// -*- coding: utf-8 // vim: set fileencoding=utf-8 // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_LEVENBERGMARQUARDT__H #define EIGEN_LEVENBERGMARQUARDT__H namespace Eigen { namespace LevenbergMarquardtSpace { enum Status { NotStarted = -2, Running = -1, ImproperInputParameters = 0, RelativeReductionTooSmall = 1, RelativeErrorTooSmall = 2, RelativeErrorAndReductionTooSmall = 3, CosinusTooSmall = 4, TooManyFunctionEvaluation = 5, FtolTooSmall = 6, XtolTooSmall = 7, GtolTooSmall = 8, UserAsked = 9 }; } /** * \ingroup NonLinearOptimization_Module * \brief Performs non linear optimization over a non-linear function, * using a variant of the Levenberg Marquardt algorithm. * * Check wikipedia for more information. * http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm */ template<typename FunctorType, typename Scalar=double> class LevenbergMarquardt { public: LevenbergMarquardt(FunctorType &_functor) : functor(_functor) { nfev = njev = iter = 0; fnorm = gnorm = 0.; useExternalScaling=false; } typedef DenseIndex Index; struct Parameters { Parameters() : factor(Scalar(100.)) , maxfev(400) , ftol(std::sqrt(NumTraits<Scalar>::epsilon())) , xtol(std::sqrt(NumTraits<Scalar>::epsilon())) , gtol(Scalar(0.)) , epsfcn(Scalar(0.)) {} Scalar factor; Index maxfev; // maximum number of function evaluation Scalar ftol; Scalar xtol; Scalar gtol; Scalar epsfcn; }; typedef Matrix< Scalar, Dynamic, 1 > FVectorType; typedef Matrix< Scalar, Dynamic, Dynamic > JacobianType; LevenbergMarquardtSpace::Status lmder1( FVectorType &x, const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon()) ); LevenbergMarquardtSpace::Status minimize(FVectorType &x); LevenbergMarquardtSpace::Status minimizeInit(FVectorType &x); LevenbergMarquardtSpace::Status minimizeOneStep(FVectorType &x); static LevenbergMarquardtSpace::Status lmdif1( FunctorType &functor, FVectorType &x, Index *nfev, const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon()) ); LevenbergMarquardtSpace::Status lmstr1( FVectorType &x, const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon()) ); LevenbergMarquardtSpace::Status minimizeOptimumStorage(FVectorType &x); LevenbergMarquardtSpace::Status minimizeOptimumStorageInit(FVectorType &x); LevenbergMarquardtSpace::Status minimizeOptimumStorageOneStep(FVectorType &x); void resetParameters(void) { parameters = Parameters(); } Parameters parameters; FVectorType fvec, qtf, diag; JacobianType fjac; PermutationMatrix<Dynamic,Dynamic> permutation; Index nfev; Index njev; Index iter; Scalar fnorm, gnorm; bool useExternalScaling; Scalar lm_param(void) { return par; } private: FunctorType &functor; Index n; Index m; FVectorType wa1, wa2, wa3, wa4; Scalar par, sum; Scalar temp, temp1, temp2; Scalar delta; Scalar ratio; Scalar pnorm, xnorm, fnorm1, actred, dirder, prered; LevenbergMarquardt& operator=(const LevenbergMarquardt&); }; template<typename FunctorType, typename Scalar> LevenbergMarquardtSpace::Status LevenbergMarquardt<FunctorType,Scalar>::lmder1( FVectorType &x, const Scalar tol ) { n = x.size(); m = functor.values(); /* check the input parameters for errors. */ if (n <= 0 || m < n || tol < 0.) return LevenbergMarquardtSpace::ImproperInputParameters; resetParameters(); parameters.ftol = tol; parameters.xtol = tol; parameters.maxfev = 100*(n+1); return minimize(x); } template<typename FunctorType, typename Scalar> LevenbergMarquardtSpace::Status LevenbergMarquardt<FunctorType,Scalar>::minimize(FVectorType &x) { LevenbergMarquardtSpace::Status status = minimizeInit(x); if (status==LevenbergMarquardtSpace::ImproperInputParameters) return status; do { status = minimizeOneStep(x); } while (status==LevenbergMarquardtSpace::Running); return status; } template<typename FunctorType, typename Scalar> LevenbergMarquardtSpace::Status LevenbergMarquardt<FunctorType,Scalar>::minimizeInit(FVectorType &x) { n = x.size(); m = functor.values(); wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(m); fvec.resize(m); fjac.resize(m, n); if (!useExternalScaling) diag.resize(n); eigen_assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'"); qtf.resize(n); /* Function Body */ nfev = 0; njev = 0; /* check the input parameters for errors. */ if (n <= 0 || m < n || parameters.ftol < 0. || parameters.xtol < 0. || parameters.gtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0.) return LevenbergMarquardtSpace::ImproperInputParameters; if (useExternalScaling) for (Index j = 0; j < n; ++j) if (diag[j] <= 0.) return LevenbergMarquardtSpace::ImproperInputParameters; /* evaluate the function at the starting point */ /* and calculate its norm. */ nfev = 1; if ( functor(x, fvec) < 0) return LevenbergMarquardtSpace::UserAsked; fnorm = fvec.stableNorm(); /* initialize levenberg-marquardt parameter and iteration counter. */ par = 0.; iter = 1; return LevenbergMarquardtSpace::NotStarted; } template<typename FunctorType, typename Scalar> LevenbergMarquardtSpace::Status LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(FVectorType &x) { using std::abs; using std::sqrt; eigen_assert(x.size()==n); // check the caller is not cheating us /* calculate the jacobian matrix. */ Index df_ret = functor.df(x, fjac); if (df_ret<0) return LevenbergMarquardtSpace::UserAsked; if (df_ret>0) // numerical diff, we evaluated the function df_ret times nfev += df_ret; else njev++; /* compute the qr factorization of the jacobian. */ wa2 = fjac.colwise().blueNorm(); ColPivHouseholderQR<JacobianType> qrfac(fjac); fjac = qrfac.matrixQR(); permutation = qrfac.colsPermutation(); /* on the first iteration and if external scaling is not used, scale according */ /* to the norms of the columns of the initial jacobian. */ if (iter == 1) { if (!useExternalScaling) for (Index j = 0; j < n; ++j) diag[j] = (wa2[j]==0.)? 1. : wa2[j]; /* on the first iteration, calculate the norm of the scaled x */ /* and initialize the step bound delta. */ xnorm = diag.cwiseProduct(x).stableNorm(); delta = parameters.factor * xnorm; if (delta == 0.) delta = parameters.factor; } /* form (q transpose)*fvec and store the first n components in */ /* qtf. */ wa4 = fvec; wa4.applyOnTheLeft(qrfac.householderQ().adjoint()); qtf = wa4.head(n); /* compute the norm of the scaled gradient. */ gnorm = 0.; if (fnorm != 0.) for (Index j = 0; j < n; ++j) if (wa2[permutation.indices()[j]] != 0.) gnorm = (std::max)(gnorm, abs( fjac.col(j).head(j+1).dot(qtf.head(j+1)/fnorm) / wa2[permutation.indices()[j]])); /* test for convergence of the gradient norm. */ if (gnorm <= parameters.gtol) return LevenbergMarquardtSpace::CosinusTooSmall; /* rescale if necessary. */ if (!useExternalScaling) diag = diag.cwiseMax(wa2); do { /* determine the levenberg-marquardt parameter. */ internal::lmpar2<Scalar>(qrfac, diag, qtf, delta, par, wa1); /* store the direction p and x + p. calculate the norm of p. */ wa1 = -wa1; wa2 = x + wa1; pnorm = diag.cwiseProduct(wa1).stableNorm(); /* on the first iteration, adjust the initial step bound. */ if (iter == 1) delta = (std::min)(delta,pnorm); /* evaluate the function at x + p and calculate its norm. */ if ( functor(wa2, wa4) < 0) return