#include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <ctype.h> #include <string.h> #include <assert.h> #include <libgen.h> #include <fcntl.h> #include <sys/types.h> #include <sys/stat.h> #include "fio.h" #include "verify.h" #include "parse.h" #include "lib/fls.h" #include "options.h" #include "crc/crc32c.h" /* * Check if mmap/mmaphuge has a :/foo/bar/file at the end. If so, return that. */ static char *get_opt_postfix(const char *str) { char *p = strstr(str, ":"); if (!p) return NULL; p++; strip_blank_front(&p); strip_blank_end(p); return strdup(p); } static int converthexchartoint(char a) { int base; switch (a) { case '0'...'9': base = '0'; break; case 'A'...'F': base = 'A' - 10; break; case 'a'...'f': base = 'a' - 10; break; default: base = 0; } return a - base; } static int bs_cmp(const void *p1, const void *p2) { const struct bssplit *bsp1 = p1; const struct bssplit *bsp2 = p2; return bsp1->perc < bsp2->perc; } static int bssplit_ddir(struct thread_options *o, int ddir, char *str) { struct bssplit *bssplit; unsigned int i, perc, perc_missing; unsigned int max_bs, min_bs; long long val; char *fname; o->bssplit_nr[ddir] = 4; bssplit = malloc(4 * sizeof(struct bssplit)); i = 0; max_bs = 0; min_bs = -1; while ((fname = strsep(&str, ":")) != NULL) { char *perc_str; if (!strlen(fname)) break; /* * grow struct buffer, if needed */ if (i == o->bssplit_nr[ddir]) { o->bssplit_nr[ddir] <<= 1; bssplit = realloc(bssplit, o->bssplit_nr[ddir] * sizeof(struct bssplit)); } perc_str = strstr(fname, "/"); if (perc_str) { *perc_str = '\0'; perc_str++; perc = atoi(perc_str); if (perc > 100) perc = 100; else if (!perc) perc = -1U; } else perc = -1U; if (str_to_decimal(fname, &val, 1, o, 0, 0)) { log_err("fio: bssplit conversion failed\n"); free(bssplit); return 1; } if (val > max_bs) max_bs = val; if (val < min_bs) min_bs = val; bssplit[i].bs = val; bssplit[i].perc = perc; i++; } o->bssplit_nr[ddir] = i; /* * Now check if the percentages add up, and how much is missing */ perc = perc_missing = 0; for (i = 0; i < o->bssplit_nr[ddir]; i++) { struct bssplit *bsp = &bssplit[i]; if (bsp->perc == -1U) perc_missing++; else perc += bsp->perc; } if (perc > 100 && perc_missing > 1) { log_err("fio: bssplit percentages add to more than 100%%\n"); free(bssplit); return 1; } /* * If values didn't have a percentage set, divide the remains between * them. */ if (perc_missing) { if (perc_missing == 1 && o->bssplit_nr[ddir] == 1) perc = 100; for (i = 0; i < o->bssplit_nr[ddir]; i++) { struct bssplit *bsp = &bssplit[i]; if (bsp->perc == -1U) bsp->perc = (100 - perc) / perc_missing; } } o->min_bs[ddir] = min_bs; o->max_bs[ddir] = max_bs; /* * now sort based on percentages, for ease of lookup */ qsort(bssplit, o->bssplit_nr[ddir], sizeof(struct bssplit), bs_cmp); o->bssplit[ddir] = bssplit; return 0; } static int str_bssplit_cb(void *data, const char *input) { struct thread_data *td = data; char *str, *p, *odir, *ddir; int ret = 0; if (parse_dryrun()) return 0; p = str = strdup(input); strip_blank_front(&str); strip_blank_end(str); odir = strchr(str, ','); if (odir) { ddir = strchr(odir + 1, ','); if (ddir) { ret = bssplit_ddir(&td->o, DDIR_TRIM, ddir + 1); if (!ret) *ddir = '\0'; } else { char *op; op = strdup(odir + 1); ret = bssplit_ddir(&td->o, DDIR_TRIM, op); free(op); } if (!ret) ret = bssplit_ddir(&td->o, DDIR_WRITE, odir + 1); if (!ret) { *odir = '\0'; ret = bssplit_ddir(&td->o, DDIR_READ, str); } } else { char *op; op = strdup(str); ret = bssplit_ddir(&td->o, DDIR_WRITE, op); free(op); if (!ret) { op = strdup(str); ret = bssplit_ddir(&td->o, DDIR_TRIM, op); free(op); } ret = bssplit_ddir(&td->o, DDIR_READ, str); } free(p); return ret; } static int str2error(char *str) { const char *err[] = { "EPERM", "ENOENT", "ESRCH", "EINTR", "EIO", "ENXIO", "E2BIG", "ENOEXEC", "EBADF", "ECHILD", "EAGAIN", "ENOMEM", "EACCES", "EFAULT", "ENOTBLK", "EBUSY", "EEXIST", "EXDEV", "ENODEV", "ENOTDIR", "EISDIR", "EINVAL", "ENFILE", "EMFILE", "ENOTTY", "ETXTBSY","EFBIG", "ENOSPC", "ESPIPE", "EROFS","EMLINK", "EPIPE", "EDOM", "ERANGE" }; int i = 0, num = sizeof(err) / sizeof(void *); while (i < num) { if (!strcmp(err[i], str)) return i + 1; i++; } return 0; } static int ignore_error_type(struct thread_data *td, int etype, char *str) { unsigned int i; int *error; char *fname; if (etype >= ERROR_TYPE_CNT) { log_err("Illegal error type\n"); return 1; } td->o.ignore_error_nr[etype] = 4; error = malloc(4 * sizeof(struct bssplit)); i = 0; while ((fname = strsep(&str, ":")) != NULL) { if (!strlen(fname)) break; /* * grow struct buffer, if needed */ if (i == td->o.ignore_error_nr[etype]) { td->o.ignore_error_nr[etype] <<= 1; error = realloc(error, td->o.ignore_error_nr[etype] * sizeof(int)); } if (fname[0] == 'E') { error[i] = str2error(fname); } else { error[i] = atoi(fname); if (error[i] < 0) error[i] = -error[i]; } if (!error[i]) { log_err("Unknown error %s, please use number value \n", fname); free(error); return 1; } i++; } if (i) { td->o.continue_on_error |= 1 << etype; td->o.ignore_error_nr[etype] = i; td->o.ignore_error[etype] = error; } else free(error); return 0; } static int str_ignore_error_cb(void *data, const char *input) { struct thread_data *td = data; char *str, *p, *n; int type = 0, ret = 1; if (parse_dryrun()) return 0; p = str = strdup(input); strip_blank_front(&str); strip_blank_end(str); while (p) { n = strchr(p, ','); if (n) *n++ = '\0'; ret = ignore_error_type(td, type, p); if (ret) break; p = n; type++; } free(str); return ret; } static int str_rw_cb(void *data, const char *str) { struct thread_data *td = data; struct thread_options *o = &td->o; char *nr; if (parse_dryrun()) return 0; o->ddir_seq_nr = 1; o->ddir_seq_add = 0; nr = get_opt_postfix(str); if (!nr) return 0; if (td_random(td)) o->ddir_seq_nr = atoi(nr); else { long long val; if (str_to_decimal(nr, &val, 1, o, 0, 0)) { log_err("fio: rw postfix parsing failed\n"); free(nr); return 1; } o->ddir_seq_add = val; } free(nr); return 0; } static int str_mem_cb(void *data, const char *mem) { struct thread_data *td = data; if (td->o.mem_type == MEM_MMAPHUGE || td->o.mem_type == MEM_MMAP) td->o.mmapfile = get_opt_postfix(mem); return 0; } static int fio_clock_source_cb(void *data, const char *str) { struct thread_data *td = data; fio_clock_source = td->o.clocksource; fio_clock_source_set = 1; fio_clock_init(); return 0; } static int str_rwmix_read_cb(void *data, unsigned long long *val) { struct thread_data *td = data; td->o.rwmix[DDIR_READ] = *val; td->o.rwmix[DDIR_WRITE] = 100 - *val; return 0; } static int str_rwmix_write_cb(void *data, unsigned long long *val) { struct thread_data *td = data; td->o.rwmix[DDIR_WRITE] = *val; td->o.rwmix[DDIR_READ] = 100 - *val; return 0; } static int str_exitall_cb(void) { exitall_on_terminate = 1; return 0; } #ifdef FIO_HAVE_CPU_AFFINITY int fio_cpus_split(os_cpu_mask_t *mask, unsigned int cpu_index) { unsigned int i, index, cpus_in_mask; const long max_cpu = cpus_online(); cpus_in_mask = fio_cpu_count(mask); cpu_index = cpu_index % cpus_in_mask; index = 0; for (i = 0; i < max_cpu; i++) { if (!fio_cpu_isset(mask, i)) continue; if (cpu_index != index) fio_cpu_clear(mask, i); index++; } return fio_cpu_count(mask); } static int str_cpumask_cb(void *data, unsigned long long *val) { struct thread_data *td = data; unsigned int i; long max_cpu; int ret; if (parse_dryrun()) return 0; ret = fio_cpuset_init(&td->o.cpumask); if (ret < 0) { log_err("fio: cpuset_init failed\n"); td_verror(td, ret, "fio_cpuset_init"); return 1; } max_cpu = cpus_online(); for (i = 0; i < sizeof(int) * 8; i++) { if ((1 << i) & *val) { if (i > max_cpu) { log_err("fio: CPU %d too large (max=%ld)\n", i, max_cpu); return 1; } dprint(FD_PARSE, "set cpu allowed %d\n", i); fio_cpu_set(&td->o.cpumask, i); } } return 0; } static int set_cpus_allowed(struct thread_data *td, os_cpu_mask_t *mask, const char *input) { char *cpu, *str, *p; long max_cpu; int ret = 0; ret = fio_cpuset_init(mask); if (ret < 0) { log_err("fio: cpuset_init failed\n"); td_verror(td, ret, "fio_cpuset_init"); return 1; } p = str = strdup(input); strip_blank_front(&str); strip_blank_end(str); max_cpu = cpus_online(); while ((cpu = strsep(&str, ",")) != NULL) { char *str2, *cpu2; int icpu, icpu2; if (!strlen(cpu)) break; str2 = cpu; icpu2 = -1; while ((cpu2 = strsep(&str2, "-")) != NULL) { if (!strlen(cpu2)) break; icpu2 = atoi(cpu2); } icpu = atoi(cpu); if (icpu2 == -1) icpu2 = icpu; while (icpu <= icpu2) { if (icpu >= FIO_MAX_CPUS) { log_err("fio: your OS only supports up to" " %d CPUs\n", (int) FIO_MAX_CPUS); ret = 1; break; } if (icpu > max_cpu) { log_err("fio: CPU %d too large (max=%ld)\n", icpu, max_cpu); ret = 1; break; } dprint(FD_PARSE, "set cpu allowed %d\n", icpu); fio_cpu_set(mask, icpu); icpu++; } if (ret) break; } free(p); return ret; } static int str_cpus_allowed_cb(void *data, const char *input) { struct thread_data *td = data; if (parse_dryrun()) return 0; return set_cpus_allowed(td, &td->o.cpumask, input); } static int str_verify_cpus_allowed_cb(void *data, const char *input) { struct thread_data *td = data; return set_cpus_allowed(td, &td->o.verify_cpumask, input); } #endif #ifdef CONFIG_LIBNUMA static int str_numa_cpunodes_cb(void *data, char *input) { struct thread_data *td = data; struct bitmask *verify_bitmask; if (parse_dryrun()) return 0; /* numa_parse_nodestring() parses a character string list * of nodes into a bit mask. The bit mask is allocated by * numa_allocate_nodemask(), so it should be freed by * numa_free_nodemask(). */ verify_bitmask = numa_parse_nodestring(input); if (verify_bitmask == NULL) { log_err("fio: numa_parse_nodestring failed\n"); td_verror(td, 1, "str_numa_cpunodes_cb"); return 1; } numa_free_nodemask(verify_bitmask); td->o.numa_cpunodes = strdup(input); return 0; } static int str_numa_mpol_cb(void *data, char *input) { struct thread_data *td = data; const char * const policy_types[] = { "default", "prefer", "bind", "interleave", "local", NULL }; int i; char *nodelist; struct bitmask *verify_bitmask; if (parse_dryrun()) return 0; nodelist = strchr(input, ':'); if (nodelist) { /* NUL-terminate mode */ *nodelist++ = '\0'; } for (i = 0; i <= MPOL_LOCAL; i++) { if (!strcmp(input, policy_types[i])) { td->o.numa_mem_mode = i; break; } } if (i > MPOL_LOCAL) { log_err("fio: memory policy should be: default, prefer, bind, interleave, local\n"); goto out; } switch (td->o.numa_mem_mode) { case MPOL_PREFERRED: /* * Insist on a nodelist of one node only */ if (nodelist) { char *rest = nodelist; while (isdigit(*rest)) rest++; if (*rest) { log_err("fio: one node only for \'prefer\'\n"); goto out; } } else { log_err("fio: one node is needed for \'prefer\'\n"); goto out; } break; case MPOL_INTERLEAVE: /* * Default to online nodes with memory if no nodelist */ if (!nodelist) nodelist = strdup("all"); break; case MPOL_LOCAL: case MPOL_DEFAULT: /* * Don't allow a nodelist */ if (nodelist) { log_err("fio: NO nodelist for \'local\'\n"); goto out; } break; case MPOL_BIND: /* * Insist on a nodelist */ if (!nodelist) { log_err("fio: a nodelist is needed for \'bind\'\n"); goto out; } break; } /* numa_parse_nodestring() parses a character string list * of nodes into a bit mask. The bit mask is allocated by * numa_allocate_nodemask(), so it should be freed by * numa_free_nodemask(). */ switch (td->o.numa_mem_mode) { case MPOL_PREFERRED: td->o.numa_mem_prefer_node = atoi(nodelist); break; case MPOL_INTERLEAVE: case MPOL_BIND: verify_bitmask = numa_parse_nodestring(nodelist); if (verify_bitmask == NULL) { log_err("fio: numa_parse_nodestring failed\n"); td_verror(td, 1, "str_numa_memnodes_cb"); return 1; } td->o.numa_memnodes = strdup(nodelist); numa_free_nodemask(verify_bitmask); break; case MPOL_LOCAL: case MPOL_DEFAULT: default: break; } return 0; out: return 1; } #endif static int str_fst_cb(void *data, const char *str) { struct thread_data *td = data; char *nr = get_opt_postfix(str); td->file_service_nr = 1; if (nr) { td->file_service_nr = atoi(nr); free(nr); } return 0; } #ifdef CONFIG_SYNC_FILE_RANGE static int str_sfr_cb(void *data, const char *str) { struct thread_data *td = data; char *nr = get_opt_postfix(str); td->sync_file_range_nr = 1; if (nr) { td->sync_file_range_nr = atoi(nr); free(nr); } return 0; } #endif static int str_random_distribution_cb(void *data, const char *str) { struct thread_data *td = data; double val; char *nr; if (parse_dryrun()) return 0; if (td->o.random_distribution == FIO_RAND_DIST_ZIPF) val = FIO_DEF_ZIPF; else if (td->o.random_distribution == FIO_RAND_DIST_PARETO) val = FIO_DEF_PARETO; else return 0; nr = get_opt_postfix(str); if (nr && !str_to_float(nr, &val, 0)) { log_err("fio: random postfix parsing failed\n"); free(nr); return 1; } free(nr); if (td->o.random_distribution == FIO_RAND_DIST_ZIPF) { if (val == 1.00) { log_err("fio: zipf theta must different than 1.0\n"); return 1; } td->o.zipf_theta.u.f = val; } else { if (val <= 0.00 || val >= 1.00) { log_err("fio: pareto input out of range (0 < input < 1.0)\n"); return 1; } td->o.pareto_h.u.f = val; } return 0; } /* * Return next name in the string. Files are separated with ':'. If the ':' * is escaped with a '\', then that ':' is part of the filename and does not * indicate a new file. */ static char *get_next_name(char **ptr) { char *str = *ptr; char *p, *start; if (!str || !strlen(str)) return NULL; start = str; do { /* * No colon, we are done */ p = strchr(str, ':'); if (!p) { *ptr = NULL; break; } /* * We got a colon, but it's the first character. Skip and * continue */ if (p == start) { str = ++start; continue; } if (*(p - 1) != '\\') { *p = '\0'; *ptr = p + 1; break; } memmove(p - 1, p, strlen(p) + 1); str = p; } while (1); return start; } static int get_max_name_idx(char *input) { unsigned int cur_idx; char *str, *p; p = str = strdup(input); for (cur_idx = 0; ; cur_idx++) if (get_next_name(&str) == NULL) break; free(p); return cur_idx; } /* * Returns the directory at the index, indexes > entires will be * assigned via modulo division of the index */ int set_name_idx(char *target, char *input, int index) { unsigned int cur_idx; int len; char *fname, *str, *p; p = str = strdup(input); index %= get_max_name_idx(input); for (cur_idx = 0; cur_idx <= index; cur_idx++) fname = get_next_name(&str); len = sprintf(target, "%s/", fname); free(p); return len; } static int str_filename_cb(void *data, const char *input) { struct thread_data *td = data; char *fname, *str, *p; p = str = strdup(input); strip_blank_front(&str); strip_blank_end(str); if (!td->files_index) td->o.nr_files = 0; while ((fname = get_next_name(&str)) != NULL) { if (!strlen(fname)) break; add_file(td, fname, 0, 1); } free(p); return 0; } static int str_directory_cb(void *data, const char fio_unused *unused) { struct thread_data *td = data; struct stat sb; char *dirname, *str, *p; int ret = 0; if (parse_dryrun()) return 0; p = str = strdup(td->o.directory); while ((dirname = get_next_name(&str)) != NULL) { if (lstat(dirname, &sb) < 0) { ret = errno; log_err("fio: %s is not a directory\n", dirname); td_verror(td, ret, "lstat"); goto out; } if (!S_ISDIR(sb.st_mode)) { log_err("fio: %s is not a directory\n", dirname); ret = 1; goto out; } } out: free(p); return ret; } static int str_opendir_cb(void *data, const char fio_unused *str) { struct thread_data *td = data; if (parse_dryrun()) return 0; if (!td->files_index) td->o.nr_files = 0; return add_dir_files(td, td->o.opendir); } static int pattern_cb(char *pattern, unsigned int max_size, const char *input, unsigned int *pattern_bytes) { long off; int i = 0, j = 0, len, k, base = 10; uint32_t pattern_length; char *loc1, *loc2; /* * Check if it's a string input */ loc1 = strchr(input, '\"'); if (loc1) { do { loc1++; if (*loc1 == '\0' || *loc1 == '\"') break; pattern[i] = *loc1; i++; } while (i < max_size); if (!i) return 1; goto fill; } /* * No string, find out if it's decimal or hexidecimal */ loc1 = strstr(input, "0x"); loc2 = strstr(input, "0X"); if (loc1 || loc2) base = 16; off = strtol(input, NULL, base); if (off != LONG_MAX || errno != ERANGE) { while (off) { pattern[i] = off & 0xff; off >>= 8; i++; } } else { len = strlen(input); k = len - 1; if (base == 16) { if (loc1) j = loc1 - input + 2; else j = loc2 - input + 2; } else return 1; if (len - j < max_size * 2) { while (k >= j) { off = converthexchartoint(input[k--]); if (k >= j) off += (converthexchartoint(input[k--]) * 16); pattern[i++] = (char) off; } } } /* * Fill the pattern all the way to the end. This greatly reduces * the number of memcpy's we have to do when verifying the IO. */ fill: pattern_length = i; while (i > 1 && i * 2 <= max_size) { memcpy(&pattern[i], &pattern[0], i); i *= 2; } /* * Fill remainder, if the pattern multiple ends up not being * max_size. */ while (i > 1 && i < max_size) { unsigned int b = min(pattern_length, max_size - i); memcpy(&pattern[i], &pattern[0], b); i += b; } if (i == 1) { /* * The code in verify_io_u_pattern assumes a single byte * pattern fills the whole verify pattern buffer. */ memset(pattern, pattern[0], max_size); } *pattern_bytes = i; return 0; } static int str_buffer_pattern_cb(void *data, const char *input) { struct thread_data *td = data; int ret; ret = pattern_cb(td->o.buffer_pattern, MAX_PATTERN_SIZE, input, &td->o.buffer_pattern_bytes); if (!ret && td->o.buffer_pattern_bytes) { if (!td->o.compress_percentage) td->o.refill_buffers = 0; td->o.scramble_buffers = 0; td->o.zero_buffers = 0; } else { log_err("fio: failed parsing pattern `%s`\n", input); ret = 1; } return ret; } static int str_buffer_compress_cb(void *data, unsigned long long *il) { struct thread_data *td = data; td->flags |= TD_F_COMPRESS; td->o.compress_percentage = *il; return 0; } static int str_dedupe_cb(void *data, unsigned long long *il) { struct thread_data *td = data; td->flags |= TD_F_COMPRESS; td->o.dedupe_percentage = *il; td->o.refill_buffers = 1; return 0; } static int str_verify_pattern_cb(void *data, const char *input) { struct thread_data *td = data; int ret; ret = pattern_cb(td->o.verify_pattern, MAX_PATTERN_SIZE, input, &td->o.verify_pattern_bytes); /* * VERIFY_META could already be set */ if (!ret && td->o.verify == VERIFY_NONE) td->o.verify = VERIFY_PATTERN; return ret; } static int str_gtod_reduce_cb(void *data, int *il) { struct thread_data *td = data; int val = *il; td->o.disable_lat = !!val; td->o.disable_clat = !!val; td->o.disable_slat = !!val; td->o.disable_bw = !!val; td->o.clat_percentiles = !val; if (val) td->tv_cache_mask = 63; return 0; } static int str_size_cb(void *data, unsigned long long *__val) { struct thread_data *td = data; unsigned long long v = *__val; if (parse_is_percent(v)) { td->o.size = 0; td->o.size_percent = -1ULL - v; } else td->o.size = v; return 0; } static int rw_verify(struct fio_option *o, void *data) { struct thread_data *td = data; if (read_only && td_write(td)) { log_err("fio: job <%s> has write bit set, but fio is in" " read-only mode\n", td->o.name); return 1; } return 0; } static int gtod_cpu_verify(struct fio_option *o, void *data) { #ifndef FIO_HAVE_CPU_AFFINITY struct thread_data *td = data; if (td->o.gtod_cpu) { log_err("fio: platform must support CPU affinity for" "gettimeofday() offloading\n"); return 1; } #endif return 0; } /* * Option grouping */ static struct opt_group fio_opt_groups[] = { { .name = "General", .mask = FIO_OPT_C_GENERAL, }, { .name = "I/O", .mask = FIO_OPT_C_IO, }, { .name = "File", .mask = FIO_OPT_C_FILE, }, { .name = "Statistics", .mask = FIO_OPT_C_STAT, }, { .name = "Logging", .mask = FIO_OPT_C_LOG, }, { .name = "Profiles", .mask = FIO_OPT_C_PROFILE, }, { .name = NULL, }, }; static struct opt_group *__opt_group_from_mask(struct opt_group *ogs, unsigned int *mask, unsigned int inv_mask) { struct opt_group *og; int i; if (*mask == inv_mask || !*mask) return NULL; for (i = 0; ogs[i].name; i++) { og = &ogs[i]; if (*mask & og->mask) { *mask &= ~(og->mask); return og; } } return NULL; } struct opt_group *opt_group_from_mask(unsigned int *mask) { return __opt_group_from_mask(fio_opt_groups, mask, FIO_OPT_C_INVALID); } static struct opt_group fio_opt_cat_groups[] = { { .name = "Latency profiling", .mask = FIO_OPT_G_LATPROF, }, { .name = "Rate", .mask = FIO_OPT_G_RATE, }, { .name = "Zone", .mask = FIO_OPT_G_ZONE, }, { .name = "Read/write mix", .mask = FIO_OPT_G_RWMIX, }, { .name = "Verify", .mask = FIO_OPT_G_VERIFY, }, { .name = "Trim", .mask = FIO_OPT_G_TRIM, }, { .name = "I/O Logging", .mask = FIO_OPT_G_IOLOG, }, { .name = "I/O Depth", .mask = FIO_OPT_G_IO_DEPTH, }, { .name = "I/O Flow", .mask = FIO_OPT_G_IO_FLOW, }, { .name = "Description", .mask = FIO_OPT_G_DESC, }, { .name = "Filename", .mask = FIO_OPT_G_FILENAME, }, { .name = "General I/O", .mask = FIO_OPT_G_IO_BASIC, }, { .name = "Cgroups", .mask = FIO_OPT_G_CGROUP, }, { .name = "Runtime", .mask = FIO_OPT_G_RUNTIME, }, { .name = "Process", .mask = FIO_OPT_G_PROCESS, }, { .name = "Job credentials / priority", .mask = FIO_OPT_G_CRED, }, { .name = "Clock settings", .mask = FIO_OPT_G_CLOCK, }, { .name = "I/O Type", .mask = FIO_OPT_G_IO_TYPE, }, { .name = "I/O Thinktime", .mask = FIO_OPT_G_THINKTIME, }, { .name = "Randomizations", .mask = FIO_OPT_G_RANDOM, }, { .name = "I/O buffers", .mask = FIO_OPT_G_IO_BUF, }, { .name = "Tiobench profile", .mask = FIO_OPT_G_TIOBENCH, }, { .name = NULL, } }; struct opt_group *opt_group_cat_from_mask(unsigned int *mask) { return __opt_group_from_mask(fio_opt_cat_groups, mask, FIO_OPT_G_INVALID); } /* * Map of job/command line options */ struct fio_option fio_options[FIO_MAX_OPTS] = { { .name = "description", .lname = "Description of job", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(description), .help = "Text job description", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_DESC, }, { .name = "name", .lname = "Job name", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(name), .help = "Name of this job", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_DESC, }, { .name = "filename", .lname = "Filename(s)", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(filename), .cb = str_filename_cb, .prio = -1, /* must come after "directory" */ .help = "File(s) to use for the workload", .