/* * IO verification helpers */ #include <unistd.h> #include <fcntl.h> #include <string.h> #include <assert.h> #include <pthread.h> #include <libgen.h> #include "fio.h" #include "verify.h" #include "trim.h" #include "lib/rand.h" #include "lib/hweight.h" #include "crc/md5.h" #include "crc/crc64.h" #include "crc/crc32.h" #include "crc/crc32c.h" #include "crc/crc16.h" #include "crc/crc7.h" #include "crc/sha256.h" #include "crc/sha512.h" #include "crc/sha1.h" #include "crc/xxhash.h" static void populate_hdr(struct thread_data *td, struct io_u *io_u, struct verify_header *hdr, unsigned int header_num, unsigned int header_len); void fill_buffer_pattern(struct thread_data *td, void *p, unsigned int len) { fill_pattern(p, len, td->o.buffer_pattern, td->o.buffer_pattern_bytes); } void __fill_buffer(struct thread_options *o, unsigned long seed, void *p, unsigned int len) { __fill_random_buf_percentage(seed, p, o->compress_percentage, len, len, o->buffer_pattern, o->buffer_pattern_bytes); } unsigned long fill_buffer(struct thread_data *td, void *p, unsigned int len) { struct frand_state *fs = &td->verify_state; struct thread_options *o = &td->o; return fill_random_buf_percentage(fs, p, o->compress_percentage, len, len, o->buffer_pattern, o->buffer_pattern_bytes); } void fill_verify_pattern(struct thread_data *td, void *p, unsigned int len, struct io_u *io_u, unsigned long seed, int use_seed) { struct thread_options *o = &td->o; if (!o->verify_pattern_bytes) { dprint(FD_VERIFY, "fill random bytes len=%u\n", len); if (use_seed) __fill_buffer(o, seed, p, len); else io_u->rand_seed = fill_buffer(td, p, len); return; } if (io_u->buf_filled_len >= len) { dprint(FD_VERIFY, "using already filled verify pattern b=%d len=%u\n", o->verify_pattern_bytes, len); return; } fill_pattern(p, len, o->verify_pattern, o->verify_pattern_bytes); io_u->buf_filled_len = len; } static unsigned int get_hdr_inc(struct thread_data *td, struct io_u *io_u) { unsigned int hdr_inc; hdr_inc = io_u->buflen; if (td->o.verify_interval && td->o.verify_interval <= io_u->buflen) hdr_inc = td->o.verify_interval; return hdr_inc; } static void fill_pattern_headers(struct thread_data *td, struct io_u *io_u, unsigned long seed, int use_seed) { unsigned int hdr_inc, header_num; struct verify_header *hdr; void *p = io_u->buf; fill_verify_pattern(td, p, io_u->buflen, io_u, seed, use_seed); hdr_inc = get_hdr_inc(td, io_u); header_num = 0; for (; p < io_u->buf + io_u->buflen; p += hdr_inc) { hdr = p; populate_hdr(td, io_u, hdr, header_num, hdr_inc); header_num++; } } static void memswp(void *buf1, void *buf2, unsigned int len) { char swap[200]; assert(len <= sizeof(swap)); memcpy(&swap, buf1, len); memcpy(buf1, buf2, len); memcpy(buf2, &swap, len); } static void hexdump(void *buffer, int len) { unsigned char *p = buffer; int i; for (i = 0; i < len; i++) log_err("%02x", p[i]); log_err("\n"); } /* * Prepare for separation of verify_header and checksum header */ static inline unsigned int __hdr_size(int verify_type) { unsigned int len = 0; switch (verify_type) { case VERIFY_NONE: case VERIFY_NULL: len = 0; break; case VERIFY_MD5: len = sizeof(struct vhdr_md5); break; case VERIFY_CRC64: len = sizeof(struct vhdr_crc64); break; case VERIFY_CRC32C: case VERIFY_CRC32: case VERIFY_CRC32C_INTEL: len = sizeof(struct vhdr_crc32); break; case VERIFY_CRC16: len = sizeof(struct vhdr_crc16); break; case VERIFY_CRC7: len = sizeof(struct vhdr_crc7); break; case VERIFY_SHA256: len = sizeof(struct vhdr_sha256); break; case VERIFY_SHA512: len = sizeof(struct vhdr_sha512); break; case VERIFY_XXHASH: len = sizeof(struct vhdr_xxhash); break; case VERIFY_META: len = sizeof(struct vhdr_meta); break; case VERIFY_SHA1: len = sizeof(struct vhdr_sha1); break; case VERIFY_PATTERN: len = 0; break; default: log_err("fio: unknown verify header!