ** that takes effect earliest in the year. */ k = -1; for (j = 0; j < zp->z_nrules; ++j) { rp = &zp->z_rules[j]; if (!rp->r_todo) continue; eats(zp->z_filename, zp->z_linenum, rp->r_filename, rp->r_linenum); offset = rp->r_todisgmt ? 0 : gmtoff; if (!rp->r_todisstd) offset = oadd(offset, stdoff); jtime = rp->r_temp; if (jtime == min_time || jtime == max_time) continue; jtime = tadd(jtime, -offset); if (k < 0 || jtime < ktime) { k = j; ktime = jtime; } } if (k < 0) break; /* go on to next year */ rp = &zp->z_rules[k]; rp->r_todo = FALSE; if (useuntil && ktime >= untiltime) break; stdoff = rp->r_stdoff; if (usestart && ktime == starttime) usestart = FALSE; if (usestart) { if (ktime < starttime) { startoff = oadd(zp->z_gmtoff, stdoff); doabbr(startbuf, zp->z_format, rp->r_abbrvar, rp->r_stdoff != 0, FALSE); continue; } if (*startbuf == '\0' && startoff == oadd(zp->z_gmtoff, stdoff)) { doabbr(startbuf, zp->z_format, rp->r_abbrvar, rp->r_stdoff != 0, FALSE); } } #ifdef ICU if (year >= finalRuleYear && rp == finalRule1) { /* We want to shift final year 1 year after * the actual final rule takes effect (year + 1), * because the previous type is valid until the first * transition defined by the final rule. Otherwise * we may see unexpected offset shift at the * begining of the year when the final rule takes * effect. * * Note: This may results some 64bit second transitions * at the very end (year 2038). ICU 4.2 or older releases * cannot handle 64bit second transitions and they are * dropped from zoneinfo.txt. */ emit_icu_zone(icuFile, zpfirst->z_name, zp->z_gmtoff, rp, finalRuleIndex, year + 1); /* only emit this for the first year */ finalRule1 = NULL; } #endif eats(zp->z_filename, zp->z_linenum, rp->r_filename, rp->r_linenum); doabbr(ab, zp->z_format, rp->r_abbrvar, rp->r_stdoff != 0, FALSE); offset = oadd(zp->z_gmtoff, rp->r_stdoff); #ifdef ICU type = addtype(offset, zp->z_gmtoff, rp->r_stdoff, ab, rp->r_stdoff != 0, rp->r_todisstd, rp->r_todisgmt); #else type = addtype(offset, ab, rp->r_stdoff != 0, rp->r_todisstd, rp->r_todisgmt); #endif addtt(ktime, type); } } if (usestart) { if (*startbuf == '\0' && zp->z_format != NULL && strchr(zp->z_format, '%') == NULL && strchr(zp->z_format, '/') == NULL) (void) strcpy(startbuf, zp->z_format); eat(zp->z_filename, zp->z_linenum); if (*startbuf == '\0') error(_("can't determine time zone abbreviation to use just after until time")); else addtt(starttime, #ifdef ICU addtype(startoff, zp->z_gmtoff, startoff - zp->z_gmtoff, startbuf, startoff != zp->z_gmtoff, startttisstd, startttisgmt)); #else addtype(startoff, startbuf, startoff != zp->z_gmtoff, startttisstd, startttisgmt)); #endif } /* ** Now we may get to set starttime for the next zone line. */ if (useuntil) { startttisstd = zp->z_untilrule.r_todisstd; startttisgmt = zp->z_untilrule.r_todisgmt; starttime = zp->z_untiltime; if (!startttisstd) starttime = tadd(starttime, -stdoff); if (!startttisgmt) starttime = tadd(starttime, -gmtoff); } } if (do_extend) { /* ** If we're extending the explicitly listed observations ** for 400 years because we can't fill the POSIX-TZ field, ** check whether we actually ended up explicitly listing ** observations through that period. If there aren't any ** near the end of the 400-year period, add a redundant ** one at the end of the final year, to make it clear ** that we are claiming to have definite knowledge of ** the lack of transitions up to that point. */ struct rule xr; struct attype *lastat; xr.r_month = TM_JANUARY; xr.r_dycode = DC_DOM; xr.r_dayofmonth = 1; xr.r_tod = 0; for (lastat = &attypes[0], i = 1; i < timecnt; i++) if (attypes[i].at > lastat->at) lastat = &attypes[i]; if (lastat->at < rpytime(&xr, max_year - 1)) { /* ** Create new type code for the redundant entry, ** to prevent it being optimised away. */ if (typecnt >= TZ_MAX_TYPES) { error(_("too many local time types")); exit(EXIT_FAILURE); } gmtoffs[typecnt] = gmtoffs[lastat->type]; isdsts[typecnt] = isdsts[lastat->type]; ttisstds[typecnt] = ttisstds[lastat->type]; ttisgmts[typecnt] = ttisgmts[lastat->type]; abbrinds[typecnt] = abbrinds[lastat->type]; ++typecnt; addtt(rpytime(&xr, max_year + 1), typecnt-1); } } writezone(zpfirst->z_name, envvar, version); free(startbuf); free(ab); free(envvar); } static void addtt(const zic_t starttime, int type) { if (starttime <= min_time || (timecnt == 1 && attypes[0].at < min_time)) { gmtoffs[0] = gmtoffs[type]; #ifdef ICU rawoffs[0] = rawoffs[type]; dstoffs[0] = dstoffs[type]; #endif isdsts[0] = isdsts[type]; ttisstds[0] = ttisstds[type]; ttisgmts[0] = ttisgmts[type]; if (abbrinds[type] != 0) (void) strcpy(chars, &chars[abbrinds[type]]); abbrinds[0] = 0; charcnt = strlen(chars) + 1; typecnt = 1; timecnt = 0; type = 0; } attypes = growalloc(attypes, sizeof *attypes, timecnt, &timecnt_alloc); attypes[timecnt].at = starttime; attypes[timecnt].type = type; ++timecnt; } static int #ifdef ICU addtype(const zic_t gmtoff, const zic_t rawoff, const zic_t dstoff, char *const abbr, const int isdst, const int ttisstd, const int ttisgmt) #else addtype(const zic_t gmtoff, const char *const abbr, const int isdst, const int ttisstd, const int ttisgmt) #endif { register int i, j; if (isdst != TRUE && isdst != FALSE) { error(_("internal error - addtype called with bad isdst")); exit(EXIT_FAILURE); } if (ttisstd != TRUE && ttisstd != FALSE) { error(_("internal error - addtype called with bad ttisstd")); exit(EXIT_FAILURE); } if (ttisgmt != TRUE && ttisgmt != FALSE) { error(_("internal error - addtype called with bad ttisgmt")); exit(EXIT_FAILURE); } #ifdef ICU if (isdst != (dstoff != 0)) { error(_("internal error - addtype called with bad isdst/dstoff")); exit(EXIT_FAILURE); } if (gmtoff != (rawoff + dstoff)) { error(_("internal error - addtype called with bad gmt/raw/dstoff")); exit(EXIT_FAILURE); } #endif /* ** See if there's already an entry for this zone type. ** If so, just return its index. */ for (i = 0; i < typecnt; ++i) { if (gmtoff == gmtoffs[i] && isdst == isdsts[i] && #ifdef ICU rawoff == rawoffs[i] && dstoff == dstoffs[i] && #endif strcmp(abbr, &chars[abbrinds[i]]) == 0 && ttisstd == ttisstds[i] && ttisgmt == ttisgmts[i]) return i; } /* ** There isn't one; add a new one, unless there are already too ** many. */ if (typecnt >= TZ_MAX_TYPES) { error(_("too many local time types")); exit(EXIT_FAILURE); } if (! (-1L - 2147483647L <= gmtoff && gmtoff <= 2147483647L)) { error(_("UT offset out of range")); exit(EXIT_FAILURE); } gmtoffs[i] = gmtoff; #ifdef ICU rawoffs[i] = rawoff; dstoffs[i] = dstoff; #endif isdsts[i] = isdst; ttisstds[i] = ttisstd; ttisgmts[i] = ttisgmt; for (j = 0; j < charcnt; ++j) if (strcmp(&chars[j], abbr) == 0) break; if (j == charcnt) newabbr(abbr); abbrinds[i] = j; ++typecnt; return i; } static void leapadd(const zic_t t, const int positive, const int rolling, int count) { register int i, j; if (leapcnt + (positive ? count : 1) > TZ_MAX_LEAPS) { error(_("too many leap seconds")); exit(EXIT_FAILURE); } for (i = 0; i < leapcnt; ++i) if (t <= trans[i]) { if (t == trans[i]) { error(_("repeated leap second moment")); exit(EXIT_FAILURE); } break; } do { for (j = leapcnt; j > i; --j) { trans[j] = trans[j - 1]; corr[j] = corr[j - 1]; roll[j] = roll[j - 1]; } trans[i] = t; corr[i] = positive ? 