// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2011 Kolja Brix <brix@igpm.rwth-aachen.de> // Copyright (C) 2011 Andreas Platen <andiplaten@gmx.de> // Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "sparse.h" #include <Eigen/SparseExtra> #include <Eigen/KroneckerProduct> template<typename MatrixType> void check_dimension(const MatrixType& ab, const int rows, const int cols) { VERIFY_IS_EQUAL(ab.rows(), rows); VERIFY_IS_EQUAL(ab.cols(), cols); } template<typename MatrixType> void check_kronecker_product(const MatrixType& ab) { VERIFY_IS_EQUAL(ab.rows(), 6); VERIFY_IS_EQUAL(ab.cols(), 6); VERIFY_IS_EQUAL(ab.nonZeros(), 36); VERIFY_IS_APPROX(ab.coeff(0,0), -0.4017367630386106); VERIFY_IS_APPROX(ab.coeff(0,1), 0.1056863433932735); VERIFY_IS_APPROX(ab.coeff(0,2), -0.7255206194554212); VERIFY_IS_APPROX(ab.coeff(0,3), 0.1908653336744706); VERIFY_IS_APPROX(ab.coeff(0,4), 0.350864567234111); VERIFY_IS_APPROX(ab.coeff(0,5), -0.0923032108308013); VERIFY_IS_APPROX(ab.coeff(1,0), 0.415417514804677); VERIFY_IS_APPROX(ab.coeff(1,1), -0.2369227701722048); VERIFY_IS_APPROX(ab.coeff(1,2), 0.7502275131458511); VERIFY_IS_APPROX(ab.coeff(1,3), -0.4278731019742696); VERIFY_IS_APPROX(ab.coeff(1,4), -0.3628129162264507); VERIFY_IS_APPROX(ab.coeff(1,5), 0.2069210808481275); VERIFY_IS_APPROX(ab.coeff(2,0), 0.05465890160863986); VERIFY_IS_APPROX(ab.coeff(2,1), -0.2634092511419858); VERIFY_IS_APPROX(ab.coeff(2,2), 0.09871180285793758); VERIFY_IS_APPROX(ab.coeff(2,3), -0.4757066334017702); VERIFY_IS_APPROX(ab.coeff(2,4), -0.04773740823058334); VERIFY_IS_APPROX(ab.coeff(2,5), 0.2300535609645254); VERIFY_IS_APPROX(ab.coeff(3,0), -0.8172945853260133); VERIFY_IS_APPROX(ab.coeff(3,1), 0.2150086428359221); VERIFY_IS_APPROX(ab.coeff(3,2), 0.5825113847292743); VERIFY_IS_APPROX(ab.coeff(3,3), -0.1532433770097174); VERIFY_IS_APPROX(ab.coeff(3,4), -0.329383387282399); VERIFY_IS_APPROX(ab.coeff(3,5), 0.08665207912033064); VERIFY_IS_APPROX(ab.coeff(4,0), 0.8451267514863225); VERIFY_IS_APPROX(ab.coeff(4,1), -0.481996458918977); VERIFY_IS_APPROX(ab.coeff(4,2), -0.6023482390791535); VERIFY_IS_APPROX(ab.coeff(4,3), 0.3435339347164565); VERIFY_IS_APPROX(ab.coeff(4,4), 0.3406002157428891); VERIFY_IS_APPROX(ab.coeff(4,5), -0.1942526344200915); VERIFY_IS_APPROX(ab.coeff(5,0), 0.1111982482925399); VERIFY_IS_APPROX(ab.coeff(5,1), -0.5358806424754169); VERIFY_IS_APPROX(ab.coeff(5,2), -0.07925446559335647); VERIFY_IS_APPROX(ab.coeff(5,3), 0.3819388757769038); VERIFY_IS_APPROX(ab.coeff(5,4), 0.04481475387219876); VERIFY_IS_APPROX(ab.coeff(5,5), -0.2159688616158057); } template<typename MatrixType> void check_sparse_kronecker_product(const MatrixType& ab) { VERIFY_IS_EQUAL(ab.rows(), 12); VERIFY_IS_EQUAL(ab.cols(), 10); VERIFY_IS_EQUAL(ab.nonZeros(), 3*2); VERIFY_IS_APPROX(ab.coeff(3,0), -0.04); VERIFY_IS_APPROX(ab.coeff(5,1), 0.05); VERIFY_IS_APPROX(ab.coeff(0,6), -0.08); VERIFY_IS_APPROX(ab.coeff(2,7), 0.10); VERIFY_IS_APPROX(ab.coeff(6,8), 0.12); VERIFY_IS_APPROX(ab.coeff(8,9), -0.15); } void test_kronecker_product() { // DM = dense matrix; SM = sparse matrix Matrix<double, 2, 