"""Affine 2D transformation matrix class. The Transform class implements various transformation matrix operations, both on the matrix itself, as well as on 2D coordinates. Transform instances are effectively immutable: all methods that operate on the transformation itself always return a new instance. This has as the interesting side effect that Transform instances are hashable, ie. they can be used as dictionary keys. This module exports the following symbols: Transform -- this is the main class Identity -- Transform instance set to the identity transformation Offset -- Convenience function that returns a translating transformation Scale -- Convenience function that returns a scaling transformation Examples: >>> t = Transform(2, 0, 0, 3, 0, 0) >>> t.transformPoint((100, 100)) (200, 300) >>> t = Scale(2, 3) >>> t.transformPoint((100, 100)) (200, 300) >>> t.transformPoint((0, 0)) (0, 0) >>> t = Offset(2, 3) >>> t.transformPoint((100, 100)) (102, 103) >>> t.transformPoint((0, 0)) (2, 3) >>> t2 = t.scale(0.5) >>> t2.transformPoint((100, 100)) (52.0, 53.0) >>> import math >>> t3 = t2.rotate(math.pi / 2) >>> t3.transformPoint((0, 0)) (2.0, 3.0) >>> t3.transformPoint((100, 100)) (-48.0, 53.0) >>> t = Identity.scale(0.5).translate(100, 200).skew(0.1, 0.2) >>> t.transformPoints([(0, 0), (1, 1), (100, 100)]) [(50.0, 100.0), (50.550167336042726, 100.60135501775433), (105.01673360427253, 160.13550177543362)] >>> """ from __future__ import print_function, division, absolute_import from fontTools.misc.py23 import * __all__ = ["Transform", "Identity", "Offset", "Scale"] _EPSILON = 1e-15 _ONE_EPSILON = 1 - _EPSILON _MINUS_ONE_EPSILON = -1 + _EPSILON def _normSinCos(v): if abs(v) < _EPSILON: v = 0 elif v > _ONE_EPSILON: v = 1 elif v < _MINUS_ONE_EPSILON: v = -1 return v class Transform(object): """2x2 transformation matrix plus offset, a.k.a. Affine transform. Transform instances are immutable: all transforming methods, eg. rotate(), return a new Transform instance. Examples: >>> t = Transform() >>> t <Transform [1 0 0 1 0 0]> >>> t.scale(2) <Transform [2 0 0 2 0 0]> >>> t.scale(2.5, 5.5) <Transform [2.5 0.0 0.0 5.5 0 0]> >>> >>> t.scale(2, 3).transformPoint((100, 100)) (200, 300) """ def __init__(self, xx=1, xy=0, yx=0, yy=1, dx=0, dy=0): """Transform's constructor takes six arguments, all of which are optional, and can be used as keyword arguments: >>> Transform(12) <Transform [12 0 0 1 0 0]> >>> Transform(dx=12) <Transform [1 0 0 1 12 0]> >>> Transform(yx=12) <Transform [1 0 12 1 0 0]> >>> """ self.__affine = xx, xy, yx, yy, dx, dy def transformPoint(self, p): """Transform a point. Example: >>> t = Transform() >>> t = t.scale(2.5, 5.5) >>> t.transformPoint((100, 100)) (250.0, 550.0) """ (x, y) = p xx, xy, yx, yy, dx, dy = self.__affine return (xx*x + yx*y + dx, xy*x + yy*y + dy) def transformPoints(self, points): """Transform a list of points. Example: >>> t = Scale(2, 3) >>> t.transformPoints([(0, 0), (0, 100), (100, 100), (100, 0)]) [(0, 0), (0, 300), (200, 300), (200, 0)] >>> """ xx, xy, yx, yy, dx, dy = self.__affine return [(xx*x + yx*y + dx, xy*x + yy*y + dy) for x, y in points] def translate(self, x=0, y=0): """Return a new transformation, translated (offset) by x, y. Example: >>> t = Transform() >>> t.translate(20, 30) <Transform [1 0 0 1 20 30]> >>> """ return self.transform((1, 0, 0, 1, x, y)) def scale(self, x=1, y=None): """Return a new transformation, scaled by x, y. The 'y' argument may be None, which implies to use the x value for y as well. Example: >>> t = Transform() >>> t.scale(5) <Transform [5 0 0 5 0 0]> >>> t.scale(5, 6) <Transform [5 0 0 6 0 0]> >>> """ if y is None: y = x return self.transform((x, 0, 0, y, 0, 0)) def rotate(self, angle): """Return a new transformation, rotated by 'angle' (radians). Example: >>> import math >>> t = Transform() >>> t.rotate(math.pi / 2) <Transform [0 1 -1 0 0 0]> >>> """ import math c = _normSinCos(math.cos(angle)) s = _normSinCos(math.sin(angle)) return self.transform((c, s, -s, c, 0, 0)) def skew(self, x=0, y=0): """Return a new transformation, skewed by x and y. Example: >>> import math >>> t = Transform() >>> t.skew(math.pi / 4) <Transform [1.0 0.0 1.0 1.0 0 0]> >>> """ import math return self.transform((1, math.tan(y), math.tan(x), 1, 0, 0)) def transform(self, other): """Return a new transformation, transformed by another transformation. Example: >>> t = Transform(2, 0, 0, 3, 1, 6) >>> t.transform((4, 3, 2, 1, 5, 6)) <Transform [8 9 4 3 11 24]> >>> """ xx1, xy1, yx1, yy1, dx1, dy1 = other xx2, xy2, yx2, yy2, dx2, dy2 = self.