1 : -count; roll[i] = rolling; ++leapcnt; } while (positive && --count != 0); } static void adjleap(void) { register int i; register zic_t last = 0; /* ** propagate leap seconds forward */ for (i = 0; i < leapcnt; ++i) { trans[i] = tadd(trans[i], last); last = corr[i] += last; } } static int yearistype(const int year, const char *const type) { static char * buf; int result; if (type == NULL || *type == '\0') return TRUE; buf = erealloc(buf, 132 + strlen(yitcommand) + strlen(type)); (void) sprintf(buf, "%s %d %s", yitcommand, year, type); result = system(buf); if (WIFEXITED(result)) switch (WEXITSTATUS(result)) { case 0: return TRUE; case 1: return FALSE; } error(_("Wild result from command execution")); (void) fprintf(stderr, _("%s: command was '%s', result was %d\n"), progname, buf, result); for ( ; ; ) exit(EXIT_FAILURE); } static int lowerit(int a) { a = (unsigned char) a; return (isascii(a) && isupper(a)) ? tolower(a) : a; } /* case-insensitive equality */ static ATTRIBUTE_PURE int ciequal(register const char *ap, register const char *bp) { while (lowerit(*ap) == lowerit(*bp++)) if (*ap++ == '\0') return TRUE; return FALSE; } static ATTRIBUTE_PURE int itsabbr(register const char *abbr, register const char *word) { if (lowerit(*abbr) != lowerit(*word)) return FALSE; ++word; while (*++abbr != '\0') do { if (*word == '\0') return FALSE; } while (lowerit(*word++) != lowerit(*abbr)); return TRUE; } static ATTRIBUTE_PURE const struct lookup * byword(register const char *const word, register const struct lookup *const table) { register const struct lookup * foundlp; register const struct lookup * lp; if (word == NULL || table == NULL) return NULL; /* ** Look for exact match. */ for (lp = table; lp->l_word != NULL; ++lp) if (ciequal(word, lp->l_word)) return lp; /* ** Look for inexact match. */ foundlp = NULL; for (lp = table; lp->l_word != NULL; ++lp) if (itsabbr(word, lp->l_word)) { if (foundlp == NULL) foundlp = lp; else return NULL; /* multiple inexact matches */ } return foundlp; } static char ** getfields(register char *cp) { register char * dp; register char ** array; register int nsubs; if (cp == NULL) return NULL; array = emalloc(size_product(strlen(cp) + 1, sizeof *array)); nsubs = 0; for ( ; ; ) { while (isascii((unsigned char) *cp) && isspace((unsigned char) *cp)) ++cp; if (*cp == '\0' || *cp == '#') break; array[nsubs++] = dp = cp; do { if ((*dp = *cp++) != '"') ++dp; else while ((*dp = *cp++) != '"') if (*dp != '\0') ++dp; else { error(_( "Odd number of quotation marks" )); exit(1); } } while (*cp != '\0' && *cp != '#' && (!isascii(*cp) || !isspace((unsigned char) *cp))); if (isascii(*cp) && isspace((unsigned char) *cp)) ++cp; *dp = '\0'; } array[nsubs] = NULL; return array; } static ATTRIBUTE_PURE zic_t oadd(const zic_t t1, const zic_t t2) { if (t1 < 0 ? t2 < ZIC_MIN - t1 : ZIC_MAX - t1 < t2) { error(_("time overflow")); exit(EXIT_FAILURE); } return t1 + t2; } static ATTRIBUTE_PURE zic_t tadd(const zic_t t1, const zic_t t2) { if (t1 == max_time && t2 > 0) return max_time; if (t1 == min_time && t2 < 0) return min_time; if (t1 < 0 ? t2 < min_time - t1 : max_time - t1 < t2) { error(_("time overflow")); exit(EXIT_FAILURE); } return t1 + t2; } /* ** Given a rule, and a year, compute the date - in seconds since January 1, ** 1970, 00:00 LOCAL time - in that year that the rule refers to. */ static zic_t rpytime(register const struct rule *const rp, register const zic_t wantedy) { register int