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_FILENAME, }, { .name = "directory", .lname = "Directory", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(directory), .cb = str_directory_cb, .help = "Directory to store files in", .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_FILENAME, }, { .name = "filename_format", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(filename_format), .prio = -1, /* must come after "directory" */ .help = "Override default $jobname.$jobnum.$filenum naming", .def = "$jobname.$jobnum.$filenum", .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_FILENAME, }, { .name = "lockfile", .lname = "Lockfile", .type = FIO_OPT_STR, .off1 = td_var_offset(file_lock_mode), .help = "Lock file when doing IO to it", .prio = 1, .parent = "filename", .hide = 0, .def = "none", .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_FILENAME, .posval = { { .ival = "none", .oval = FILE_LOCK_NONE, .help = "No file locking", }, { .ival = "exclusive", .oval = FILE_LOCK_EXCLUSIVE, .help = "Exclusive file lock", }, { .ival = "readwrite", .oval = FILE_LOCK_READWRITE, .help = "Read vs write lock", }, }, }, { .name = "opendir", .lname = "Open directory", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(opendir), .cb = str_opendir_cb, .help = "Recursively add files from this directory and down", .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_FILENAME, }, { .name = "rw", .lname = "Read/write", .alias = "readwrite", .type = FIO_OPT_STR, .cb = str_rw_cb, .off1 = td_var_offset(td_ddir), .help = "IO direction", .def = "read", .verify = rw_verify, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IO_BASIC, .posval = { { .ival = "read", .oval = TD_DDIR_READ, .help = "Sequential read", }, { .ival = "write", .oval = TD_DDIR_WRITE, .help = "Sequential write", }, { .ival = "trim", .oval = TD_DDIR_TRIM, .help = "Sequential trim", }, { .ival = "randread", .oval = TD_DDIR_RANDREAD, .help = "Random read", }, { .ival = "randwrite", .oval = TD_DDIR_RANDWRITE, .help = "Random write", }, { .ival = "randtrim", .oval = TD_DDIR_RANDTRIM, .help = "Random trim", }, { .ival = "rw", .oval = TD_DDIR_RW, .help = "Sequential read and write mix", }, { .ival = "readwrite", .oval = TD_DDIR_RW, .help = "Sequential read and write mix", }, { .ival = "randrw", .oval = TD_DDIR_RANDRW, .help = "Random read and write mix" }, }, }, { .name = "rw_sequencer", .lname = "RW Sequencer", .type = FIO_OPT_STR, .off1 = td_var_offset(rw_seq), .help = "IO offset generator modifier", .def = "sequential", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IO_BASIC, .posval = { { .ival = "sequential", .oval = RW_SEQ_SEQ, .help = "Generate sequential offsets", }, { .ival = "identical", .oval = RW_SEQ_IDENT, .help = "Generate identical offsets", }, }, }, { .name = "ioengine", .lname = "IO Engine", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(ioengine), .help = "IO engine to use", .def = FIO_PREFERRED_ENGINE, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IO_BASIC, .posval = { { .ival = "sync", .help = "Use read/write", }, { .ival = "psync", .help = "Use pread/pwrite", }, { .ival = "vsync", .help = "Use readv/writev", }, #ifdef CONFIG_PWRITEV { .ival = "pvsync", .help = "Use preadv/pwritev", }, #endif #ifdef CONFIG_LIBAIO { .ival = "libaio", .help = "Linux native asynchronous IO", }, #endif #ifdef CONFIG_POSIXAIO { .ival = "posixaio", .help = "POSIX asynchronous IO", }, #endif #ifdef CONFIG_SOLARISAIO { .ival = "solarisaio", .help = "Solaris native asynchronous IO", }, #endif #ifdef CONFIG_WINDOWSAIO { .ival = "windowsaio", .help = "Windows native asynchronous IO" }, #endif #ifdef CONFIG_RBD { .ival = "rbd", .help = "Rados Block Device asynchronous IO" }, #endif { .ival = "mmap", .help = "Memory mapped IO" }, #ifdef CONFIG_LINUX_SPLICE { .ival = "splice", .help = "splice/vmsplice based IO", }, { .ival = "netsplice", .help = "splice/vmsplice to/from the network", }, #endif #ifdef FIO_HAVE_SGIO { .ival = "sg", .help = "SCSI generic v3 IO", }, #endif { .ival = "null", .help = "Testing engine (no data transfer)", }, { .ival = "net", .help = "Network IO", }, { .ival = "cpuio", .help = "CPU cycle burner engine", }, #ifdef CONFIG_GUASI { .ival = "guasi", .help = "GUASI IO engine", }, #endif #ifdef FIO_HAVE_BINJECT { .ival = "binject", .help = "binject direct inject block engine", }, #endif #ifdef CONFIG_RDMA { .ival = "rdma", .help = "RDMA IO engine", }, #endif #ifdef CONFIG_FUSION_AW { .ival = "fusion-aw-sync", .help = "Fusion-io atomic write engine", }, #endif #ifdef CONFIG_LINUX_EXT4_MOVE_EXTENT { .ival = "e4defrag", .help = "ext4 defrag engine", }, #endif #ifdef CONFIG_LINUX_FALLOCATE { .ival = "falloc", .help = "fallocate() file based engine", }, #endif #ifdef CONFIG_GFAPI { .ival = "gfapi", .help = "Glusterfs libgfapi(sync) based engine" }, { .ival = "gfapi_async", .help = "Glusterfs libgfapi(async) based engine" }, #endif #ifdef CONFIG_LIBHDFS { .ival = "libhdfs", .help = "Hadoop Distributed Filesystem (HDFS) engine" }, #endif { .ival = "external", .help = "Load external engine (append name)", }, }, }, { .name = "iodepth", .lname = "IO Depth", .type = FIO_OPT_INT, .off1 = td_var_offset(iodepth), .help = "Number of IO buffers to keep in flight", .minval = 1, .interval = 1, .def = "1", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IO_BASIC, }, { .name = "iodepth_batch", .lname = "IO Depth batch", .alias = "iodepth_batch_submit", .type = FIO_OPT_INT, .off1 = td_var_offset(iodepth_batch), .help = "Number of IO buffers to submit in one go", .parent = "iodepth", .hide = 1, .minval = 1, .interval = 1, .def = "1", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IO_BASIC, }, { .name = "iodepth_batch_complete", .lname = "IO Depth batch complete", .type = FIO_OPT_INT, .off1 = td_var_offset(iodepth_batch_complete), .help = "Number of IO buffers to retrieve in one go", .parent = "iodepth", .hide = 1, .minval = 0, .interval = 1, .def = "1", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IO_BASIC, }, { .name = "iodepth_low", .lname = "IO Depth batch low", .type = FIO_OPT_INT, .off1 = td_var_offset(iodepth_low), .help = "Low water mark for queuing depth", .parent = "iodepth", .hide = 1, .interval = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IO_BASIC, }, { .name = "size", .lname = "Size", .type = FIO_OPT_STR_VAL, .cb = str_size_cb, .off1 = td_var_offset(size), .help = "Total size of device or files", .interval = 1024 * 1024, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_INVALID, }, { .name = "io_size", .alias = "io_limit", .lname = "IO Size", .type = FIO_OPT_STR_VAL, .off1 = td_var_offset(io_limit), .interval = 1024 * 1024, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_INVALID, }, { .name = "fill_device", .lname = "Fill device", .alias = "fill_fs", .type = FIO_OPT_BOOL, .off1 = td_var_offset(fill_device), .help = "Write until an ENOSPC error occurs", .def = "0", .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_INVALID, }, { .name = "filesize", .lname = "File size", .type = FIO_OPT_STR_VAL, .off1 = td_var_offset(file_size_low), .off2 = td_var_offset(file_size_high), .minval = 1, .help = "Size of individual files", .interval = 1024 * 1024, .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_INVALID, }, { .name = "file_append", .lname = "File append", .type = FIO_OPT_BOOL, .off1 = td_var_offset(file_append), .help = "IO will start at the end of the file(s)", .def = "0", .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_INVALID, }, { .name = "offset", .lname = "IO offset", .alias = "fileoffset", .type = FIO_OPT_STR_VAL, .off1 = td_var_offset(start_offset), .help = "Start IO from this offset", .def = "0", .interval = 1024 * 1024, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_INVALID, }, { .name = "offset_increment", .lname = "IO offset increment", .type = FIO_OPT_STR_VAL, .off1 = td_var_offset(offset_increment), .help = "What is the increment from one offset to the next", .parent = "offset", .hide = 1, .def = "0", .interval = 1024 * 1024, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_INVALID, }, { .name = "number_ios", .lname = "Number of IOs to perform", .type = FIO_OPT_STR_VAL, .off1 = td_var_offset(number_ios), .help = "Force job completion after this number of IOs", .def = "0", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_INVALID, }, { .name = "bs", .lname = "Block size", .alias = "blocksize", .type = FIO_OPT_INT, .off1 = td_var_offset(bs[DDIR_READ]), .off2 = td_var_offset(bs[DDIR_WRITE]), .off3 = td_var_offset(bs[DDIR_TRIM]), .minval = 1, .help = "Block size unit", .def = "4k", .parent = "rw", .hide = 1, .interval = 512, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_INVALID, }, { .name = "ba", .lname = "Block size align", .alias = "blockalign", .type = FIO_OPT_INT, .off1 = td_var_offset(ba[DDIR_READ]), .off2 = td_var_offset(ba[DDIR_WRITE]), .off3 = td_var_offset(ba[DDIR_TRIM]), .minval = 1, .help = "IO block offset alignment", .parent = "rw", .hide = 1, .interval = 512, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_INVALID, }, { .name = "bsrange", .lname = "Block size range", .alias = "blocksize_range", .type = FIO_OPT_RANGE, .off1 = td_var_offset(min_bs[DDIR_READ]), .off2 = td_var_offset(max_bs[DDIR_READ]), .off3 = td_var_offset(min_bs[DDIR_WRITE]), .off4 = td_var_offset(max_bs[DDIR_WRITE]), .off5 = td_var_offset(min_bs[DDIR_TRIM]), .off6 = td_var_offset(max_bs[DDIR_TRIM]), .minval = 1, .help = "Set block size range (in more detail than bs)", .parent = "rw", .hide = 1, .interval = 4096, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_INVALID, }, { .name = "bssplit", .lname = "Block size split", .type = FIO_OPT_STR, .cb = str_bssplit_cb, .off1 = td_var_offset(bssplit), .help = "Set a specific mix of block sizes", .parent = "rw", .hide = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_INVALID, }, { .name = "bs_unaligned", .lname = "Block size unaligned", .alias = "blocksize_unaligned", .type = FIO_OPT_STR_SET, .off1 = td_var_offset(bs_unaligned), .help = "Don't sector align IO buffer sizes", .parent = "rw", .hide = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_INVALID, }, { .name = "bs_is_seq_rand", .lname = "Block size division is seq/random (not read/write)", .type = FIO_OPT_BOOL, .off1 = td_var_offset(bs_is_seq_rand), .help = "Consider any blocksize setting to be sequential,random", .def = "0", .parent = "blocksize", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_INVALID, }, { .name = "randrepeat", .lname = "Random repeatable", .type = FIO_OPT_BOOL, .off1 = td_var_offset(rand_repeatable), .help = "Use repeatable random IO pattern", .def = "1", .parent = "rw", .hide = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_RANDOM, }, { .name = "randseed", .lname = "The random generator seed", .type = FIO_OPT_STR_VAL, .off1 = td_var_offset(rand_seed), .help = "Set the random generator seed value", .parent = "rw", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_RANDOM, }, { .name = "use_os_rand", .lname = "Use OS random", .type = FIO_OPT_DEPRECATED, .off1 = td_var_offset(dep_use_os_rand), .category = FIO_OPT_C_IO, .group = FIO_OPT_G_RANDOM, }, { .name = "norandommap", .lname = "No randommap", .type = FIO_OPT_STR_SET, .off1 = td_var_offset(norandommap), .help = "Accept potential duplicate random blocks", .parent = "rw", .hide = 1, .hide_on_set = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_RANDOM, }, { .name = "softrandommap", .lname = "Soft randommap", .type = FIO_OPT_BOOL, .off1 = td_var_offset(softrandommap), .help = "Set norandommap if randommap allocation fails", .parent = "norandommap", .hide = 1, .def = "0", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_RANDOM, }, { .name = "random_generator", .type = FIO_OPT_STR, .off1 = td_var_offset(random_generator), .help = "Type of random number generator to use", .def = "tausworthe", .posval = { { .ival = "tausworthe", .oval = FIO_RAND_GEN_TAUSWORTHE, .help = "Strong Tausworthe generator", }, { .ival = "lfsr", .oval = FIO_RAND_GEN_LFSR, .help = "Variable length LFSR", }, }, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_RANDOM, }, { .name = "random_distribution", .type = FIO_OPT_STR, .off1 = td_var_offset(random_distribution), .cb = str_random_distribution_cb, .help = "Random offset distribution generator", .def = "random", .posval = { { .ival = "random", .oval = FIO_RAND_DIST_RANDOM, .help = "Completely random", }, { .ival = "zipf", .oval = FIO_RAND_DIST_ZIPF, .help = "Zipf distribution", }, { .ival = "pareto", .oval = FIO_RAND_DIST_PARETO, .help = "Pareto distribution", }, }, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_RANDOM, }, { .name = "percentage_random", .lname = "Percentage Random", .type = FIO_OPT_INT, .off1 = td_var_offset(perc_rand[DDIR_READ]), .off2 = td_var_offset(perc_rand[DDIR_WRITE]), .off3 = td_var_offset(perc_rand[DDIR_TRIM]), .maxval = 100, .help = "Percentage of seq/random mix that should be random", .def = "100,100,100", .interval = 5, .inverse = "percentage_sequential", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_RANDOM, }, { .name = "percentage_sequential", .lname = "Percentage Sequential", .type = FIO_OPT_DEPRECATED, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_RANDOM, }, { .name = "allrandrepeat", .type = FIO_OPT_BOOL, .off1 = td_var_offset(allrand_repeatable), .help = "Use repeatable random numbers for everything", .def = "0", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_RANDOM, }, { .name = "nrfiles", .lname = "Number of files", .alias = "nr_files", .type = FIO_OPT_INT, .off1 = td_var_offset(nr_files), .help = "Split job workload between this number of files", .def = "1", .interval = 1, .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_INVALID, }, { .name = "openfiles", .lname = "Number of open files", .type = FIO_OPT_INT, .off1 = td_var_offset(open_files), .help = "Number of files to keep open at the same time", .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_INVALID, }, { .name = "file_service_type", .lname = "File service type", .type = FIO_OPT_STR, .cb = str_fst_cb, .off1 = td_var_offset(file_service_type), .help = "How to select which file to service next", .def = "roundrobin", .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_INVALID, .posval = { { .ival = "random", .oval = FIO_FSERVICE_RANDOM, .help = "Choose a file at random", }, { .ival = "roundrobin", .oval = FIO_FSERVICE_RR, .help = "Round robin select files", }, { .ival = "sequential", .oval = FIO_FSERVICE_SEQ, .help = "Finish one file before moving to the next", }, }, .parent = "nrfiles", .hide = 1, }, #ifdef CONFIG_POSIX_FALLOCATE { .name = "fallocate", .lname = "Fallocate", .type = FIO_OPT_STR, .off1 = td_var_offset(fallocate_mode), .help = "Whether pre-allocation is performed when laying out files", .def = "posix", .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_INVALID, .posval = { { .ival = "none", .oval = FIO_FALLOCATE_NONE, .help = "Do not pre-allocate space", }, { .ival = "posix", .oval = FIO_FALLOCATE_POSIX, .help = "Use posix_fallocate()", }, #ifdef CONFIG_LINUX_FALLOCATE { .ival = "keep", .oval = FIO_FALLOCATE_KEEP_SIZE, .help = "Use fallocate(..., FALLOC_FL_KEEP_SIZE, ...)", }, #endif /* Compatibility with former boolean values */ { .ival = "0", .oval = FIO_FALLOCATE_NONE, .help = "Alias for 'none'", }, { .ival = "1", .oval = FIO_FALLOCATE_POSIX, .help = "Alias for 'posix'", }, }, }, #endif /* CONFIG_POSIX_FALLOCATE */ { .name = "fadvise_hint", .lname = "Fadvise hint", .type = FIO_OPT_BOOL, .off1 = td_var_offset(fadvise_hint), .help = "Use fadvise() to advise the kernel on IO pattern", .def = "1", .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_INVALID, }, { .name = "fsync", .lname = "Fsync", .type = FIO_OPT_INT, .off1 = td_var_offset(fsync_blocks), .help = "Issue fsync for writes every given number of blocks", .def = "0", .interval = 1, .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_INVALID, }, { .name = "fdatasync", .lname = "Fdatasync", .type = FIO_OPT_INT, .off1 = td_var_offset(fdatasync_blocks), .help = "Issue fdatasync for writes every given number of blocks", .def = "0", .interval = 1, .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_INVALID, }, { .name = "write_barrier", .lname = "Write barrier", .type = FIO_OPT_INT, .off1 = td_var_offset(barrier_blocks), .help = "Make every Nth write a barrier write", .def = "0", .interval = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_INVALID, }, #ifdef CONFIG_SYNC_FILE_RANGE { .name = "sync_file_range", .lname = "Sync file range", .posval = { { .ival = "wait_before", .oval = SYNC_FILE_RANGE_WAIT_BEFORE, .help = "SYNC_FILE_RANGE_WAIT_BEFORE", .orval = 1, }, { .ival = "write", .oval = SYNC_FILE_RANGE_WRITE, .help = "SYNC_FILE_RANGE_WRITE", .orval = 1, }, { .ival = "wait_after", .oval = SYNC_FILE_RANGE_WAIT_AFTER, .help = "SYNC_FILE_RANGE_WAIT_AFTER", .orval = 1, }, }, .type = FIO_OPT_STR_MULTI, .cb = str_sfr_cb, .off1 = td_var_offset(sync_file_range), .help = "Use sync_file_range()", .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_INVALID, }, #endif { .name = "direct", .lname = "Direct I/O", .type = FIO_OPT_BOOL, .off1 = td_var_offset(odirect), .help = "Use O_DIRECT IO (negates buffered)", .def = "0", .inverse = "buffered", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IO_TYPE, }, { .name = "atomic", .lname = "Atomic I/O", .type = FIO_OPT_BOOL, .off1 = td_var_offset(oatomic), .help = "Use Atomic IO with O_DIRECT (implies O_DIRECT)", .def = "0", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IO_TYPE, }, { .name = "buffered", .lname = "Buffered I/O", .type = FIO_OPT_BOOL, .off1 = td_var_offset(odirect), .neg = 1, .help = "Use buffered IO (negates direct)", .def = "1", .inverse = "direct", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IO_TYPE, }, { .name = "overwrite", .lname = "Overwrite", .type = FIO_OPT_BOOL, .off1 = td_var_offset(overwrite), .help = "When writing, set whether to overwrite current data", .def = "0", .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_INVALID, }, { .name = "loops", .lname = "Loops", .type = FIO_OPT_INT, .off1 = td_var_offset(loops), .help = "Number of times to run the job", .def = "1", .interval = 1, .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_RUNTIME, }, { .name = "numjobs", .lname = "Number of jobs", .type = FIO_OPT_INT, .off1 = td_var_offset(numjobs), .help = "Duplicate this job this many times", .def = "1", .interval = 1, .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_RUNTIME, }, { .name = "startdelay", .lname = "Start delay", .type = FIO_OPT_STR_VAL_TIME, .off1 = td_var_offset(start_delay), .off2 = td_var_offset(start_delay_high), .help = "Only start job when this period has passed", .def = "0", .is_seconds = 1, .is_time = 1, .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_RUNTIME, }, { .name = "runtime", .lname = "Runtime", .alias = "timeout", .type = FIO_OPT_STR_VAL_TIME, .off1 = td_var_offset(timeout), .help = "Stop workload when this amount of time has passed", .def = "0", .is_seconds = 1, .is_time = 1, .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_RUNTIME, }, { .name = "time_based", .lname = "Time based", .type = FIO_OPT_STR_SET, .off1 = td_var_offset(time_based), .help = "Keep running until runtime/timeout is met", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_RUNTIME, }, { .name = "verify_only", .lname = "Verify only", .type = FIO_OPT_STR_SET, .off1 = td_var_offset(verify_only), .help = "Verifies previously written data is still valid", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_RUNTIME, }, { .name = "ramp_time", .lname = "Ramp time", .type = FIO_OPT_STR_VAL_TIME, .off1 = td_var_offset(ramp_time), .help = "Ramp up time before measuring performance", .is_seconds = 1, .is_time = 1, .