\n"); assert(0); } return len + sizeof(struct verify_header); } static inline unsigned int hdr_size(struct verify_header *hdr) { return __hdr_size(hdr->verify_type); } static void *hdr_priv(struct verify_header *hdr) { void *priv = hdr; return priv + sizeof(struct verify_header); } /* * Verify container, pass info to verify handlers and allow them to * pass info back in case of error */ struct vcont { /* * Input */ struct io_u *io_u; unsigned int hdr_num; struct thread_data *td; /* * Output, only valid in case of error */ const char *name; void *good_crc; void *bad_crc; unsigned int crc_len; }; #define DUMP_BUF_SZ 255 static int dump_buf_warned; static void dump_buf(char *buf, unsigned int len, unsigned long long offset, const char *type, struct fio_file *f) { char *ptr, fname[DUMP_BUF_SZ]; size_t buf_left = DUMP_BUF_SZ; int ret, fd; ptr = strdup(f->file_name); fname[DUMP_BUF_SZ - 1] = '\0'; strncpy(fname, basename(ptr), DUMP_BUF_SZ - 1); buf_left -= strlen(fname); if (buf_left <= 0) { if (!dump_buf_warned) { log_err("fio: verify failure dump buffer too small\n"); dump_buf_warned = 1; } free(ptr); return; } snprintf(fname + strlen(fname), buf_left, ".%llu.%s", offset, type); fd = open(fname, O_CREAT | O_TRUNC | O_WRONLY, 0644); if (fd < 0) { perror("open verify buf file"); return; } while (len) { ret = write(fd, buf, len); if (!ret) break; else if (ret < 0) { perror("write verify buf file"); break; } len -= ret; buf += ret; } close(fd); log_err(" %s data dumped as %s\n", type, fname); free(ptr); } /* * Dump the contents of the read block and re-generate the correct data * and dump that too. */ static void dump_verify_buffers(struct verify_header *hdr, struct vcont *vc) { struct thread_data *td = vc->td; struct io_u *io_u = vc->io_u; unsigned long hdr_offset; struct io_u dummy; void *buf; if (!td->o.verify_dump) return; /* * Dump the contents we just read off disk */ hdr_offset = vc->hdr_num * hdr->len; dump_buf(io_u->buf + hdr_offset, hdr->len, io_u->offset + hdr_offset, "received", vc->io_u->file); /* * Allocate a new buf and re-generate the original data */ buf = malloc(io_u->buflen); dummy = *io_u; dummy.buf = buf; dummy.rand_seed = hdr->rand_seed; dummy.buf_filled_len = 0; dummy.buflen = io_u->buflen; fill_pattern_headers(td, &dummy, hdr->rand_seed, 1); dump_buf(buf + hdr_offset, hdr->len, io_u->offset + hdr_offset, "expected", vc->io_u->file); free(buf); } static void log_verify_failure(struct verify_header *hdr, struct vcont *vc) { unsigned long long offset; offset = vc->io_u->offset; offset += vc->hdr_num * hdr->len; log_err("%.8s: verify failed at file %s offset %llu, length %u\n", vc->name, vc->io_u->file->file_name, offset, hdr->len); if (vc->good_crc && vc->bad_crc) { log_err(" Expected CRC: "); hexdump(vc->good_crc, vc->crc_len); log_err(" Received CRC: "); hexdump(vc->bad_crc, vc->crc_len); } dump_verify_buffers(hdr, vc); } /* * Return data area 'header_num' */ static inline void *io_u_verify_off(struct verify_header *hdr, struct vcont *vc) { return vc->io_u->buf + vc->hdr_num * hdr->len + hdr_size(hdr); } static int verify_io_u_pattern(struct verify_header *hdr, struct vcont *vc) { struct thread_data *td = vc->td; struct io_u *io_u = vc->io_u; char *buf, *pattern; unsigned int header_size = __hdr_size(td->o.verify); unsigned int len, mod, i, size, pattern_size; pattern = td->o.verify_pattern; pattern_size = td->o.verify_pattern_bytes; if (pattern_size <= 1) pattern_size = MAX_PATTERN_SIZE; buf = (void *) hdr + header_size; len = get_hdr_inc(td, io_u) - header_size; mod = header_size % pattern_size; for (i = 0; i < len; i += size) { size = pattern_size - mod; if (size > (len - i)) size = len - i; if (memcmp(buf + i, pattern + mod, size)) /* Let the slow compare find the first mismatch byte. */ break; mod = 0; } for (; i < len; i++) { if (buf[i] != pattern[mod]) { unsigned int bits; bits = hweight8(buf[i] ^ pattern[mod]); log_err("fio: got pattern %x, wanted %x. Bad bits %d\n", buf[i], pattern[mod], bits); log_err("fio: bad pattern block offset %u\n", i); dump_verify_buffers(hdr, vc); return EILSEQ; } mod++; if (mod == td->o.verify_pattern_bytes) mod = 0; } return 0; } static int verify_io_u_meta(struct verify_header *hdr, struct vcont *vc) { struct thread_data *td = vc->td; struct vhdr_meta *vh = hdr_priv(hdr); struct io_u *io_u = vc->io_u; int ret = EILSEQ; dprint(FD_VERIFY, "meta verify io_u %p, len %u\n", io_u, hdr->len); if (vh->offset == io_u->offset + vc->hdr_num * td->o.verify_interval) ret = 0; if (td->o.verify_pattern_bytes) ret |= verify_io_u_pattern(hdr, vc); /* * For read-only workloads, the program cannot be certain of the * last numberio written to a block. Checking of numberio will be * done only for workloads that write data. For verify_only, * numberio will be checked in the last iteration when the correct * state of numberio, that would have been written to each block * in a previous run of fio, has been reached. */ if ((td_write(td) || td_rw(td)) && (td_min_bs(td) == td_max_bs(td)) && !td->o.time_based) if (!td->o.verify_only || td->o.loops == 0) if (vh->numberio != io_u->numberio) ret = EILSEQ; if (!ret) return 0; vc->name = "meta"; log_verify_failure(hdr, vc); return ret; } static int verify_io_u_xxhash(struct verify_header *hdr, struct vcont *vc) { void *p = io_u_verify_off(hdr, vc); struct vhdr_xxhash *vh = hdr_priv(hdr); uint32_t hash; void *state; dprint(FD_VERIFY, "xxhash verify io_u %p, len %u\n", vc->io_u, hdr->len); state = XXH32_init(1); XXH32_update(state, p, hdr->len - hdr_size(hdr)); hash = XXH32_digest(state); if (vh->hash == hash) return 0; vc->name = "xxhash"; vc->good_crc = &vh->hash; vc->bad_crc = &hash; vc->crc_len = sizeof(hash); log_verify_failure(hdr, vc); return EILSEQ; } static int verify_io_u_sha512(struct verify_header *hdr, struct vcont *vc) { void *p = io_u_verify_off(hdr, vc); struct vhdr_sha512 *vh = hdr_priv(hdr); uint8_t sha512[128]; struct fio_sha512_ctx sha512_ctx = { .buf = sha512, }; dprint(FD_VERIFY, "sha512 verify io_u %p, len %u\n", vc->io_u, hdr->len); fio_sha512_init(&sha512_ctx); fio_sha512_update(&sha512_ctx, p, hdr->len - hdr_size(hdr)); if (!memcmp(vh->sha512, sha512_ctx.buf, sizeof(sha512))) return 0; vc->name = "sha512"; vc->good_crc = vh->sha512; vc->bad_crc = sha512_ctx.buf; vc->crc_len = sizeof(vh->sha512); log_verify_failure(hdr, vc); return EILSEQ; } static int verify_io_u_sha256(struct verify_header *hdr, struct vcont *vc) { void *p = io_u_verify_off(hdr, vc); struct vhdr_sha256 *vh = hdr_priv(hdr); uint8_t sha256[64]; struct fio_sha256_ctx sha256_ctx = { .buf = sha256, }; dprint(FD_VERIFY, "sha256 verify io_u %p, len %u\n", vc->io_u, hdr->len); fio_sha256_init(&sha256_ctx); fio_sha256_update(&sha256_ctx, p, hdr->len - hdr_size(hdr)); fio_sha256_final(&sha256_ctx); if (!memcmp(vh->sha256, sha256_ctx.buf, sizeof(sha256))) return 0; vc->name = "sha256"; vc->good_crc = vh->sha256; vc->bad_crc = sha256_ctx.buf; vc->crc_len = sizeof(vh->sha256); log_verify_failure(hdr, vc); return EILSEQ; } static int verify_io_u_sha1(struct verify_header *hdr, struct vcont *vc) { void *p = io_u_verify_off(hdr, vc); struct vhdr_sha1 *vh = hdr_priv(hdr); uint32_t sha1[5]; struct fio_sha1_ctx sha1_ctx = { .H = sha1, }; dprint(FD_VERIFY, "sha1 verify io_u %p, len %u\n", vc->io_u, hdr->len); fio_sha1_init(&sha1_ctx); fio_sha1_update(&sha1_ctx, p, hdr->len - hdr_size(hdr)); fio_sha1_final(&sha1_ctx); if (!memcmp(vh->sha1, sha1_ctx.H, sizeof(sha1))) return 0; vc->name = "sha1"; vc->good_crc = vh->sha1; vc->bad_crc = sha1_ctx.H; vc->crc_len = sizeof(vh->sha1); log_verify_failure(hdr, vc); return EILSEQ; } static int verify_io_u_crc7(struct verify_header *hdr, struct vcont *vc) { void *p = io_u_verify_off(hdr, vc); struct vhdr_crc7 *vh = hdr_priv(hdr); unsigned char c; dprint(FD_VERIFY, "crc7 verify io_u %p, len %u\n", vc->io_u, hdr->len); c = fio_crc7(p, hdr->len - hdr_size(hdr)); if (c == vh->crc7) return 0; vc->name = "crc7"; vc->good_crc = &vh->crc7; vc->bad_crc = &c; vc->crc_len = 1; log_verify_failure(hdr, vc); return EILSEQ; } static int verify_io_u_crc16(struct verify_header *hdr, struct vcont *vc) { void *p = io_u_verify_off(hdr, vc); struct vhdr_crc16 *vh = hdr_priv(hdr); unsigned short c; dprint(FD_VERIFY, "crc16 verify io_u %p, len %u\n", vc->io_u, hdr->len); c = fio_crc16(p, hdr->len - hdr_size(hdr)); if (c == vh->crc16) return 0; vc->name = "crc16"; vc->good_crc = &vh->crc16; vc->bad_crc = &c; vc->crc_len = 2; log_verify_failure(hdr, vc); return EILSEQ; } static int verify_io_u_crc64(struct verify_header *hdr, struct vcont *vc) { void *p = io_u_verify_off(hdr, vc); struct vhdr_crc64 *vh = hdr_priv(hdr); unsigned long long