LevenbergMarquardtSpace::UserAsked; ++nfev; fnorm1 = wa4.stableNorm(); /* compute the scaled actual reduction. */ actred = -1.; if (Scalar(.1) * fnorm1 < fnorm) actred = 1. - numext::abs2(fnorm1 / fnorm); /* compute the scaled predicted reduction and */ /* the scaled directional derivative. */ wa3 = fjac.template triangularView<Upper>() * (qrfac.colsPermutation().inverse() *wa1); temp1 = numext::abs2(wa3.stableNorm() / fnorm); temp2 = numext::abs2(sqrt(par) * pnorm / fnorm); prered = temp1 + temp2 / Scalar(.5); dirder = -(temp1 + temp2); /* compute the ratio of the actual to the predicted */ /* reduction. */ ratio = 0.; if (prered != 0.) ratio = actred / prered; /* update the step bound. */ if (ratio <= Scalar(.25)) { if (actred >= 0.) temp = Scalar(.5); if (actred < 0.) temp = Scalar(.5) * dirder / (dirder + Scalar(.5) * actred); if (Scalar(.1) * fnorm1 >= fnorm || temp < Scalar(.1)) temp = Scalar(.1); /* Computing MIN */ delta = temp * (std::min)(delta, pnorm / Scalar(.1)); par /= temp; } else if (!(par != 0. && ratio < Scalar(.75))) { delta = pnorm / Scalar(.5); par = Scalar(.5) * par; } /* test for successful iteration. */ if (ratio >= Scalar(1e-4)) { /* successful iteration. update x, fvec, and their norms. */ x = wa2; wa2 = diag.cwiseProduct(x); fvec = wa4; xnorm = wa2.stableNorm(); fnorm = fnorm1; ++iter; } /* tests for convergence. */ if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1. && delta <= parameters.xtol * xnorm) return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall; if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1.) return LevenbergMarquardtSpace::RelativeReductionTooSmall; if (delta <= parameters.xtol * xnorm) return LevenbergMarquardtSpace::RelativeErrorTooSmall; /* tests for termination and stringent tolerances. */ if (nfev >= parameters.maxfev) return LevenbergMarquardtSpace::TooManyFunctionEvaluation; if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.) return LevenbergMarquardtSpace::FtolTooSmall; if (delta <= NumTraits<Scalar>::epsilon() * xnorm) return LevenbergMarquardtSpace::XtolTooSmall; if (gnorm <= NumTraits<Scalar>::epsilon()) return LevenbergMarquardtSpace::GtolTooSmall; } while (ratio < Scalar(1e-4)); return LevenbergMarquardtSpace::Running; } template<typename FunctorType, typename Scalar> LevenbergMarquardtSpace::Status LevenbergMarquardt<FunctorType,Scalar>::lmstr1( FVectorType &x, const Scalar tol ) { n = x.size(); m = functor.values(); /* check the input parameters for errors. */ if (n <= 0 || m < n || tol < 0.) return LevenbergMarquardtSpace::ImproperInputParameters; resetParameters(); parameters.ftol = tol; parameters.xtol = tol; parameters.maxfev = 100*(n+1); return minimizeOptimumStorage(x); } template<typename FunctorType, typename Scalar> LevenbergMarquardtSpace::Status LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageInit(FVectorType &x) { n = x.size(); m = functor.values(); wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(m); fvec.resize(m); // Only R is stored in fjac. Q is only used to compute 'qtf', which is // Q.transpose()*rhs. qtf will be updated using givens rotation, // instead of storing them in Q. // The purpose it to only use a nxn matrix, instead of mxn here, so // that we can handle cases where m>>n : fjac.resize(n, n); if (!useExternalScaling) diag.resize(n); eigen_assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'"); qtf.resize(n); /* Function Body */ nfev = 0; njev = 0; /* check the input parameters for errors. */ if (n <= 0 || m < n || parameters.ftol < 0. || parameters.xtol < 