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_RUNTIME, }, { .name = "clocksource", .lname = "Clock source", .type = FIO_OPT_STR, .cb = fio_clock_source_cb, .off1 = td_var_offset(clocksource), .help = "What type of timing source to use", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_CLOCK, .posval = { #ifdef CONFIG_GETTIMEOFDAY { .ival = "gettimeofday", .oval = CS_GTOD, .help = "Use gettimeofday(2) for timing", }, #endif #ifdef CONFIG_CLOCK_GETTIME { .ival = "clock_gettime", .oval = CS_CGETTIME, .help = "Use clock_gettime(2) for timing", }, #endif #ifdef ARCH_HAVE_CPU_CLOCK { .ival = "cpu", .oval = CS_CPUCLOCK, .help = "Use CPU private clock", }, #endif }, }, { .name = "mem", .alias = "iomem", .lname = "I/O Memory", .type = FIO_OPT_STR, .cb = str_mem_cb, .off1 = td_var_offset(mem_type), .help = "Backing type for IO buffers", .def = "malloc", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_INVALID, .posval = { { .ival = "malloc", .oval = MEM_MALLOC, .help = "Use malloc(3) for IO buffers", }, #ifndef CONFIG_NO_SHM { .ival = "shm", .oval = MEM_SHM, .help = "Use shared memory segments for IO buffers", }, #ifdef FIO_HAVE_HUGETLB { .ival = "shmhuge", .oval = MEM_SHMHUGE, .help = "Like shm, but use huge pages", }, #endif #endif { .ival = "mmap", .oval = MEM_MMAP, .help = "Use mmap(2) (file or anon) for IO buffers", }, #ifdef FIO_HAVE_HUGETLB { .ival = "mmaphuge", .oval = MEM_MMAPHUGE, .help = "Like mmap, but use huge pages", }, #endif }, }, { .name = "iomem_align", .alias = "mem_align", .lname = "I/O memory alignment", .type = FIO_OPT_INT, .off1 = td_var_offset(mem_align), .minval = 0, .help = "IO memory buffer offset alignment", .def = "0", .parent = "iomem", .hide = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_INVALID, }, { .name = "verify", .lname = "Verify", .type = FIO_OPT_STR, .off1 = td_var_offset(verify), .help = "Verify data written", .def = "0", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_VERIFY, .posval = { { .ival = "0", .oval = VERIFY_NONE, .help = "Don't do IO verification", }, { .ival = "md5", .oval = VERIFY_MD5, .help = "Use md5 checksums for verification", }, { .ival = "crc64", .oval = VERIFY_CRC64, .help = "Use crc64 checksums for verification", }, { .ival = "crc32", .oval = VERIFY_CRC32, .help = "Use crc32 checksums for verification", }, { .ival = "crc32c-intel", .oval = VERIFY_CRC32C, .help = "Use crc32c checksums for verification (hw assisted, if available)", }, { .ival = "crc32c", .oval = VERIFY_CRC32C, .help = "Use crc32c checksums for verification (hw assisted, if available)", }, { .ival = "crc16", .oval = VERIFY_CRC16, .help = "Use crc16 checksums for verification", }, { .ival = "crc7", .oval = VERIFY_CRC7, .help = "Use crc7 checksums for verification", }, { .ival = "sha1", .oval = VERIFY_SHA1, .help = "Use sha1 checksums for verification", }, { .ival = "sha256", .oval = VERIFY_SHA256, .help = "Use sha256 checksums for verification", }, { .ival = "sha512", .oval = VERIFY_SHA512, .help = "Use sha512 checksums for verification", }, { .ival = "xxhash", .oval = VERIFY_XXHASH, .help = "Use xxhash checksums for verification", }, { .ival = "meta", .oval = VERIFY_META, .help = "Use io information", }, { .ival = "null", .oval = VERIFY_NULL, .help = "Pretend to verify", }, }, }, { .name = "do_verify", .lname = "Perform verify step", .type = FIO_OPT_BOOL, .off1 = td_var_offset(do_verify), .help = "Run verification stage after write", .def = "1", .parent = "verify", .hide = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_VERIFY, }, { .name = "verifysort", .lname = "Verify sort", .type = FIO_OPT_BOOL, .off1 = td_var_offset(verifysort), .help = "Sort written verify blocks for read back", .def = "1", .parent = "verify", .hide = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_VERIFY, }, { .name = "verifysort_nr", .type = FIO_OPT_INT, .off1 = td_var_offset(verifysort_nr), .help = "Pre-load and sort verify blocks for a read workload", .minval = 0, .maxval = 131072, .def = "1024", .parent = "verify", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_VERIFY, }, { .name = "verify_interval", .lname = "Verify interval", .type = FIO_OPT_INT, .off1 = td_var_offset(verify_interval), .minval = 2 * sizeof(struct verify_header), .help = "Store verify buffer header every N bytes", .parent = "verify", .hide = 1, .interval = 2 * sizeof(struct verify_header), .category = FIO_OPT_C_IO, .group = FIO_OPT_G_VERIFY, }, { .name = "verify_offset", .lname = "Verify offset", .type = FIO_OPT_INT, .help = "Offset verify header location by N bytes", .off1 = td_var_offset(verify_offset), .minval = sizeof(struct verify_header), .parent = "verify", .hide = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_VERIFY, }, { .name = "verify_pattern", .lname = "Verify pattern", .type = FIO_OPT_STR, .cb = str_verify_pattern_cb, .off1 = td_var_offset(verify_pattern), .help = "Fill pattern for IO buffers", .parent = "verify", .hide = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_VERIFY, }, { .name = "verify_fatal", .lname = "Verify fatal", .type = FIO_OPT_BOOL, .off1 = td_var_offset(verify_fatal), .def = "0", .help = "Exit on a single verify failure, don't continue", .parent = "verify", .hide = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_VERIFY, }, { .name = "verify_dump", .lname = "Verify dump", .type = FIO_OPT_BOOL, .off1 = td_var_offset(verify_dump), .def = "0", .help = "Dump contents of good and bad blocks on failure", .parent = "verify", .hide = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_VERIFY, }, { .name = "verify_async", .lname = "Verify asynchronously", .type = FIO_OPT_INT, .off1 = td_var_offset(verify_async), .def = "0", .help = "Number of async verifier threads to use", .parent = "verify", .hide = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_VERIFY, }, { .name = "verify_backlog", .lname = "Verify backlog", .type = FIO_OPT_STR_VAL, .off1 = td_var_offset(verify_backlog), .help = "Verify after this number of blocks are written", .parent = "verify", .hide = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_VERIFY, }, { .name = "verify_backlog_batch", .lname = "Verify backlog batch", .type = FIO_OPT_INT, .off1 = td_var_offset(verify_batch), .help = "Verify this number of IO blocks", .parent = "verify", .hide = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_VERIFY, }, #ifdef FIO_HAVE_CPU_AFFINITY { .name = "verify_async_cpus", .lname = "Async verify CPUs", .type = FIO_OPT_STR, .cb = str_verify_cpus_allowed_cb, .off1 = td_var_offset(verify_cpumask), .help = "Set CPUs allowed for async verify threads", .parent = "verify_async", .hide = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_VERIFY, }, #endif { .name = "experimental_verify", .off1 = td_var_offset(experimental_verify), .type = FIO_OPT_BOOL, .help = "Enable experimental verification", .parent = "verify", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_VERIFY, }, { .name = "verify_state_load", .lname = "Load verify state", .off1 = td_var_offset(verify_state), .type = FIO_OPT_BOOL, .help = "Load verify termination state", .parent = "verify", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_VERIFY, }, { .name = "verify_state_save", .lname = "Save verify state", .off1 = td_var_offset(verify_state_save), .type = FIO_OPT_BOOL, .def = "1", .help = "Save verify state on termination", .parent = "verify", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_VERIFY, }, #ifdef FIO_HAVE_TRIM { .name = "trim_percentage", .lname = "Trim percentage", .type = FIO_OPT_INT, .off1 = td_var_offset(trim_percentage), .minval = 0, .maxval = 100, .help = "Number of verify blocks to discard/trim", .parent = "verify", .def = "0", .interval = 1, .hide = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_TRIM, }, { .name = "trim_verify_zero", .lname = "Verify trim zero", .type = FIO_OPT_BOOL, .help = "Verify that trim/discarded blocks are returned as zeroes", .off1 = td_var_offset(trim_zero), .parent = "trim_percentage", .hide = 1, .def = "1", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_TRIM, }, { .name = "trim_backlog", .lname = "Trim backlog", .type = FIO_OPT_STR_VAL, .off1 = td_var_offset(trim_backlog), .help = "Trim after this number of blocks are written", .parent = "trim_percentage", .hide = 1, .interval = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_TRIM, }, { .name = "trim_backlog_batch", .lname = "Trim backlog batch", .type = FIO_OPT_INT, .off1 = td_var_offset(trim_batch), .help = "Trim this number of IO blocks", .parent = "trim_percentage", .hide = 1, .interval = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_TRIM, }, #endif { .name = "write_iolog", .lname = "Write I/O log", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(write_iolog_file), .help = "Store IO pattern to file", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IOLOG, }, { .name = "read_iolog", .lname = "Read I/O log", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(read_iolog_file), .help = "Playback IO pattern from file", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IOLOG, }, { .name = "replay_no_stall", .lname = "Don't stall on replay", .type = FIO_OPT_BOOL, .off1 = td_var_offset(no_stall), .def = "0", .parent = "read_iolog", .hide = 1, .help = "Playback IO pattern file as fast as possible without stalls", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IOLOG, }, { .name = "replay_redirect", .lname = "Redirect device for replay", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(replay_redirect), .parent = "read_iolog", .hide = 1, .help = "Replay all I/O onto this device, regardless of trace device", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IOLOG, }, { .name = "exec_prerun", .lname = "Pre-execute runnable", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(exec_prerun), .help = "Execute this file prior to running job", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_INVALID, }, { .name = "exec_postrun", .lname = "Post-execute runnable", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(exec_postrun), .help = "Execute this file after running job", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_INVALID, }, #ifdef FIO_HAVE_IOSCHED_SWITCH { .name = "ioscheduler", .lname = "I/O scheduler", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(ioscheduler), .help = "Use this IO scheduler on the backing device", .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_INVALID, }, #endif { .name = "zonesize", .lname = "Zone size", .type = FIO_OPT_STR_VAL, .off1 = td_var_offset(zone_size), .help = "Amount of data to read per zone", .def = "0", .interval = 1024 * 1024, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_ZONE, }, { .name = "zonerange", .lname = "Zone range", .type = FIO_OPT_STR_VAL, .off1 = td_var_offset(zone_range), .help = "Give size of an IO zone", .def = "0", .interval = 1024 * 1024, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_ZONE, }, { .name = "zoneskip", .lname = "Zone skip", .type = FIO_OPT_STR_VAL, .off1 = td_var_offset(zone_skip), .help = "Space between IO zones", .def = "0", .interval = 1024 * 1024, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_ZONE, }, { .name = "lockmem", .lname = "Lock memory", .type = FIO_OPT_STR_VAL, .off1 = td_var_offset(lockmem), .help = "Lock down this amount of memory (per worker)", .def = "0", .interval = 1024 * 1024, .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_INVALID, }, { .name = "rwmixread", .lname = "Read/write mix read", .type = FIO_OPT_INT, .cb = str_rwmix_read_cb, .off1 = td_var_offset(rwmix[DDIR_READ]), .maxval = 100, .help = "Percentage of mixed workload that is reads", .def = "50", .interval = 5, .inverse = "rwmixwrite", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_RWMIX, }, { .name = "rwmixwrite", .lname = "Read/write mix write", .type = FIO_OPT_INT, .cb = str_rwmix_write_cb, .off1 = td_var_offset(rwmix[DDIR_WRITE]), .maxval = 100, .help = "Percentage of mixed workload that is writes", .def = "50", .interval = 5, .inverse = "rwmixread", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_RWMIX, }, { .name = "rwmixcycle", .lname = "Read/write mix cycle", .type = FIO_OPT_DEPRECATED, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_RWMIX, }, { .name = "nice", .lname = "Nice", .type = FIO_OPT_INT, .off1 = td_var_offset(nice), .help = "Set job CPU nice value", .minval = -19, .maxval = 20, .def = "0", .interval = 1, .