c; dprint(FD_VERIFY, "crc64 verify io_u %p, len %u\n", vc->io_u, hdr->len); c = fio_crc64(p, hdr->len - hdr_size(hdr)); if (c == vh->crc64) return 0; vc->name = "crc64"; vc->good_crc = &vh->crc64; vc->bad_crc = &c; vc->crc_len = 8; log_verify_failure(hdr, vc); return EILSEQ; } static int verify_io_u_crc32(struct verify_header *hdr, struct vcont *vc) { void *p = io_u_verify_off(hdr, vc); struct vhdr_crc32 *vh = hdr_priv(hdr); uint32_t c; dprint(FD_VERIFY, "crc32 verify io_u %p, len %u\n", vc->io_u, hdr->len); c = fio_crc32(p, hdr->len - hdr_size(hdr)); if (c == vh->crc32) return 0; vc->name = "crc32"; vc->good_crc = &vh->crc32; vc->bad_crc = &c; vc->crc_len = 4; log_verify_failure(hdr, vc); return EILSEQ; } static int verify_io_u_crc32c(struct verify_header *hdr, struct vcont *vc) { void *p = io_u_verify_off(hdr, vc); struct vhdr_crc32 *vh = hdr_priv(hdr); uint32_t c; dprint(FD_VERIFY, "crc32c verify io_u %p, len %u\n", vc->io_u, hdr->len); c = fio_crc32c(p, hdr->len - hdr_size(hdr)); if (c == vh->crc32) return 0; vc->name = "crc32c"; vc->good_crc = &vh->crc32; vc->bad_crc = &c; vc->crc_len = 4; log_verify_failure(hdr, vc); return EILSEQ; } static int verify_io_u_md5(struct verify_header *hdr, struct vcont *vc) { void *p = io_u_verify_off(hdr, vc); struct vhdr_md5 *vh = hdr_priv(hdr); uint32_t hash[MD5_HASH_WORDS]; struct fio_md5_ctx md5_ctx = { .hash = hash, }; dprint(FD_VERIFY, "md5 verify io_u %p, len %u\n", vc->io_u, hdr->len); fio_md5_init(&md5_ctx); fio_md5_update(&md5_ctx, p, hdr->len - hdr_size(hdr)); fio_md5_final(&md5_ctx); if (!memcmp(vh->md5_digest, md5_ctx.hash, sizeof(hash))) return 0; vc->name = "md5"; vc->good_crc = vh->md5_digest; vc->bad_crc = md5_ctx.hash; vc->crc_len = sizeof(hash); log_verify_failure(hdr, vc); return EILSEQ; } /* * Push IO verification to a separate thread */ int verify_io_u_async(struct thread_data *td, struct io_u **io_u_ptr) { struct io_u *io_u = *io_u_ptr; pthread_mutex_lock(&td->io_u_lock); if (io_u->file) put_file_log(td, io_u->file); if (io_u->flags & IO_U_F_IN_CUR_DEPTH) { td->cur_depth--; io_u->flags &= ~IO_U_F_IN_CUR_DEPTH; } flist_add_tail(&io_u->verify_list, &td->verify_list); *io_u_ptr = NULL; pthread_mutex_unlock(&td->io_u_lock); pthread_cond_signal(&td->verify_cond); return 0; } static int verify_trimmed_io_u(struct thread_data *td, struct io_u *io_u) { static char zero_buf[1024]; unsigned int this_len, len; int ret = 0; void *p; if (!td->o.trim_zero) return 0; len = io_u->buflen; p = io_u->buf; do { this_len = sizeof(zero_buf); if (this_len > len) this_len = len; if (memcmp(p, zero_buf, this_len)) { ret = EILSEQ; break; } len -= this_len; p += this_len; } while (len); if (!ret) return 0; log_err("trim: verify failed at file %s offset %llu, length %lu" ", block offset %lu\n", io_u->file->file_name, io_u->offset, io_u->buflen, (unsigned long) (p - io_u->buf)); return ret; } static int verify_header(struct io_u *io_u, struct verify_header *hdr, unsigned int hdr_num, unsigned int hdr_len) { void *p = hdr; uint32_t crc; if (hdr->magic != FIO_HDR_MAGIC) { log_err("verify: bad magic header %x, wanted %x", hdr->magic, FIO_HDR_MAGIC); goto err; } if (hdr->len != hdr_len) { log_err("verify: bad header length %u, wanted %u", hdr->len, hdr_len); goto err; } if (hdr->rand_seed != io_u->rand_seed) { log_err("verify: bad header rand_seed %"PRIu64 ", wanted %"PRIu64, hdr->rand_seed, io_u->rand_seed); goto err; } crc = fio_crc32c(p, offsetof(struct verify_header, crc32)); if (crc != hdr->crc32) { log_err("verify: bad header crc %x, calculated %x", hdr->crc32, crc); goto err; } return 0; err: log_err(" at file %s offset %llu, length %u\n", io_u->file->file_name, io_u->offset + hdr_num * hdr_len, hdr_len); return EILSEQ; } int verify_io_u(struct thread_data *td, struct io_u **io_u_ptr) { struct verify_header *hdr; struct io_u *io_u = *io_u_ptr; unsigned int header_size, hdr_inc, hdr_num = 0; void *p; int ret; if (td->o.verify == VERIFY_NULL || io_u->ddir != DDIR_READ) return 0; /* * If the IO engine is faking IO (like null), then just pretend * we verified everything. */ if (td->io_ops->flags & FIO_FAKEIO) return 0; if (io_u->flags & IO_U_F_TRIMMED) { ret = verify_trimmed_io_u(td, io_u); goto done; } hdr_inc = get_hdr_inc(td, io_u); ret = 0; for (p = io_u->buf; p < io_u->buf + io_u->buflen; p += hdr_inc, hdr_num++) { struct vcont vc = { .io_u = io_u, .hdr_num = hdr_num, .td = td, }; unsigned int verify_type; if (ret && td->o.verify_fatal) break; header_size = __hdr_size(td->o.verify); if (td->o.verify_offset) memswp(p, p + td->o.verify_offset, header_size); hdr = p; /* * Make rand_seed check pass when have verifysort or * verify_backlog. */ if (td->o.verifysort || (td->flags & TD_F_VER_BACKLOG)) io_u->rand_seed = hdr->rand_seed; ret = verify_header(io_u, hdr, hdr_num, hdr_inc); if (ret) return ret; if (td->o.verify != VERIFY_NONE) verify_type = td->o.verify; else verify_type = hdr->verify_type; switch (verify_type) { case VERIFY_MD5: ret = verify_io_u_md5(hdr, &vc); break; case VERIFY_CRC64: ret = verify_io_u_crc64(hdr, &vc); break; case VERIFY_CRC32C: case VERIFY_CRC32C_INTEL: ret = verify_io_u_crc32c(hdr, &vc); break; case VERIFY_CRC32: ret = verify_io_u_crc32(hdr, &vc); break; case VERIFY_CRC16: ret = verify_io_u_crc16(hdr, &vc); break; case VERIFY_CRC7: ret = verify_io_u_crc7(hdr, &vc); break; case VERIFY_SHA256: ret = verify_io_u_sha256(hdr, &vc); break; case VERIFY_SHA512: ret = verify_io_u_sha512(hdr, &vc); break; case VERIFY_XXHASH: ret = verify_io_u_xxhash(hdr, &vc); break; case VERIFY_META: ret = verify_io_u_meta(hdr, &vc); break; case VERIFY_SHA1: ret = verify_io_u_sha1(hdr, &vc); break; case VERIFY_PATTERN: ret = verify_io_u_pattern(hdr, &vc); break; default: log_err("Bad verify type %u\n", hdr->verify_type); ret = EINVAL; } if (ret && verify_type != hdr->verify_type) log_err("fio: verify type mismatch (%u media, %u given)\n", hdr->verify_type, verify_type); } done: if (ret && td->o.verify_fatal) fio_mark_td_terminate(td); return ret; } static void fill_meta(struct verify_header *hdr, struct thread_data *td, struct io_u *io_u, unsigned int header_num) { struct vhdr_meta *vh = hdr_priv(hdr); vh->thread = td->thread_number; vh->time_sec = io_u->start_time.tv_sec; vh->time_usec = io_u->start_time.tv_usec; vh->numberio = io_u->numberio; vh->offset = io_u->offset + header_num * td->o.verify_interval; } static void fill_xxhash(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_xxhash *vh = hdr_priv(hdr); void *state; state = XXH32_init(1); XXH32_update(state, p, len); vh->hash = XXH32_digest(state); } static void fill_sha512(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_sha512 *vh = hdr_priv(hdr); struct fio_sha512_ctx sha512_ctx = { .buf = vh->sha512, }; fio_sha512_init(&sha512_ctx); fio_sha512_update(&sha512_ctx, p, len); } static void fill_sha256(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_sha256 *vh = hdr_priv(hdr); struct fio_sha256_ctx sha256_ctx = { .buf = vh->sha256, }; fio_sha256_init(&sha256_ctx); fio_sha256_update(&sha256_ctx, p, len); fio_sha256_final(&sha256_ctx); } static void fill_sha1(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_sha1 *vh = hdr_priv(hdr); struct fio_sha1_ctx sha1_ctx = { .H = vh->sha1, }; fio_sha1_init(&sha1_ctx); fio_sha1_update(&sha1_ctx, p, len); fio_sha1_final(&sha1_ctx); } static void fill_crc7(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_crc7 *vh = hdr_priv(hdr); vh->crc7 = fio_crc7(p, len); } static void fill_crc16(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_crc16 *vh = hdr_priv(hdr); vh->crc16 = fio_crc16(p, len); } static void fill_crc32(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_crc32 *vh = hdr_priv(hdr); vh->crc32 = fio_crc32(p, len); } static void fill_crc32c(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_crc32 *vh = hdr_priv(hdr); vh->crc32 = fio_crc32c(p, len); } static void fill_crc64(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_crc64 *vh = hdr_priv(hdr); vh->crc64 = fio_crc64(p, len); } static void fill_md5(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_md5 *vh = hdr_priv(hdr); struct fio_md5_ctx md5_ctx = { .hash = (uint32_t *) vh->md5_digest, }; fio_md5_init(&md5_ctx); fio_md5_update(&md5_ctx, p, len); fio_md5_final(&md5_ctx); } static void populate_hdr(struct thread_data *td, struct io_u *io_u, struct verify_header *hdr, unsigned int header_num, unsigned int header_len) { unsigned int data_len; void *data, *p; p = (void *) hdr; hdr->magic = FIO_HDR_MAGIC; hdr->verify_type = td->o.verify; hdr->len = header_len; hdr->rand_seed = io_u->rand_seed; hdr->crc32 = fio_crc32c(p, offsetof(struct verify_header, crc32)); data_len = header_len - hdr_size(hdr); data = p + hdr_size(hdr); switch (td->o.verify) { case VERIFY_MD5: dprint(FD_VERIFY, "fill md5 io_u %p, len %u\n", io_u, hdr->len); fill_md5(hdr, data, data_len); break; case VERIFY_CRC64: dprint(FD_VERIFY, "fill crc64 io_u %p, len %u\n", io_u, hdr->len); fill_crc64(hdr, data, data_len); break; case VERIFY_CRC32C: case VERIFY_CRC32C_INTEL: dprint(FD_VERIFY, "fill crc32c io_u %p, len %u\n", io_u, hdr->len); fill_crc32c(hdr, data, data_len); break; case VERIFY_CRC32: dprint(FD_VERIFY, "fill crc32 io_u %p, len %u\n", io_u, hdr->len); fill_crc32(hdr, data, data_len); break; case VERIFY_CRC16: dprint(FD_VERIFY, "fill crc16 io_u %p, len %u\n", io_u, hdr->len); fill_crc16(hdr, data, data_len); break; case VERIFY_CRC7: dprint(FD_VERIFY, "fill crc7 io_u %p, len %u\n", io_u, hdr->len); fill_crc7(hdr, data, data_len); break; case VERIFY_SHA256: dprint(FD_VERIFY, "fill sha256 io_u %p, len %u\n", io_u, hdr->len); fill_sha256(hdr, data, data_len); break; case VERIFY_SHA512: dprint(FD_VERIFY, "fill sha512 io_u %p, len %u\n", io_u, hdr->len); fill_sha512(hdr, data, data_len); break; case VERIFY_XXHASH: dprint(FD_VERIFY, "fill xxhash io_u %p, len %u\n", io_u, hdr->len); fill_xxhash(hdr, data, data_len); break; case VERIFY_META: dprint(FD_VERIFY, "fill meta io_u %p, len %u\n", io_u, hdr->len); fill_meta(hdr, td, io_u, header_num); break; case VERIFY_SHA1: dprint(FD_VERIFY, "fill sha1 io_u %p, len %u\n", io_u, hdr->len); fill_sha1(hdr, data, data_len); break; case VERIFY_PATTERN: /* nothing to do here */ break; default: log_err("fio: bad verify type: %d\n", td->o.verify); assert(0); } if (td->o.verify_offset) memswp(p, p + td->o.verify_offset, hdr_size(hdr)); } /* * fill body of io_u->buf with random data and add a header with the * checksum of choice */ void populate_verify_io_u(struct thread_data *td, struct io_u *io_u) { if (td->o.verify == VERIFY_NULL) return; io_u->numberio = td->io_issues[io_u->ddir]; fill_pattern_headers(td, io_u, 0, 0); } int get_next_verify(struct thread_data *td, struct io_u *io_u) { struct io_piece *ipo = NULL; /* * this io_u is from a requeue, we already filled the offsets */ if (io_u->file) return 0; if (!RB_EMPTY_ROOT(&td->io_hist_tree)) { struct rb_node *n = rb_first(&td->io_hist_tree); ipo = rb_entry(n, struct io_piece, rb_node); /* * Ensure that the associated IO has completed */ read_barrier(); if (ipo->flags & IP_F_IN_FLIGHT) goto nothing; rb_erase(n, &td->io_hist_tree); assert(ipo->flags & IP_F_ONRB); ipo->flags &= ~IP_F_ONRB; } else if (!flist_empty(&td->io_hist_list)) { ipo = flist_first_entry(&td->io_hist_list, struct io_piece, list); /* * Ensure that the associated IO has completed */ read_barrier(); if (ipo->flags & IP_F_IN_FLIGHT) goto nothing; flist_del(&ipo->list); assert(ipo->flags & IP_F_ONLIST); ipo->flags &= ~IP_F_ONLIST; } if (ipo) { td->io_hist_len--; io_u->offset = ipo->offset; io_u->buflen = ipo->len; io_u->numberio = ipo->numberio; io_u->file = ipo->file; io_u->flags |= IO_U_F_VER_LIST; if (ipo->flags & IP_F_TRIMMED) io_u->flags |= IO_U_F_TRIMMED; if (!fio_file_open(io_u->file)) { int r = td_io_open_file(td, io_u->file); if (r) { dprint(FD_VERIFY, "failed file %s open\n", io_u->file->file_name); return 1; } } get_file(ipo->file); assert(fio_file_open(io_u->file)); io_u->ddir = DDIR_READ; io_u->xfer_buf = io_u->buf; io_u->xfer_buflen = io_u->buflen; remove_trim_entry(td, ipo); free(ipo); dprint(FD_VERIFY, "get_next_verify: ret io_u %p\n", io_u); if (!td->o.verify_pattern_bytes) { io_u->rand_seed = __rand(&td->verify_state); if (sizeof(int) != sizeof(long *)) io_u->rand_seed *= __rand(&td->verify_state); } return 0; } nothing: dprint(FD_VERIFY, "get_next_verify: empty\n"); return 1; } void fio_verify_init(struct thread_data *td) { if (td->o.verify == VERIFY_CRC32C_INTEL || td->o.verify == VERIFY_CRC32C) { crc32c_intel_probe(); } } static