// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2011 Jitse Niesen <jitse@maths.leeds.ac.uk> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <unsupported/Eigen/MatrixFunctions> template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> struct generateTestMatrix; // for real matrices, make sure none of the eigenvalues are negative template <typename MatrixType> struct generateTestMatrix<MatrixType,0> { static void run(MatrixType& result, typename MatrixType::Index size) { MatrixType mat = MatrixType::Random(size, size); EigenSolver<MatrixType> es(mat); typename EigenSolver<MatrixType>::EigenvalueType eivals = es.eigenvalues(); for (typename MatrixType::Index i = 0; i < size; ++i) { if (eivals(i).imag() == 0 && eivals(i).real() < 0) eivals(i) = -eivals(i); } result = (es.eigenvectors() * eivals.asDiagonal() * es.eigenvectors().inverse()).real(); } }; // for complex matrices, any matrix is fine template <typename MatrixType> struct generateTestMatrix<MatrixType,1> { static void run(MatrixType& result, typename MatrixType::Index size) { result = MatrixType::Random(size, size); } }; template <typename Derived, typename OtherDerived> double relerr(const MatrixBase<Derived>& A, const MatrixBase<OtherDerived>& B) { return std::sqrt((A - B).cwiseAbs2().sum() / (std::min)(A.cwiseAbs2().sum(), B.cwiseAbs2().sum())); }