m, i; register zic_t dayoff; /* with a nod to Margaret O. */ register zic_t t, y; if (wantedy == ZIC_MIN) return min_time; if (wantedy == ZIC_MAX) return max_time; dayoff = 0; m = TM_JANUARY; y = EPOCH_YEAR; while (wantedy != y) { if (wantedy > y) { i = len_years[isleap(y)]; ++y; } else { --y; i = -len_years[isleap(y)]; } dayoff = oadd(dayoff, i); } while (m != rp->r_month) { i = len_months[isleap(y)][m]; dayoff = oadd(dayoff, i); ++m; } i = rp->r_dayofmonth; if (m == TM_FEBRUARY && i == 29 && !isleap(y)) { if (rp->r_dycode == DC_DOWLEQ) --i; else { error(_("use of 2/29 in non leap-year")); exit(EXIT_FAILURE); } } --i; dayoff = oadd(dayoff, i); if (rp->r_dycode == DC_DOWGEQ || rp->r_dycode == DC_DOWLEQ) { register zic_t wday; #define LDAYSPERWEEK ((zic_t) DAYSPERWEEK) wday = EPOCH_WDAY; /* ** Don't trust mod of negative numbers. */ if (dayoff >= 0) wday = (wday + dayoff) % LDAYSPERWEEK; else { wday -= ((-dayoff) % LDAYSPERWEEK); if (wday < 0) wday += LDAYSPERWEEK; } while (wday != rp->r_wday) if (rp->r_dycode == DC_DOWGEQ) { dayoff = oadd(dayoff, 1); if (++wday >= LDAYSPERWEEK) wday = 0; ++i; } else { dayoff = oadd(dayoff, -1); if (--wday < 0) wday = LDAYSPERWEEK - 1; --i; } if (i < 0 || i >= len_months[isleap(y)][m]) { if (noise) warning(_("rule goes past start/end of month--\ will not work with pre-2004 versions of zic")); } } if (dayoff < min_time / SECSPERDAY) return min_time; if (dayoff > max_time / SECSPERDAY) return max_time; t = (zic_t) dayoff * SECSPERDAY; return tadd(t, rp->r_tod); } static void newabbr(const char *const string) { register int i; if (strcmp(string, GRANDPARENTED) != 0) { register const char * cp; const char * mp; /* ** Want one to ZIC_MAX_ABBR_LEN_WO_WARN alphabetics ** optionally followed by a + or - and a number from 1 to 14. */ cp = string; mp = NULL; while (isascii((unsigned char) *cp) && isalpha((unsigned char) *cp)) ++cp; if (cp - string == 0) mp = _("time zone abbreviation lacks alphabetic at start"); if (noise && cp - string < 3) mp = _("time zone abbreviation has fewer than 3 alphabetics"); if (cp - string > ZIC_MAX_ABBR_LEN_WO_WARN) mp = _("time zone abbreviation has too many alphabetics"); if (mp == NULL && (*cp == '+' || *cp == '-')) { ++cp; if (isascii((unsigned char) *cp) && isdigit((unsigned char) *cp)) if (*cp++ == '1' && *cp >= '0' && *cp <= '4') ++cp; } if (*cp != '\0') mp = _("time zone abbreviation differs from POSIX standard"); if (mp != NULL) warning("%s (%s)", mp, string); } i = strlen(string) + 1; if (charcnt + i > TZ_MAX_CHARS) { error(_("too many, or too long, time zone abbreviations")); exit(EXIT_FAILURE); } (void) strcpy(&chars[charcnt], string); charcnt += i; } static int mkdirs(char *argname) { register char * name; register char * cp; if (argname == NULL || *argname == '\0') return 0; cp = name = ecpyalloc(argname); while ((cp = strchr(cp + 1, '/')) != 0) { *cp = '\0'; #ifdef HAVE_DOS_FILE_NAMES /* ** DOS drive specifier? */ if (isalpha((unsigned char) name[0]) && name[1] == ':' && name[2] == '\0') { *cp = '/'; continue; } #endif if (!itsdir(name)) { /* ** It doesn't seem to exist, so we try to create it. ** Creation may fail because of the directory being ** created by some other multiprocessor, so we get ** to do extra checking. */ if (mkdir(name, MKDIR_UMASK) != 0) { const char *e = strerror(errno); if (errno != EEXIST || !itsdir(name)) { (void) fprintf(stderr, _("%s: Can't create directory %s: %s\n"), progname, name, e); free(name); return -1; } } } *cp = '/'; } free(name); return 0; } /* ** UNIX was a registered trademark of The Open Group in 2003. */