void *verify_async_thread(void *data) { struct thread_data *td = data; struct io_u *io_u; int ret = 0; if (fio_option_is_set(&td->o, verify_cpumask) && fio_setaffinity(td->pid, td->o.verify_cpumask)) { log_err("fio: failed setting verify thread affinity\n"); goto done; } do { FLIST_HEAD(list); read_barrier(); if (td->verify_thread_exit) break; pthread_mutex_lock(&td->io_u_lock); while (flist_empty(&td->verify_list) && !td->verify_thread_exit) { ret = pthread_cond_wait(&td->verify_cond, &td->io_u_lock); if (ret) { pthread_mutex_unlock(&td->io_u_lock); break; } } flist_splice_init(&td->verify_list, &list); pthread_mutex_unlock(&td->io_u_lock); if (flist_empty(&list)) continue; while (!flist_empty(&list)) { io_u = flist_first_entry(&list, struct io_u, verify_list); flist_del_init(&io_u->verify_list); io_u->flags |= IO_U_F_NO_FILE_PUT; ret = verify_io_u(td, &io_u); put_io_u(td, io_u); if (!ret) continue; if (td_non_fatal_error(td, ERROR_TYPE_VERIFY_BIT, ret)) { update_error_count(td, ret); td_clear_error(td); ret = 0; } } } while (!ret); if (ret) { td_verror(td, ret, "async_verify"); if (td->o.verify_fatal) fio_mark_td_terminate(td); } done: pthread_mutex_lock(&td->io_u_lock); td->nr_verify_threads--; pthread_mutex_unlock(&td->io_u_lock); pthread_cond_signal(&td->free_cond); return NULL; } int verify_async_init(struct thread_data *td) { int i, ret; pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN); td->verify_thread_exit = 0; td->verify_threads = malloc(sizeof(pthread_t) * td->o.verify_async); for (i = 0; i < td->o.verify_async; i++) { ret = pthread_create(&td->verify_threads[i], &attr, verify_async_thread, td); if (ret) { log_err("fio: async verify creation failed: %s\n", strerror(ret)); break; } ret = pthread_detach(td->verify_threads[i]); if (ret) { log_err("fio: async verify thread detach failed: %s\n", strerror(ret)); break; } td->nr_verify_threads++; } pthread_attr_destroy(&attr); if (i != td->o.verify_async) { log_err("fio: only %d verify threads started, exiting\n", i); td->verify_thread_exit = 1; write_barrier(); pthread_cond_broadcast(&td->verify_cond); return 1; } return 0; } void verify_async_exit(struct thread_data *td) { td->verify_thread_exit = 1; write_barrier(); pthread_cond_broadcast(&td->verify_cond); pthread_mutex_lock(&td->io_u_lock); while (td->nr_verify_threads) pthread_cond_wait(&td->free_cond, &td->io_u_lock); pthread_mutex_unlock(&td->io_u_lock); free(td->verify_threads); td->verify_threads = NULL; } struct all_io_list *get_all_io_list(int save_mask, size_t *sz) { struct all_io_list *rep; struct thread_data *td; size_t depth; void *next; int i, nr; compiletime_assert(sizeof(struct all_io_list) == 8, "all_io_list"); /* * Calculate reply space needed. We need one 'io_state' per thread, * and the size will vary depending on depth. */ depth = 0; nr = 0; for_each_td(td, i) { if (save_mask != IO_LIST_ALL && (i + 1) != save_mask) continue; td->stop_io = 1; td->flags |= TD_F_VSTATE_SAVED; depth += td->o.iodepth; nr++; } if (!nr) return NULL; *sz = sizeof(*rep); *sz += nr * sizeof(struct thread_io_list); *sz += depth * sizeof(uint64_t); rep = malloc(*sz); rep->threads = cpu_to_le64((uint64_t) nr); next = &rep->state[0]; for_each_td(td, i) { struct thread_io_list *s = next; unsigned int comps; if (save_mask != IO_LIST_ALL && (i + 1) != save_mask) continue; if (td->last_write_comp) { int j, k; if (td->io_blocks[DDIR_WRITE] < td->o.iodepth) comps = td->io_blocks[DDIR_WRITE]; else comps = td->o.iodepth; k = td->last_write_idx - 1; for (j = 0; j < comps; j++) { if (k == -1) k = td->o.iodepth - 1; s->offsets[j] = cpu_to_le64(td->last_write_comp[k]); k--; } } else comps = 0; s->no_comps = cpu_to_le64((uint64_t) comps); s->depth = cpu_to_le64((uint64_t) td->o.iodepth); s->numberio = cpu_to_le64((uint64_t) td->io_issues[DDIR_WRITE]); s->index = cpu_to_le64((uint64_t) i); s->rand.s[0] = cpu_to_le32(td->random_state.s1); s->rand.s[1] = cpu_to_le32(td->random_state.s2); s->rand.s[2] = cpu_to_le32(td->random_state.s3); s->rand.s[3] = 0; s->name[sizeof(s->name) - 1] = '\0'; strncpy((char *) s->name, td->o.name, sizeof(s->name) - 1); next = io_list_next(s); } return