0. || parameters.gtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0.) return LevenbergMarquardtSpace::ImproperInputParameters; if (useExternalScaling) for (Index j = 0; j < n; ++j) if (diag[j] <= 0.) return LevenbergMarquardtSpace::ImproperInputParameters; /* evaluate the function at the starting point */ /* and calculate its norm. */ nfev = 1; if ( functor(x, fvec) < 0) return LevenbergMarquardtSpace::UserAsked; fnorm = fvec.stableNorm(); /* initialize levenberg-marquardt parameter and iteration counter. */ par = 0.; iter = 1; return LevenbergMarquardtSpace::NotStarted; } template<typename FunctorType, typename Scalar> LevenbergMarquardtSpace::Status LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(FVectorType &x) { using std::abs; using std::sqrt; eigen_assert(x.size()==n); // check the caller is not cheating us Index i, j; bool sing; /* compute the qr factorization of the jacobian matrix */ /* calculated one row at a time, while simultaneously */ /* forming (q transpose)*fvec and storing the first */ /* n components in qtf. */ qtf.fill(0.); fjac.fill(0.); Index rownb = 2; for (i = 0; i < m; ++i) { if (functor.df(x, wa3, rownb) < 0) return LevenbergMarquardtSpace::UserAsked; internal::rwupdt<Scalar>(fjac, wa3, qtf, fvec[i]); ++rownb; } ++njev; /* if the jacobian is rank deficient, call qrfac to */ /* reorder its columns and update the components of qtf. */ sing = false; for (j = 0; j < n; ++j) { if (fjac(j,j) == 0.) sing = true; wa2[j] = fjac.col(j).head(j).stableNorm(); } permutation.setIdentity(n); if (sing) { wa2 = fjac.colwise().blueNorm(); // TODO We have no unit test covering this code path, do not modify // until it is carefully tested ColPivHouseholderQR<JacobianType> qrfac(fjac); fjac = qrfac.matrixQR(); wa1 = fjac.diagonal(); fjac.diagonal() = qrfac.hCoeffs(); permutation = qrfac.colsPermutation(); // TODO : avoid this: for(Index ii=0; ii< fjac.cols(); ii++) fjac.col(ii).segment(ii+1, fjac.rows()-ii-1) *= fjac(ii,ii); // rescale vectors for (j = 0; j < n; ++j) { if (fjac(j,j) != 0.) { sum = 0.; for (i = j; i < n; ++i) sum += fjac(i,j) * qtf[i]; temp = -sum / fjac(j,j); for (i = j; i < n; ++i) qtf[i] += fjac(i,j) * temp; } fjac(j,j) = wa1[j]; } } /* on the first iteration and if external scaling is not used, scale according */ /* to the norms of the columns of the initial jacobian. */ if (iter == 1) { if (!useExternalScaling) for (j = 0; j < n; ++j) diag[j] = (wa2[j]==0.)? 1. : wa2[j]; /* on the first iteration, calculate the norm of the scaled x */ /* and initialize the step bound delta. */ xnorm = diag.cwiseProduct(x).stableNorm(); delta = parameters.factor * xnorm; if (delta == 0.) delta = parameters.factor; } /* compute the norm of the scaled gradient. */ gnorm = 0.; if (fnorm != 0.) for (j = 0; j < n; ++j) if (wa2[permutation.indices()[j]] != 0.) gnorm = (std::max)(gnorm, abs( fjac.col(j).head(j+1).dot(qtf.head(j+1)/fnorm) / wa2[permutation.indices()[j]])); /* test for convergence of the gradient norm. */ if (gnorm <= parameters.gtol) return LevenbergMarquardtSpace::CosinusTooSmall; /* rescale if necessary. */ if (!useExternalScaling) diag = diag.cwiseMax(wa2); do { /* determine the levenberg-marquardt parameter. */ internal::lmpar<Scalar>(fjac, permutation.indices(), diag, qtf, delta, par, wa1); /* store the direction p and x + p. calculate the norm of p. */ wa1 = -wa1; wa2 = x + wa1; pnorm = diag.cwiseProduct(wa1).stableNorm(); /* on the first iteration, adjust the initial step bound. */ if (iter == 1) delta = (std::min)(delta,pnorm); /* evaluate the function at x + p and calculate