__affine return self.__class__( xx1*xx2 + xy1*yx2, xx1*xy2 + xy1*yy2, yx1*xx2 + yy1*yx2, yx1*xy2 + yy1*yy2, xx2*dx1 + yx2*dy1 + dx2, xy2*dx1 + yy2*dy1 + dy2) def reverseTransform(self, other): """Return a new transformation, which is the other transformation transformed by self. self.reverseTransform(other) is equivalent to other.transform(self). Example: >>> t = Transform(2, 0, 0, 3, 1, 6) >>> t.reverseTransform((4, 3, 2, 1, 5, 6)) <Transform [8 6 6 3 21 15]> >>> Transform(4, 3, 2, 1, 5, 6).transform((2, 0, 0, 3, 1, 6)) <Transform [8 6 6 3 21 15]> >>> """ xx1, xy1, yx1, yy1, dx1, dy1 = self.__affine xx2, xy2, yx2, yy2, dx2, dy2 = other return self.__class__( xx1*xx2 + xy1*yx2, xx1*xy2 + xy1*yy2, yx1*xx2 + yy1*yx2, yx1*xy2 + yy1*yy2, xx2*dx1 + yx2*dy1 + dx2, xy2*dx1 + yy2*dy1 + dy2) def inverse(self): """Return the inverse transformation. Example: >>> t = Identity.translate(2, 3).scale(4, 5) >>> t.transformPoint((10, 20)) (42, 103) >>> it = t.inverse() >>> it.transformPoint((42, 103)) (10.0, 20.0) >>> """ if self.__affine == (1, 0, 0, 1, 0, 0): return self xx, xy, yx, yy, dx, dy = self.__affine det = xx*yy - yx*xy xx, xy, yx, yy = yy/det, -xy/det, -yx/det, xx/det dx, dy = -xx*dx - yx*dy, -xy*dx - yy*dy return self.__class__(xx, xy, yx, yy, dx, dy) def toPS(self): """Return a PostScript representation: >>> t = Identity.scale(2, 3).translate(4, 5) >>> t.toPS() '[2 0 0 3 8 15]' >>> """ return "[%s %s %s %s %s %s]" % self.__affine def __len__(self): """Transform instances also behave like sequences of length 6: >>> len(Identity) 6 >>> """ return 6 def __getitem__(self, index): """Transform instances also behave like sequences of length 6: >>> list(Identity) [1, 0, 0, 1, 0, 0] >>> tuple(Identity) (1, 0, 0, 1, 0, 0) >>> """ return self.__affine[index] def __ne__(self, other): return not self.__eq__(other) def __eq__(self, other): """Transform instances are comparable: >>> t1 = Identity.scale(2, 3).translate(4, 6) >>> t2 = Identity.translate(8, 18).scale(2, 3) >>> t1 == t2 1 >>> But beware of floating point rounding errors: >>> t1 = Identity.scale(0.2, 0.3).translate(0.4, 0.6) >>> t2 = Identity.translate(0.08, 0.18).scale(0.2, 0.3) >>> t1 <Transform [0.2 0.0 0.0 0.3 0.08 0.18]> >>> t2 <Transform [0.2 0.0 0.0 0.3 0.08 0.18]> >>> t1 == t2 0 >>> """ xx1, xy1, yx1, yy1, dx1, dy1 = self.__affine xx2, xy2, yx2, yy2, dx2, dy2 = other return (xx1, xy1, yx1, yy1, dx1, dy1) == \ (xx2, xy2, yx2, yy2, dx2, dy2) def __hash__(self): """Transform instances are hashable, meaning you can use them as keys in dictionaries: >>> d = {Scale(12, 13): None} >>> d {<Transform [12 0 0 13 0 0]>: None} >>> But again, beware of floating point rounding errors: >>> t1 = Identity.scale(0.2, 0.3).translate(0.4, 0.6) >>> t2 = Identity.translate(0.08, 0.18).scale(0.2, 0.3) >>> t1 <Transform [0.2 0.0 0.0 0.3 0.08 0.18]> >>> t2 <Transform [0.2 0.0 0.0 0.3 0.08 0.18]> >>> d = {t1: None} >>> d {<Transform [0.2 0.0 0.0 0.3 0.08 0.18]>: None} >>> d[t2] Traceback (most recent call last): File "<stdin>", line 1, in ? KeyError: <Transform [0.2 0.0 0.0 0.3 0.08 0.18]> >>> """ return hash(self.__affine) def __repr__(self): return "<%s [%s %s %s %s %s %s]>" % ((self.__class__.__name__,) \ + tuple(map(str, self.__affine))) Identity = Transform() def Offset(x=0, y=0): """Return the identity transformation offset by x, y. Example: >>> Offset(2, 3) <Transform [1 0 0 1 2 3]> >>> """ return Transform(1, 0, 0, 1, x, y) def Scale(x, y=None): """Return the identity transformation scaled by x, y. The 'y' argument may be None, which implies to use the x value for y as well. Example: >>> Scale(2, 3) <Transform [2 0 0 3 0 0]> >>> """ if y is None: y = x return Transform(x, 0, 0, y, 0, 0) if __name__ == "__main__": import doctest doctest.testmod()