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_CRED, }, #ifdef FIO_HAVE_IOPRIO { .name = "prio", .lname = "I/O nice priority", .type = FIO_OPT_INT, .off1 = td_var_offset(ioprio), .help = "Set job IO priority value", .minval = 0, .maxval = 7, .interval = 1, .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_CRED, }, { .name = "prioclass", .lname = "I/O nice priority class", .type = FIO_OPT_INT, .off1 = td_var_offset(ioprio_class), .help = "Set job IO priority class", .minval = 0, .maxval = 3, .interval = 1, .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_CRED, }, #endif { .name = "thinktime", .lname = "Thinktime", .type = FIO_OPT_INT, .off1 = td_var_offset(thinktime), .help = "Idle time between IO buffers (usec)", .def = "0", .is_time = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_THINKTIME, }, { .name = "thinktime_spin", .lname = "Thinktime spin", .type = FIO_OPT_INT, .off1 = td_var_offset(thinktime_spin), .help = "Start think time by spinning this amount (usec)", .def = "0", .is_time = 1, .parent = "thinktime", .hide = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_THINKTIME, }, { .name = "thinktime_blocks", .lname = "Thinktime blocks", .type = FIO_OPT_INT, .off1 = td_var_offset(thinktime_blocks), .help = "IO buffer period between 'thinktime'", .def = "1", .parent = "thinktime", .hide = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_THINKTIME, }, { .name = "rate", .lname = "I/O rate", .type = FIO_OPT_INT, .off1 = td_var_offset(rate[DDIR_READ]), .off2 = td_var_offset(rate[DDIR_WRITE]), .off3 = td_var_offset(rate[DDIR_TRIM]), .help = "Set bandwidth rate", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_RATE, }, { .name = "ratemin", .lname = "I/O min rate", .type = FIO_OPT_INT, .off1 = td_var_offset(ratemin[DDIR_READ]), .off2 = td_var_offset(ratemin[DDIR_WRITE]), .off3 = td_var_offset(ratemin[DDIR_TRIM]), .help = "Job must meet this rate or it will be shutdown", .parent = "rate", .hide = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_RATE, }, { .name = "rate_iops", .lname = "I/O rate IOPS", .type = FIO_OPT_INT, .off1 = td_var_offset(rate_iops[DDIR_READ]), .off2 = td_var_offset(rate_iops[DDIR_WRITE]), .off3 = td_var_offset(rate_iops[DDIR_TRIM]), .help = "Limit IO used to this number of IO operations/sec", .hide = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_RATE, }, { .name = "rate_iops_min", .lname = "I/O min rate IOPS", .type = FIO_OPT_INT, .off1 = td_var_offset(rate_iops_min[DDIR_READ]), .off2 = td_var_offset(rate_iops_min[DDIR_WRITE]), .off3 = td_var_offset(rate_iops_min[DDIR_TRIM]), .help = "Job must meet this rate or it will be shut down", .parent = "rate_iops", .hide = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_RATE, }, { .name = "ratecycle", .lname = "I/O rate cycle", .type = FIO_OPT_INT, .off1 = td_var_offset(ratecycle), .help = "Window average for rate limits (msec)", .def = "1000", .parent = "rate", .hide = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_RATE, }, { .name = "max_latency", .type = FIO_OPT_INT, .off1 = td_var_offset(max_latency), .help = "Maximum tolerated IO latency (usec)", .is_time = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_LATPROF, }, { .name = "latency_target", .lname = "Latency Target (usec)", .type = FIO_OPT_STR_VAL_TIME, .off1 = td_var_offset(latency_target), .help = "Ramp to max queue depth supporting this latency", .is_time = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_LATPROF, }, { .name = "latency_window", .lname = "Latency Window (usec)", .type = FIO_OPT_STR_VAL_TIME, .off1 = td_var_offset(latency_window), .help = "Time to sustain latency_target", .is_time = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_LATPROF, }, { .name = "latency_percentile", .lname = "Latency Percentile", .type = FIO_OPT_FLOAT_LIST, .off1 = td_var_offset(latency_percentile), .help = "Percentile of IOs must be below latency_target", .def = "100", .maxlen = 1, .minfp = 0.0, .maxfp = 100.0, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_LATPROF, }, { .name = "invalidate", .lname = "Cache invalidate", .type = FIO_OPT_BOOL, .off1 = td_var_offset(invalidate_cache), .help = "Invalidate buffer/page cache prior to running job", .def = "1", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IO_TYPE, }, { .name = "sync", .lname = "Synchronous I/O", .type = FIO_OPT_BOOL, .off1 = td_var_offset(sync_io), .help = "Use O_SYNC for buffered writes", .def = "0", .parent = "buffered", .hide = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IO_TYPE, }, { .name = "create_serialize", .lname = "Create serialize", .type = FIO_OPT_BOOL, .off1 = td_var_offset(create_serialize), .help = "Serialize creating of job files", .def = "1", .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_INVALID, }, { .name = "create_fsync", .lname = "Create fsync", .type = FIO_OPT_BOOL, .off1 = td_var_offset(create_fsync), .help = "fsync file after creation", .def = "1", .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_INVALID, }, { .name = "create_on_open", .lname = "Create on open", .type = FIO_OPT_BOOL, .off1 = td_var_offset(create_on_open), .help = "Create files when they are opened for IO", .def = "0", .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_INVALID, }, { .name = "create_only", .type = FIO_OPT_BOOL, .off1 = td_var_offset(create_only), .help = "Only perform file creation phase", .category = FIO_OPT_C_FILE, .def = "0", }, { .name = "pre_read", .lname = "Pre-read files", .type = FIO_OPT_BOOL, .off1 = td_var_offset(pre_read), .help = "Pre-read files before starting official testing", .def = "0", .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_INVALID, }, #ifdef FIO_HAVE_CPU_AFFINITY { .name = "cpumask", .lname = "CPU mask", .type = FIO_OPT_INT, .cb = str_cpumask_cb, .off1 = td_var_offset(cpumask), .help = "CPU affinity mask", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_CRED, }, { .name = "cpus_allowed", .lname = "CPUs allowed", .type = FIO_OPT_STR, .cb = str_cpus_allowed_cb, .off1 = td_var_offset(cpumask), .help = "Set CPUs allowed", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_CRED, }, { .name = "cpus_allowed_policy", .lname = "CPUs allowed distribution policy", .type = FIO_OPT_STR, .off1 = td_var_offset(cpus_allowed_policy), .help = "Distribution policy for cpus_allowed", .parent = "cpus_allowed", .prio = 1, .posval = { { .ival = "shared", .oval = FIO_CPUS_SHARED, .help = "Mask shared between threads", }, { .ival = "split", .oval = FIO_CPUS_SPLIT, .help = "Mask split between threads", }, }, .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_CRED, }, #endif #ifdef CONFIG_LIBNUMA { .name = "numa_cpu_nodes", .type = FIO_OPT_STR, .cb = str_numa_cpunodes_cb, .off1 = td_var_offset(numa_cpunodes), .help = "NUMA CPU nodes bind", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_INVALID, }, { .name = "numa_mem_policy", .type = FIO_OPT_STR, .cb = str_numa_mpol_cb, .off1 = td_var_offset(numa_memnodes), .help = "NUMA memory policy setup", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_INVALID, }, #endif { .name = "end_fsync", .lname = "End fsync", .type = FIO_OPT_BOOL, .off1 = td_var_offset(end_fsync), .help = "Include fsync at the end of job", .def = "0", .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_INVALID, }, { .name = "fsync_on_close", .lname = "Fsync on close", .type = FIO_OPT_BOOL, .off1 = td_var_offset(fsync_on_close), .help = "fsync files on close", .def = "0", .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_INVALID, }, { .name = "unlink", .lname = "Unlink file", .type = FIO_OPT_BOOL, .off1 = td_var_offset(unlink), .help = "Unlink created files after job has completed", .def = "0", .category = FIO_OPT_C_FILE, .group = FIO_OPT_G_INVALID, }, { .name = "exitall", .lname = "Exit-all on terminate", .type = FIO_OPT_STR_SET, .cb = str_exitall_cb, .help = "Terminate all jobs when one exits", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_PROCESS, }, { .name = "stonewall", .lname = "Wait for previous", .alias = "wait_for_previous", .type = FIO_OPT_STR_SET, .off1 = td_var_offset(stonewall), .help = "Insert a hard barrier between this job and previous", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_PROCESS, }, { .name = "new_group", .lname = "New group", .type = FIO_OPT_STR_SET, .off1 = td_var_offset(new_group), .help = "Mark the start of a new group (for reporting)", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_PROCESS, }, { .name = "thread", .lname = "Thread", .type = FIO_OPT_STR_SET, .off1 = td_var_offset(use_thread), .help = "Use threads instead of processes", #ifdef CONFIG_NO_SHM .def = "1", .no_warn_def = 1, #endif .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_PROCESS, }, { .name = "write_bw_log", .lname = "Write bandwidth log", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(bw_log_file), .help = "Write log of bandwidth during run", .category = FIO_OPT_C_LOG, .group = FIO_OPT_G_INVALID, }, { .name = "write_lat_log", .lname = "Write latency log", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(lat_log_file), .help = "Write log of latency during run", .category = FIO_OPT_C_LOG, .group = FIO_OPT_G_INVALID, }, { .name = "write_iops_log", .lname = "Write IOPS log", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(iops_log_file), .help = "Write log of IOPS during run", .category = FIO_OPT_C_LOG, .group = FIO_OPT_G_INVALID, }, { .name = "log_avg_msec", .lname = "Log averaging (msec)", .type = FIO_OPT_INT, .off1 = td_var_offset(log_avg_msec), .help = "Average bw/iops/lat logs over this period of time", .def = "0", .category = FIO_OPT_C_LOG, .group = FIO_OPT_G_INVALID, }, { .name = "log_offset", .lname = "Log offset of IO", .type = FIO_OPT_BOOL, .off1 = td_var_offset(log_offset), .help = "Include offset of IO for each log entry", .def = "0", .category = FIO_OPT_C_LOG, .group = FIO_OPT_G_INVALID, }, #ifdef CONFIG_ZLIB { .name = "log_compression", .lname = "Log compression", .type = FIO_OPT_INT, .off1 = td_var_offset(log_gz), .help = "Log in compressed chunks of this size", .minval = 32 * 1024 * 1024ULL, .maxval = 512 * 1024 * 1024ULL, .category = FIO_OPT_C_LOG, .group = FIO_OPT_G_INVALID, }, { .name = "log_store_compressed", .lname = "Log store compressed", .type = FIO_OPT_BOOL, .off1 = td_var_offset(log_gz_store), .help = "Store logs in a compressed format", .category = FIO_OPT_C_LOG, .group = FIO_OPT_G_INVALID, }, #endif { .name = "bwavgtime", .lname = "Bandwidth average time", .type = FIO_OPT_INT, .off1 = td_var_offset(bw_avg_time), .help = "Time window over which to calculate bandwidth" " (msec)", .def = "500", .parent = "write_bw_log", .hide = 1, .interval = 100, .category = FIO_OPT_C_LOG, .group = FIO_OPT_G_INVALID, }, { .name = "iopsavgtime", .lname = "IOPS average time", .type = FIO_OPT_INT, .off1 = td_var_offset(iops_avg_time), .help = "Time window over which to calculate IOPS (msec)", .def = "500", .parent = "write_iops_log", .hide = 1, .interval = 100, .category = FIO_OPT_C_LOG, .group = FIO_OPT_G_INVALID, }, { .name = "group_reporting", .lname = "Group reporting", .type = FIO_OPT_STR_SET, .off1 = td_var_offset(group_reporting), .help = "Do reporting on a per-group basis", .category = FIO_OPT_C_STAT, .group = FIO_OPT_G_INVALID, }, { .name = "zero_buffers", .lname = "Zero I/O buffers", .type = FIO_OPT_STR_SET, .off1 = td_var_offset(zero_buffers), .help = "Init IO buffers to all zeroes", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IO_BUF, }, { .name = "refill_buffers", .lname = "Refill I/O buffers", .type = FIO_OPT_STR_SET, .off1 = td_var_offset(refill_buffers), .help = "Refill IO buffers on every IO submit", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IO_BUF, }, { .name = "scramble_buffers", .lname = "Scramble I/O buffers", .type = FIO_OPT_BOOL, .off1 = td_var_offset(scramble_buffers), .help = "Slightly scramble buffers on every IO submit", .def = "1", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IO_BUF, }, { .name = "buffer_pattern", .lname = "Buffer pattern", .type = FIO_OPT_STR, .cb = str_buffer_pattern_cb, .off1 = td_var_offset(buffer_pattern), .help = "Fill pattern for IO buffers", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IO_BUF, }, { .name = "buffer_compress_percentage", .lname = "Buffer compression percentage", .type = FIO_OPT_INT, .cb = str_buffer_compress_cb, .off1 = td_var_offset(compress_percentage), .maxval = 100, .minval = 0, .help = "How compressible the buffer is (approximately)", .interval = 5, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IO_BUF, }, { .name = "buffer_compress_chunk", .lname = "Buffer compression chunk size", .type = FIO_OPT_INT, .off1 = td_var_offset(compress_chunk), .parent = "buffer_compress_percentage", .hide = 1, .help = "Size of compressible region in buffer", .interval = 256, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IO_BUF, }, { .name = "dedupe_percentage", .lname = "Dedupe percentage", .type = FIO_OPT_INT, .cb = str_dedupe_cb, .off1 = td_var_offset(dedupe_percentage), .maxval = 100, .minval = 0, .help = "Percentage of buffers that are dedupable", .interval = 1, .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IO_BUF, }, { .name = "clat_percentiles", .lname = "Completion latency percentiles", .type = FIO_OPT_BOOL, .off1 = td_var_offset(clat_percentiles), .help = "Enable the reporting of completion latency percentiles", .def = "1", .category = FIO_OPT_C_STAT, .group = FIO_OPT_G_INVALID, }, { .name = "percentile_list", .lname = "Completion latency percentile list", .type = FIO_OPT_FLOAT_LIST, .off1 = td_var_offset(percentile_list), .off2 = td_var_offset(percentile_precision), .help = "Specify a custom list of percentiles to report", .def = "1:5:10:20:30:40:50:60:70:80:90:95:99:99.5:99.9:99.95:99.99", .maxlen = FIO_IO_U_LIST_MAX_LEN, .minfp = 0.0, .maxfp = 100.0, .category = FIO_OPT_C_STAT, .group = FIO_OPT_G_INVALID, }, #ifdef FIO_HAVE_DISK_UTIL { .name = "disk_util", .lname = "Disk utilization", .type = FIO_OPT_BOOL, .off1 = td_var_offset(do_disk_util), .help = "Log disk utilization statistics", .def = "1", .category = FIO_OPT_C_STAT, .group = FIO_OPT_G_INVALID, }, #endif { .name = "gtod_reduce", .lname = "Reduce gettimeofday() calls", .type = FIO_OPT_BOOL, .help = "Greatly reduce number of gettimeofday() calls", .cb = str_gtod_reduce_cb, .def = "0", .hide_on_set = 1, .category = FIO_OPT_C_STAT, .group = FIO_OPT_G_INVALID, }, { .name = "disable_lat", .lname = "Disable all latency stats", .type = FIO_OPT_BOOL, .off1 = td_var_offset(disable_lat), .help = "Disable latency numbers", .parent = "gtod_reduce", .hide = 1, .def = "0", .category = FIO_OPT_C_STAT, .group = FIO_OPT_G_INVALID, }, { .name = "disable_clat", .lname = "Disable completion latency stats", .type = FIO_OPT_BOOL, .off1 = td_var_offset(disable_clat), .help = "Disable completion latency numbers", .parent = "gtod_reduce", .hide = 1, .def = "0", .category = FIO_OPT_C_STAT, .group = FIO_OPT_G_INVALID, }, { .name = "disable_slat", .lname = "Disable submission latency stats", .type = FIO_OPT_BOOL, .off1 = td_var_offset(disable_slat), .help = "Disable submission latency numbers", .parent = "gtod_reduce", .hide = 1, .def = "0", .category = FIO_OPT_C_STAT, .group = FIO_OPT_G_INVALID, }, { .name = "disable_bw_measurement", .lname = "Disable bandwidth stats", .type = FIO_OPT_BOOL, .off1 = td_var_offset(disable_bw), .help = "Disable bandwidth logging", .parent = "gtod_reduce", .hide = 1, .def = "0", .category = FIO_OPT_C_STAT, .group = FIO_OPT_G_INVALID, }, { .name = "gtod_cpu", .lname = "Dedicated gettimeofday() CPU", .type = FIO_OPT_INT, .off1 = td_var_offset(gtod_cpu), .help = "Set up dedicated gettimeofday() thread on this CPU", .verify = gtod_cpu_verify, .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_CLOCK, }, { .name = "unified_rw_reporting", .type = FIO_OPT_BOOL, .off1 = td_var_offset(unified_rw_rep), .help = "Unify reporting across data direction", .def = "0", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_INVALID, }, { .name = "continue_on_error", .lname = "Continue on error", .type = FIO_OPT_STR, .off1 = td_var_offset(continue_on_error), .help = "Continue on non-fatal errors during IO", .def = "none", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_ERR, .posval = { { .ival = "none", .oval = ERROR_TYPE_NONE, .help = "Exit when an error is encountered", }, { .ival = "read", .oval = ERROR_TYPE_READ, .help = "Continue on read errors only", }, { .ival = "write", .oval = ERROR_TYPE_WRITE, .help = "Continue on write errors only", }, { .ival = "io", .oval = ERROR_TYPE_READ | ERROR_TYPE_WRITE, .help = "Continue on any IO errors", }, { .ival = "verify", .oval = ERROR_TYPE_VERIFY, .help = "Continue on verify errors only", }, { .ival = "all", .oval = ERROR_TYPE_ANY, .help = "Continue on all io and verify errors", }, { .ival = "0", .oval = ERROR_TYPE_NONE, .help = "Alias for 'none'", }, { .ival = "1", .oval = ERROR_TYPE_ANY, .help = "Alias for 'all'", }, }, }, { .name = "ignore_error", .type = FIO_OPT_STR, .cb = str_ignore_error_cb, .off1 = td_var_offset(ignore_error_nr), .help = "Set a specific list of errors to ignore", .parent = "rw", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_ERR, }, { .name = "error_dump", .type = FIO_OPT_BOOL, .off1 = td_var_offset(error_dump), .def = "0", .help = "Dump info on each error", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_ERR, }, { .name = "profile", .lname = "Profile", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(profile), .help = "Select a specific builtin performance test", .category = FIO_OPT_C_PROFILE, .group = FIO_OPT_G_INVALID, }, { .name = "cgroup", .lname = "Cgroup", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(cgroup), .help = "Add job to cgroup of this name", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_CGROUP, }, { .name = "cgroup_nodelete", .lname = "Cgroup no-delete", .type = FIO_OPT_BOOL, .off1 = td_var_offset(cgroup_nodelete), .help = "Do not delete cgroups after job completion", .def = "0", .parent = "cgroup", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_CGROUP, }, { .name = "cgroup_weight", .lname = "Cgroup weight", .type = FIO_OPT_INT, .off1 = td_var_offset(cgroup_weight), .help = "Use given weight for cgroup", .minval = 100, .maxval = 1000, .parent = "cgroup", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_CGROUP, }, { .name = "uid", .lname = "User ID", .type = FIO_OPT_INT, .off1 = td_var_offset(uid), .help = "Run job with this user ID", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_CRED, }, { .name = "gid", .lname = "Group ID", .type = FIO_OPT_INT, .off1 = td_var_offset(gid), .help = "Run job with this group ID", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_CRED, }, { .name = "kb_base", .lname = "KB Base", .type = FIO_OPT_INT, .off1 = td_var_offset(kb_base), .prio = 1, .def = "1024", .posval = { { .ival = "1024", .oval = 1024, .help = "Use 1024 as the K base", }, { .ival = "1000", .oval = 1000, .help = "Use 1000 as the K base", }, }, .help = "How many bytes per KB for reporting (1000 or 1024)", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_INVALID, }, { .name = "unit_base", .lname = "Base unit for reporting (Bits or Bytes)", .type = FIO_OPT_INT, .off1 = td_var_offset(unit_base), .prio = 1, .posval = { { .ival = "0", .oval = 0, .help = "Auto-detect", }, { .ival = "8", .oval = 8, .help = "Normal (byte based)", }, { .ival = "1", .oval = 1, .help = "Bit based", }, }, .help = "Bit multiple of result summary data (8 for byte, 1 for bit)", .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_INVALID, }, { .name = "hugepage-size", .lname = "Hugepage size", .type = FIO_OPT_INT, .off1 = td_var_offset(hugepage_size), .help = "When using hugepages, specify size of each page", .def = __fio_stringify(FIO_HUGE_PAGE), .interval = 1024 * 1024, .category = FIO_OPT_C_GENERAL, .group = FIO_OPT_G_INVALID, }, { .name = "flow_id", .lname = "I/O flow ID", .type = FIO_OPT_INT, .off1 = td_var_offset(flow_id), .help = "The flow index ID to use", .def = "0", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IO_FLOW, }, { .name = "flow", .lname = "I/O flow weight", .type = FIO_OPT_INT, .off1 = td_var_offset(flow), .help = "Weight for flow control of this job", .parent = "flow_id", .hide = 1, .def = "0", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IO_FLOW, }, { .name = "flow_watermark", .lname = "I/O flow watermark", .type = FIO_OPT_INT, .off1 = td_var_offset(flow_watermark), .help = "High watermark for flow control. This option" " should be set to the same value for all threads" " with non-zero flow.", .parent = "flow_id", .hide = 1, .def = "1024", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IO_FLOW, }, { .name = "flow_sleep", .lname = "I/O flow sleep", .type = FIO_OPT_INT, .off1 = td_var_offset(flow_sleep), .help = "How many microseconds to sleep after being held" " back by the flow control mechanism", .parent = "flow_id", .hide = 1, .def = "0", .category = FIO_OPT_C_IO, .group = FIO_OPT_G_IO_FLOW, }, { .name = NULL, }, }; static void add_to_lopt(struct option *lopt, struct fio_option *o, const char *name, int val) { lopt->name = (char *) name; lopt->val = val; if (o->type == FIO_OPT_STR_SET) lopt->has_arg = optional_argument; else lopt->has_arg = required_argument; } static void options_to_lopts(struct