its norm. */ if ( functor(wa2, wa4) < 0) return LevenbergMarquardtSpace::UserAsked; ++nfev; fnorm1 = wa4.stableNorm(); /* compute the scaled actual reduction. */ actred = -1.; if (Scalar(.1) * fnorm1 < fnorm) actred = 1. - numext::abs2(fnorm1 / fnorm); /* compute the scaled predicted reduction and */ /* the scaled directional derivative. */ wa3 = fjac.topLeftCorner(n,n).template triangularView<Upper>() * (permutation.inverse() * wa1); temp1 = numext::abs2(wa3.stableNorm() / fnorm); temp2 = numext::abs2(sqrt(par) * pnorm / fnorm); prered = temp1 + temp2 / Scalar(.5); dirder = -(temp1 + temp2); /* compute the ratio of the actual to the predicted */ /* reduction. */ ratio = 0.; if (prered != 0.) ratio = actred / prered; /* update the step bound. */ if (ratio <= Scalar(.25)) { if (actred >= 0.) temp = Scalar(.5); if (actred < 0.) temp = Scalar(.5) * dirder / (dirder + Scalar(.5) * actred); if (Scalar(.1) * fnorm1 >= fnorm || temp < Scalar(.1)) temp = Scalar(.1); /* Computing MIN */ delta = temp * (std::min)(delta, pnorm / Scalar(.1)); par /= temp; } else if (!(par != 0. && ratio < Scalar(.75))) { delta = pnorm / Scalar(.5); par = Scalar(.5) * par; } /* test for successful iteration. */ if (ratio >= Scalar(1e-4)) { /* successful iteration. update x, fvec, and their norms. */ x = wa2; wa2 = diag.cwiseProduct(x); fvec = wa4; xnorm = wa2.stableNorm(); fnorm = fnorm1; ++iter; } /* tests for convergence. */ if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1. && delta <= parameters.xtol * xnorm) return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall; if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1.) return LevenbergMarquardtSpace::RelativeReductionTooSmall; if (delta <= parameters.xtol * xnorm) return LevenbergMarquardtSpace::RelativeErrorTooSmall; /* tests for termination and stringent tolerances. */ if (nfev >= parameters.maxfev) return LevenbergMarquardtSpace::TooManyFunctionEvaluation; if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.) return LevenbergMarquardtSpace::FtolTooSmall; if (delta <= NumTraits<Scalar>::epsilon() * xnorm) return LevenbergMarquardtSpace::XtolTooSmall; if (gnorm <= NumTraits<Scalar>::epsilon()) return LevenbergMarquardtSpace::GtolTooSmall; } while (ratio < Scalar(1e-4)); return LevenbergMarquardtSpace::Running; } template<typename FunctorType, typename Scalar> LevenbergMarquardtSpace::Status LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorage(FVectorType &x) { LevenbergMarquardtSpace::Status status = minimizeOptimumStorageInit(x); if (status==LevenbergMarquardtSpace::ImproperInputParameters) return status; do { status = minimizeOptimumStorageOneStep(x); } while (status==LevenbergMarquardtSpace::Running); return status; } template<typename FunctorType, typename Scalar> LevenbergMarquardtSpace::Status LevenbergMarquardt<FunctorType,Scalar>::lmdif1( FunctorType &functor, FVectorType &x, Index *nfev, const Scalar tol ) { Index n = x.size(); Index m = functor.values(); /* check the input parameters for errors. */ if (n <= 0 || m < n || tol < 0.) return LevenbergMarquardtSpace::ImproperInputParameters; NumericalDiff<FunctorType> numDiff(functor); // embedded LevenbergMarquardt LevenbergMarquardt<NumericalDiff<FunctorType>, Scalar > lm(numDiff); lm.parameters.ftol = tol; lm.parameters.xtol = tol; lm.parameters.maxfev = 200*(n+1); LevenbergMarquardtSpace::Status info = LevenbergMarquardtSpace::Status(lm.minimize(x)); if (nfev) * nfev = lm.nfev; return info; } } // end namespace Eigen #endif // EIGEN_LEVENBERGMARQUARDT__H //vim: ai ts=4 sts=4 et sw=4