// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> // // Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com> // Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr> // Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr> // Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SVD_H #define EIGEN_SVD_H namespace Eigen { /** \ingroup SVD_Module * * * \class SVDBase * * \brief Mother class of SVD classes algorithms * * \param MatrixType the type of the matrix of which we are computing the SVD decomposition * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product * \f[ A = U S V^* \f] * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal; * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left * and right \em singular \em vectors of \a A respectively. * * Singular values are always sorted in decreasing order. * * * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving. * * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to * terminate in finite (and reasonable) time. * \sa MatrixBase::genericSvd() */ template<typename _MatrixType> class SVDBase { public: typedef _MatrixType MatrixType; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; typedef typename MatrixType::Index Index; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime), MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime), MatrixOptions = MatrixType::Options }; typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixUType; typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> MatrixVType; typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType; typedef typename internal::plain_row_type<MatrixType>::type RowType; typedef typename internal::plain_col_type<MatrixType>::type ColType; typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime, MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime> WorkMatrixType; /** \brief Method performing the decomposition of given matrix using custom options. * * \param matrix the matrix to decompose * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU, * #ComputeFullV, #ComputeThinV. * * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not * available with the (non-default) FullPivHouseholderQR preconditioner. */ SVDBase& compute(const MatrixType& matrix, unsigned int computationOptions); /** \brief Method performing the decomposition of given matrix using current options. * * \param matrix the matrix to decompose * * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int). */ //virtual SVDBase& compute(const MatrixType& matrix) = 0; SVDBase& compute(const MatrixType& matrix); /** \returns the \a U matrix. * * For the SVDBase decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, * the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU. * * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed. * * This method asserts that you asked for \a U to be computed. */ const MatrixUType& matrixU() const { eigen_assert(m_isInitialized && "SVD is not initialized."); eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?"); return m_matrixU; } /** \returns the \a V matrix. * * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, * the V matrix is p-by-p if you asked for #ComputeFullV, and is p-by-m if you asked for ComputeThinV. * * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed. * * This method asserts that you asked for \a V to be computed. */ const MatrixVType& matrixV() const { eigen_assert(m_isInitialized && "SVD is not initialized."); eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?"); return m_matrixV; } /** \returns the vector of singular values. * * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the * returned vector has size \a m. Singular values are always sorted in decreasing order. */ const SingularValuesType& singularValues() const { eigen_assert(m_isInitialized && "SVD is not initialized."); return m_singularValues; } /** \returns the number of singular values that are not exactly 0 */ Index nonzeroSingularValues() const { eigen_assert(m_isInitialized && "SVD is not initialized."); return m_nonzeroSingularValues; } /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */ inline bool computeU() const { return m_computeFullU || m_computeThinU; } /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */ inline bool computeV() const { return m_computeFullV || m_computeThinV; } inline Index rows() const { return m_rows; } inline Index cols() const { return m_cols; } protected: // return true if already allocated bool allocate(Index rows, Index cols, unsigned int computationOptions) ; MatrixUType m_matrixU; MatrixVType m_matrixV; SingularValuesType m_singularValues; bool m_isInitialized, m_isAllocated; bool m_computeFullU, m_computeThinU; bool m_computeFullV, m_computeThinV; unsigned int m_computationOptions; Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize; /** \brief Default Constructor. * * Default constructor of SVDBase */ SVDBase() : m_isInitialized(false), m_isAllocated(false), m_computationOptions(0), m_rows(-1), m_cols(-1) {} }; template<typename MatrixType> bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions) { eigen_assert(rows >= 0 && cols >= 0); if (m_isAllocated && rows == m_rows && cols == m_cols && computationOptions == m_computationOptions) { return true; } m_rows = rows; m_cols = cols; m_isInitialized = false; m_isAllocated = true; m_computationOptions = computationOptions; m_computeFullU = (computationOptions & ComputeFullU) != 0; m_computeThinU = (computationOptions & ComputeThinU) != 0; m_computeFullV = (computationOptions & ComputeFullV) != 0; m_computeThinV = (computationOptions & ComputeThinV) != 0; eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U"); eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V"); eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) && "SVDBase: thin U and V are only available when your matrix has a dynamic number of columns."); m_diagSize = (std::min)(m_rows, m_cols); m_singularValues.resize(m_diagSize); if(RowsAtCompileTime==Dynamic) m_matrixU.resize(m_rows, m_computeFullU ? m_rows : m_computeThinU ? m_diagSize : 0); if(ColsAtCompileTime==Dynamic) m_matrixV.resize(m_cols, m_computeFullV ? m_cols : m_computeThinV ? m_diagSize : 0); return false; } }// end namespace #endif // EIGEN_SVD_H