fio_option *opts, struct option *long_options, int i, int option_type) { struct fio_option *o = &opts[0]; while (o->name) { add_to_lopt(&long_options[i], o, o->name, option_type); if (o->alias) { i++; add_to_lopt(&long_options[i], o, o->alias, option_type); } i++; o++; assert(i < FIO_NR_OPTIONS); } } void fio_options_set_ioengine_opts(struct option *long_options, struct thread_data *td) { unsigned int i; i = 0; while (long_options[i].name) { if (long_options[i].val == FIO_GETOPT_IOENGINE) { memset(&long_options[i], 0, sizeof(*long_options)); break; } i++; } /* * Just clear out the prior ioengine options. */ if (!td || !td->eo) return; options_to_lopts(td->io_ops->options, long_options, i, FIO_GETOPT_IOENGINE); } void fio_options_dup_and_init(struct option *long_options) { unsigned int i; options_init(fio_options); i = 0; while (long_options[i].name) i++; options_to_lopts(fio_options, long_options, i, FIO_GETOPT_JOB); } struct fio_keyword { const char *word; const char *desc; char *replace; }; static struct fio_keyword fio_keywords[] = { { .word = "$pagesize", .desc = "Page size in the system", }, { .word = "$mb_memory", .desc = "Megabytes of memory online", }, { .word = "$ncpus", .desc = "Number of CPUs online in the system", }, { .word = NULL, }, }; void fio_keywords_init(void) { unsigned long long mb_memory; char buf[128]; long l; sprintf(buf, "%lu", (unsigned long) page_size); fio_keywords[0].replace = strdup(buf); mb_memory = os_phys_mem() / (1024 * 1024); sprintf(buf, "%llu", mb_memory); fio_keywords[1].replace = strdup(buf); l = cpus_online(); sprintf(buf, "%lu", l); fio_keywords[2].replace = strdup(buf); } #define BC_APP "bc" static char *bc_calc(char *str) { char buf[128], *tmp; FILE *f; int ret; /* * No math, just return string */ if ((!strchr(str, '+') && !strchr(str, '-') && !strchr(str, '*') && !strchr(str, '/')) || strchr(str, '\'')) return str; /* * Split option from value, we only need to calculate the value */ tmp = strchr(str, '='); if (!tmp) return str; tmp++; /* * Prevent buffer overflows; such a case isn't reasonable anyway */ if (strlen(str) >= 128 || strlen(tmp) > 100) return str; sprintf(buf, "which %s > /dev/null", BC_APP); if (system(buf)) { log_err("fio: bc is needed for performing math\n"); return NULL; } sprintf(buf, "echo '%s' | %s", tmp, BC_APP); f = popen(buf, "r"); if (!f) return NULL; ret = fread(&buf[tmp - str], 1, 128 - (tmp - str), f); if (ret <= 0) { pclose(f); return NULL; } pclose(f); buf[(tmp - str) + ret - 1] = '\0'; memcpy(buf, str, tmp - str); free(str); return strdup(buf); } /* * Return a copy of the input string with substrings of the form ${VARNAME} * substituted with the value of the environment variable VARNAME. The * substitution always occurs, even if VARNAME is empty or the corresponding * environment variable undefined. */ static char *option_dup_subs(const char *opt) { char out[OPT_LEN_MAX+1]; char in[OPT_LEN_MAX+1]; char *outptr = out; char *inptr = in; char *ch1, *ch2, *env; ssize_t nchr = OPT_LEN_MAX; size_t envlen; if (strlen(opt) + 1 > OPT_LEN_MAX) { log_err("OPT_LEN_MAX (%d) is too small\n", OPT_LEN_MAX); return NULL; } in[OPT_LEN_MAX] = '\0'; strncpy(in, opt, OPT_LEN_MAX); while (*inptr && nchr > 0) { if (inptr[0] == '$' && inptr[1] == '{') { ch2 = strchr(inptr, '}'); if (ch2 && inptr+1 < ch2) { ch1 = inptr+2; inptr = ch2+1; *ch2 = '\0'; env = getenv(ch1); if (env) { envlen = strlen(env); if (envlen <= nchr) { memcpy(outptr, env, envlen); outptr += envlen; nchr -= envlen; } } continue; } } *outptr++ = *inptr++; --nchr; } *outptr = '\0'; return strdup(out); } /* * Look for reserved variable names and replace them with real values */ static char *fio_keyword_replace(char *opt) { char *s; int i; int docalc = 0; for (i = 0; fio_keywords[i].word != NULL; i++) { struct fio_keyword *kw = &fio_keywords[i]; while ((s = strstr(opt, kw->word)) != NULL) { char *new = malloc(strlen(opt) + 1); char *o_org = opt; int olen = s - opt; int len; /* * Copy part of the string before the keyword and * sprintf() the replacement after it. */ memcpy(new, opt, olen); len = sprintf(new + olen, "%s", kw->replace); /* * If there's more in the original string, copy that * in too */ opt += strlen(kw->word) + olen; if (strlen(opt)) memcpy(new + olen + len, opt, opt - o_org - 1); /* * replace opt and free the old opt */ opt = new; free(o_org); docalc = 1; } } /* * Check for potential math and invoke bc, if possible */ if (docalc) opt = bc_calc(opt); return opt; } static char **dup_and_sub_options(char **opts, int num_opts) { int i; char **opts_copy = malloc(num_opts * sizeof(*opts)); for (i = 0; i < num_opts; i++) { opts_copy[i] = option_dup_subs(opts[i]); if (!opts_copy[i]) continue; opts_copy[i] = fio_keyword_replace(opts_copy[i]); } return opts_copy; } static void show_closest_option(const char *opt) { int best_option, best_distance; int i, distance; char *name; if (!strlen(opt)) return; name = strdup(opt); i = 0; while (name[i] != '\0' && name[i] != '=') i++; name[i] = '\0'; best_option = -1; best_distance = INT_MAX; i = 0; while (fio_options[i].name) { distance = string_distance(name, fio_options[i].name); if (distance < best_distance) { best_distance = distance; best_option = i; } i++; } if (best_option != -1) log_err("Did you mean %s?\n", fio_options[best_option].name); free(name); } int fio_options_parse(struct thread_data *td, char **opts, int num_opts, int dump_cmdline) { int i, ret, unknown; char **opts_copy; sort_options(opts, fio_options, num_opts); opts_copy = dup_and_sub_options(opts, num_opts); for (ret = 0, i = 0, unknown = 0; i < num_opts; i++) { struct fio_option *o; int newret = parse_option(opts_copy[i], opts[i], fio_options, &o, td, dump_cmdline); if (!newret && o) fio_option_mark_set(&td->o, o); if (opts_copy[i]) { if (newret && !o) { unknown++; continue; } free(opts_copy[i]); opts_copy[i] = NULL; } ret |= newret; } if (unknown) { ret |= ioengine_load(td); if (td->eo) { sort_options(opts_copy, td->io_ops->options, num_opts); opts = opts_copy; } for (i = 0; i < num_opts; i++) { struct fio_option *o = NULL; int newret = 1; if (!opts_copy[i]) continue; if (td->eo) newret = parse_option(opts_copy[i], opts[i], td->io_ops->options, &o, td->eo, dump_cmdline); ret |= newret; if (!o) { log_err("Bad option <%s>\n", opts[i]); show_closest_option(opts[i]); } free(opts_copy[i]); opts_copy[i] = NULL; } } free(opts_copy); return ret; } int fio_cmd_option_parse(struct thread_data *td, const char *opt, char *val) { int ret; ret = parse_cmd_option(opt, val, fio_options, td); if (!ret) { struct fio_option *o; o = find_option(fio_options, opt); if (o) fio_option_mark_set(&td->o, o); } return ret; } int fio_cmd_ioengine_option_parse(struct thread_data *td, const char *opt, char *val) { return parse_cmd_option(opt, val, td->io_ops->options, td->eo); } void fio_fill_default_options(struct thread_data *td) { td->o.magic = OPT_MAGIC; fill_default_options(td, fio_options); } int fio_show_option_help(const char *opt) { return show_cmd_help(fio_options, opt); } void options_mem_dupe(void *data, struct fio_option *options) { struct fio_option *o; char **ptr; for (o = &options[0]; o->name; o++) { if (o->type != FIO_OPT_STR_STORE) continue; ptr = td_var(data, o, o->off1); if (*ptr) *ptr = strdup(*ptr); } } /* * dupe FIO_OPT_STR_STORE options */ void fio_options_mem_dupe(struct thread_data *td) { options_mem_dupe(&td->o, fio_options); if (td->eo && td->io_ops) { void *oldeo = td->eo; td->eo = malloc(td->io_ops->option_struct_size); memcpy(td->eo, oldeo, td->io_ops->option_struct_size); options_mem_dupe(td->eo, td->io_ops->options); } } unsigned int fio_get_kb_base(void *data) { struct thread_options *o = data; unsigned int kb_base = 0; /* * This is a hack... For private options, *data is not holding * a pointer to the thread_options, but to private data. This means * we can't safely dereference it, but magic is first so mem wise * it is valid. But this also means that if the job first sets * kb_base and expects that to be honored by private options, * it will be disappointed. We will return the global default * for this. */ if (o && o->magic == OPT_MAGIC) kb_base = o->kb_base; if (!kb_base) kb_base = 1024; return kb_base; } int add_option(struct fio_option *o) { struct fio_option *__o; int opt_index = 0; __o = fio_options; while (__o->name) { opt_index++; __o++; } if (opt_index + 1 == FIO_MAX_OPTS) { log_err("fio: FIO_MAX_OPTS is too small\n"); return 1; } memcpy(&fio_options[opt_index], o, sizeof(*o)); fio_options[opt_index + 1].name = NULL; return 0; } void invalidate_profile_options(const char *prof_name) { struct fio_option *o; o = fio_options; while (o->name) { if (o->prof_name && !strcmp(o->prof_name, prof_name)) { o->type = FIO_OPT_INVALID; o->prof_name = NULL; } o++; } } void add_opt_posval(const char *optname, const char *ival, const char *help) { struct fio_option *o; unsigned int i; o = find_option(fio_options, optname); if (!o) return; for (i = 0; i < PARSE_MAX_VP; i++) { if (o->posval[i].ival) continue; o->posval[i].ival = ival; o->posval[i].help = help; break; } } void del_opt_posval(const char *optname, const char *ival) { struct fio_option *o; unsigned int i; o = find_option(fio_options, optname); if (!o) return; for (i = 0; i < PARSE_MAX_VP; i++) { if (!o->posval[i].ival) continue; if (strcmp(o->posval[i].ival, ival)) continue; o->posval[i].ival = NULL; o->posval[i].help = NULL; } } void fio_options_free(struct thread_data *td) { options_free(fio_options, td); if (td->eo && td->io_ops && td->io_ops->options) { options_free(td->io_ops->options, td->eo); free(td->eo); td->eo = NULL; } } struct fio_option *fio_option_find(const char *name) { return find_option(fio_options, name); } static struct fio_option *find_next_opt(struct thread_options *o, struct fio_option *from, unsigned int off1) { struct fio_option *opt; if (!from) from = &fio_options[0]; else from++; opt = NULL; do { if (off1 == from->off1) { opt = from; break; } from++; } while (from->name); return opt; } static int opt_is_set(struct thread_options *o, struct fio_option *opt) { unsigned int opt_off, index, offset; opt_off = opt - &fio_options[0]; index = opt_off / (8 * sizeof(uint64_t)); offset = opt_off & ((8 * sizeof(uint64_t)) - 1); return (o->set_options[index] & (1UL << offset)) != 0; } int __fio_option_is_set(struct thread_options *o, unsigned int off1) { struct fio_option *opt, *next; next = NULL; while ((opt = find_next_opt(o, next, off1)) != NULL) { if (opt_is_set(o, opt)) return 1; next = opt; } return 0; } void fio_option_mark_set(struct thread_options *o, struct fio_option *opt) { unsigned int opt_off, index, offset; opt_off = opt - &fio_options[0]; index = opt_off / (8 * sizeof(uint64_t)); offset = opt_off & ((8 * sizeof(uint64_t)) - 1); o->set_options[index] |= 1UL << offset; }