rep; } static int open_state_file(const char *name, const char *prefix, int num, int for_write) { char out[64]; int flags; int fd; if (for_write) flags = O_CREAT | O_TRUNC | O_WRONLY | O_SYNC; else flags = O_RDONLY; verify_state_gen_name(out, sizeof(out), name, prefix, num); fd = open(out, flags, 0644); if (fd == -1) { perror("fio: open state file"); return -1; } return fd; } static int write_thread_list_state(struct thread_io_list *s, const char *prefix) { struct verify_state_hdr hdr; uint64_t crc; ssize_t ret; int fd; fd = open_state_file((const char *) s->name, prefix, s->index, 1); if (fd == -1) return 1; crc = fio_crc32c((void *)s, thread_io_list_sz(s)); hdr.version = cpu_to_le64((uint64_t) VSTATE_HDR_VERSION); hdr.size = cpu_to_le64((uint64_t) thread_io_list_sz(s)); hdr.crc = cpu_to_le64(crc); ret = write(fd, &hdr, sizeof(hdr)); if (ret != sizeof(hdr)) goto write_fail; ret = write(fd, s, thread_io_list_sz(s)); if (ret != thread_io_list_sz(s)) { write_fail: if (ret < 0) perror("fio: write state file"); log_err("fio: failed to write state file\n"); ret = 1; } else ret = 0; close(fd); return ret; } void __verify_save_state(struct all_io_list *state, const char *prefix) { struct thread_io_list *s = &state->state[0]; unsigned int i; for (i = 0; i < le64_to_cpu(state->threads); i++) { write_thread_list_state(s, prefix); s = io_list_next(s); } } void verify_save_state(void) { struct all_io_list *state; size_t sz; state = get_all_io_list(IO_LIST_ALL, &sz); if (state) { __verify_save_state(state, "local"); free(state); } } void verify_free_state(struct thread_data *td) { if (td->vstate) free(td->vstate); } void verify_convert_assign_state(struct thread_data *td, struct thread_io_list *s) { int i; s->no_comps = le64_to_cpu(s->no_comps); s->depth = le64_to_cpu(s->depth); s->numberio = le64_to_cpu(s->numberio); for (i = 0; i < 4; i++) s->rand.s[i] = le32_to_cpu(s->rand.s[i]); for (i = 0; i < s->no_comps; i++) s->offsets[i] = le64_to_cpu(s->offsets[i]); td->vstate = s; } int verify_state_hdr(struct verify_state_hdr *hdr, struct thread_io_list *s) { uint64_t crc; hdr->version = le64_to_cpu(hdr->version); hdr->size = le64_to_cpu(hdr->size); hdr->crc = le64_to_cpu(hdr->crc); if (hdr->version != VSTATE_HDR_VERSION) return 1; crc = fio_crc32c((void *)s, hdr->size); if (crc != hdr->crc) return 1; return 0; } int verify_load_state(struct thread_data *td, const char *prefix) { struct thread_io_list *s = NULL; struct verify_state_hdr hdr; uint64_t crc; ssize_t ret; int fd; if (!td->o.verify_state) return 0; fd = open_state_file(td->o.name, prefix, td->thread_number - 1, 0); if (fd == -1) return 1; ret = read(fd, &hdr, sizeof(hdr)); if (ret != sizeof(hdr)) { if (ret < 0) td_verror(td, errno, "read verify state hdr"); log_err("fio: failed reading verify state header\n"); goto err; } hdr.version = le64_to_cpu(hdr.version); hdr.size = le64_to_cpu(hdr.size); hdr.crc = le64_to_cpu(hdr.crc); if (hdr.version != VSTATE_HDR_VERSION) { log_err("fio: bad version in verify state header\n"); goto err; } s = malloc(hdr.size); ret = read(fd, s, hdr.size); if (ret != hdr.size) { if (ret < 0) td_verror(td, errno, "read verify state"); log_err("fio: failed reading verity state\n"); goto err; } crc = fio_crc32c((void *)s, hdr.size); if (crc != hdr.crc) { log_err("fio: verify state is corrupt\n"); goto err; } close(fd); verify_convert_assign_state(td, s); return 0; err: if (s) free(s); close(fd); return 1; } /* * Use the loaded verify state to know when to stop doing verification */ int verify_state_should_stop(struct thread_data *td, struct io_u *io_u) { struct thread_io_list *s = td->vstate; int i; if (!s) return 0; /* * If we're not into the window of issues - depth yet, continue. If * issue is shorter than depth, do check. */ if ((td->io_blocks[DDIR_READ] < s->depth || s->numberio - td->io_blocks[DDIR_READ] > s->depth) && s->numberio > s->depth) return 0; /* * We're in the window of having to check if this io was * completed or not. If the IO was seen as completed, then * lets verify it. */ for (i = 0; i < s->no_comps; i++) if (io_u->offset == s->offsets[i]) return 0; /* * Not found, we have to stop */ return 1; }