3> DM_a; SparseMatrix<double> SM_a(2,3); SM_a.insert(0,0) = DM_a.coeffRef(0,0) = -0.4461540300782201; SM_a.insert(0,1) = DM_a.coeffRef(0,1) = -0.8057364375283049; SM_a.insert(0,2) = DM_a.coeffRef(0,2) = 0.3896572459516341; SM_a.insert(1,0) = DM_a.coeffRef(1,0) = -0.9076572187376921; SM_a.insert(1,1) = DM_a.coeffRef(1,1) = 0.6469156566545853; SM_a.insert(1,2) = DM_a.coeffRef(1,2) = -0.3658010398782789; MatrixXd DM_b(3,2); SparseMatrix<double> SM_b(3,2); SM_b.insert(0,0) = DM_b.coeffRef(0,0) = 0.9004440976767099; SM_b.insert(0,1) = DM_b.coeffRef(0,1) = -0.2368830858139832; SM_b.insert(1,0) = DM_b.coeffRef(1,0) = -0.9311078389941825; SM_b.insert(1,1) = DM_b.coeffRef(1,1) = 0.5310335762980047; SM_b.insert(2,0) = DM_b.coeffRef(2,0) = -0.1225112806872035; SM_b.insert(2,1) = DM_b.coeffRef(2,1) = 0.5903998022741264; SparseMatrix<double,RowMajor> SM_row_a(SM_a), SM_row_b(SM_b); // test kroneckerProduct(DM_block,DM,DM_fixedSize) Matrix<double, 6, 6> DM_fix_ab = kroneckerProduct(DM_a.topLeftCorner<2,3>(),DM_b); CALL_SUBTEST(check_kronecker_product(DM_fix_ab)); for(int i=0;i<DM_fix_ab.rows();++i) for(int j=0;j<DM_fix_ab.cols();++j) VERIFY_IS_APPROX(kroneckerProduct(DM_a,DM_b).coeff(i,j), DM_fix_ab(i,j)); // test kroneckerProduct(DM,DM,DM_block) MatrixXd DM_block_ab(10,15); DM_block_ab.block<6,6>(2,5) = kroneckerProduct(DM_a,DM_b); CALL_SUBTEST(check_kronecker_product(DM_block_ab.block<6,6>(2,5))); // test kroneckerProduct(DM,DM,DM) MatrixXd DM_ab = kroneckerProduct(DM_a,DM_b); CALL_SUBTEST(check_kronecker_product(DM_ab)); // test kroneckerProduct(SM,DM,SM) SparseMatrix<double> SM_ab = kroneckerProduct(SM_a,DM_b); CALL_SUBTEST(check_kronecker_product(SM_ab)); SparseMatrix<double,RowMajor> SM_ab2 = kroneckerProduct(SM_a,DM_b); CALL_SUBTEST(check_kronecker_product(SM_ab2)); // test kroneckerProduct(DM,SM,SM) SM_ab.setZero(); SM_ab.insert(0,0)=37.0; SM_ab = kroneckerProduct(DM_a,SM_b); CALL_SUBTEST(check_kronecker_product(SM_ab)); SM_ab2.setZero(); SM_ab2.insert(0,0)=37.0; SM_ab2 = kroneckerProduct(DM_a,SM_b); CALL_SUBTEST(check_kronecker_product(SM_ab2)); // test kroneckerProduct(SM,SM,SM) SM_ab.resize(2,33); SM_ab.insert(0,0)=37.0; SM_ab = kroneckerProduct(SM_a,SM_b); CALL_SUBTEST(check_kronecker_product(SM_ab)); SM_ab2.resize(5,11); SM_ab2.insert(0,0)=37.0; SM_ab2 = kroneckerProduct(SM_a,SM_b); CALL_SUBTEST(check_kronecker_product(SM_ab2)); // test kroneckerProduct(SM,SM,SM) with sparse pattern SM_a.resize(4,5); SM_b.resize(3,2); SM_a.resizeNonZeros(0); SM_b.resizeNonZeros(0); SM_a.insert(1,0) = -0.1; SM_a.insert(0,3) = -0.2; SM_a.insert(2,4) = 0.3; SM_a.finalize(); SM_b.insert(0,0) = 0.4; SM_b.insert(2,1) = -0.5; SM_b.finalize(); SM_ab.resize(1,1); SM_ab.insert(0,0)=37.0; SM_ab = kroneckerProduct(SM_a,SM_b); CALL_SUBTEST(check_sparse_kronecker_product(SM_ab)); // test dimension of result of kroneckerProduct(DM,DM,DM) MatrixXd DM_a2(2,1); MatrixXd DM_b2(5,4); MatrixXd DM_ab2 = kroneckerProduct(DM_a2,DM_b2); CALL_SUBTEST(check_dimension(DM_ab2,2*5,1*4)); DM_a2.resize(10,9); DM_b2.resize(4,8); DM_ab2 = kroneckerProduct(DM_a2,DM_b2); CALL_SUBTEST(check_dimension(DM_ab2,10*4,9*8)); }