// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Rohit Garg <rpg.314@gmail.com> // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_MOREVECTORIZATION_MATHFUNCTIONS_H #define EIGEN_MOREVECTORIZATION_MATHFUNCTIONS_H namespace Eigen { namespace internal { /** \internal \returns the arcsin of \a a (coeff-wise) */ template<typename Packet> inline static Packet pasin(Packet a) { return std::asin(a); } #ifdef EIGEN_VECTORIZE_SSE template<> EIGEN_DONT_INLINE Packet4f pasin(Packet4f x) { _EIGEN_DECLARE_CONST_Packet4f(half, 0.5); _EIGEN_DECLARE_CONST_Packet4f(minus_half, -0.5); _EIGEN_DECLARE_CONST_Packet4f(3half, 1.5); _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(sign_mask, 0x80000000); _EIGEN_DECLARE_CONST_Packet4f(pi, 3.141592654); _EIGEN_DECLARE_CONST_Packet4f(pi_over_2, 3.141592654*0.5); _EIGEN_DECLARE_CONST_Packet4f(asin1, 4.2163199048E-2); _EIGEN_DECLARE_CONST_Packet4f(asin2, 2.4181311049E-2); _EIGEN_DECLARE_CONST_Packet4f(asin3, 4.5470025998E-2); _EIGEN_DECLARE_CONST_Packet4f(asin4, 7.4953002686E-2); _EIGEN_DECLARE_CONST_Packet4f(asin5, 1.6666752422E-1); Packet4f a = pabs(x);//got the absolute value Packet4f sign_bit= _mm_and_ps(x, p4f_sign_mask);//extracted the sign bit Packet4f z1,z2;//will need them during computation //will compute the two branches for asin //so first compare with half Packet4f branch_mask= _mm_cmpgt_ps(a, p4f_half);//this is to select which branch to take //both will be taken, and finally results will be merged //the branch for values >0.5 { //the core series expansion z1=pmadd(p4f_minus_half,a,p4f_half); Packet4f x1=psqrt(z1); Packet4f s1=pmadd(p4f_asin1, z1, p4f_asin2); Packet4f s2=pmadd(s1, z1, p4f_asin3); Packet4f s3=pmadd(s2,z1, p4f_asin4); Packet4f s4=pmadd(s3,z1, p4f_asin5); Packet4f temp=pmul(s4,z1);//not really a madd but a mul by z so that the next term can be a madd z1=pmadd(temp,x1,x1); z1=padd(z1,z1); z1=psub(p4f_pi_over_2,z1); } { //the core series expansion Packet4f x2=a; z2=pmul(x2,x2); Packet4f s1=pmadd(p4f_asin1, z2, p4f_asin2); Packet4f s2=pmadd(s1, z2, p4f_asin3); Packet4f s3=pmadd(s2,z2, p4f_asin4); Packet4f s4=pmadd(s3,z2, p4f_asin5); Packet4f temp=pmul(s4,z2);//not really a madd but a mul by z so that the next term can be a madd z2=pmadd(temp,x2,x2); } /* select the correct result from the two branch evaluations */ z1 = _mm_and_ps(branch_mask, z1); z2 = _mm_andnot_ps(branch_mask, z2); Packet4f z = _mm_or_ps(z1,z2); /* update the sign */ return _mm_xor_ps(z, sign_bit); } #endif // EIGEN_VECTORIZE_SSE } // end namespace internal } // end namespace Eigen #endif // EIGEN_MOREVECTORIZATION_MATHFUNCTIONS_H