// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2011 Jitse Niesen <jitse@maths.leeds.ac.uk> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_MATRIX_FUNCTION #define EIGEN_MATRIX_FUNCTION #include "StemFunction.h" #include "MatrixFunctionAtomic.h" namespace Eigen { /** \ingroup MatrixFunctions_Module * \brief Class for computing matrix functions. * \tparam MatrixType type of the argument of the matrix function, * expected to be an instantiation of the Matrix class template. * \tparam AtomicType type for computing matrix function of atomic blocks. * \tparam IsComplex used internally to select correct specialization. * * This class implements the Schur-Parlett algorithm for computing matrix functions. The spectrum of the * matrix is divided in clustered of eigenvalues that lies close together. This class delegates the * computation of the matrix function on every block corresponding to these clusters to an object of type * \p AtomicType and uses these results to compute the matrix function of the whole matrix. The class * \p AtomicType should have a \p compute() member function for computing the matrix function of a block. * * \sa class MatrixFunctionAtomic, class MatrixLogarithmAtomic */ template <typename MatrixType, typename AtomicType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> class MatrixFunction { public: /** \brief Constructor. * * \param[in] A argument of matrix function, should be a square matrix. * \param[in] atomic class for computing matrix function of atomic blocks. * * The class stores references to \p A and \p atomic, so they should not be * changed (or destroyed) before compute() is called. */ MatrixFunction(const MatrixType& A, AtomicType& atomic); /** \brief Compute the matrix function. * * \param[out] result the function \p f applied to \p A, as * specified in the constructor. * * See MatrixBase::matrixFunction() for details on how this computation * is implemented. */ template <typename ResultType> void compute(ResultType &result); }; /** \internal \ingroup MatrixFunctions_Module * \brief Partial specialization of MatrixFunction for real matrices */ template <typename MatrixType, typename AtomicType> class MatrixFunction<MatrixType, AtomicType, 0> { private: typedef internal::traits<MatrixType> Traits; typedef typename Traits::Scalar Scalar; static const int Rows = Traits::RowsAtCompileTime; static const int Cols = Traits::ColsAtCompileTime; static const int Options = MatrixType::Options; static const int MaxRows = Traits::MaxRowsAtCompileTime; static const int MaxCols = Traits::MaxColsAtCompileTime; typedef std::complex<Scalar> ComplexScalar; typedef Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols> ComplexMatrix; public: /** \brief Constructor. * * \param[in] A argument of matrix function, should be a square matrix. * \param[in] atomic class for computing matrix function of atomic blocks. */ MatrixFunction(const MatrixType& A, AtomicType& atomic) : m_A(A), m_atomic(atomic) { } /** \brief Compute the matrix function. * * \param[out] result the function \p f applied to \p A, as * specified in the constructor. * * This function converts the real matrix \c A to a complex matrix, * uses MatrixFunction<MatrixType,1> and then converts the result back to * a real matrix. */ template <typename ResultType> void compute(ResultType& result) { ComplexMatrix CA = m_A.template cast<ComplexScalar>(); ComplexMatrix Cresult; MatrixFunction<ComplexMatrix, AtomicType> mf(CA, m_atomic); mf.compute(Cresult); result = Cresult.real(); } private: typename internal::nested<MatrixType>::type m_A; /**< \brief Reference to argument of matrix function. */ AtomicType& m_atomic; /**< \brief Class for computing matrix function of atomic blocks. */ MatrixFunction& operator=(const MatrixFunction&); }; /** \internal \ingroup MatrixFunctions_Module * \brief Partial specialization of MatrixFunction for complex matrices */ template <typename MatrixType, typename AtomicType> class MatrixFunction<MatrixType, AtomicType, 1> { private: typedef internal::traits<MatrixType> Traits; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::Index Index; static const int RowsAtCompileTime = Traits::RowsAtCompileTime; static const int ColsAtCompileTime = Traits::ColsAtCompileTime; static const int Options = MatrixType::Options; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<Scalar, Traits::RowsAtCompileTime, 1> VectorType; typedef Matrix<Index, Traits::RowsAtCompileTime, 1> IntVectorType; typedef Matrix<Index, Dynamic, 1> DynamicIntVectorType; typedef std::list<Scalar> Cluster; typedef std::list<Cluster> ListOfClusters; typedef Matrix<Scalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType; public: MatrixFunction(const MatrixType& A, AtomicType& atomic); template <typename ResultType> void compute(ResultType& result); private: void computeSchurDecomposition(); void partitionEigenvalues(); typename ListOfClusters::iterator findCluster(Scalar key); void computeClusterSize(); void computeBlockStart(); void constructPermutation(); void permuteSchur(); void swapEntriesInSchur(Index index); void computeBlockAtomic(); Block<MatrixType> block(MatrixType& A, Index i, Index j); void computeOffDiagonal(); DynMatrixType solveTriangularSylvester(const DynMatrixType& A, const DynMatrixType& B, const DynMatrixType& C); typename internal::nested<MatrixType>::type m_A; /**< \brief Reference to argument of matrix function. */ AtomicType& m_atomic; /**< \brief Class for computing matrix function of atomic blocks. */ MatrixType m_T; /**< \brief Triangular part of Schur decomposition */ MatrixType m_U; /**< \brief Unitary part of Schur decomposition */ MatrixType m_fT; /**< \brief %Matrix function applied to #m_T */ ListOfClusters m_clusters; /**< \brief Partition of eigenvalues into clusters of ei'vals "close" to each other */ DynamicIntVectorType m_eivalToCluster; /**< \brief m_eivalToCluster[i] = j means i-th ei'val is in j-th cluster */ DynamicIntVectorType m_clusterSize; /**< \brief Number of eigenvalues in each clusters */ DynamicIntVectorType m_blockStart; /**< \brief Row index at which block corresponding to i-th cluster starts */ IntVectorType m_permutation; /**< \brief Permutation which groups ei'vals in the same cluster together */ /** \brief Maximum distance allowed between eigenvalues to be considered "close". * * This is morally a \c static \c const \c Scalar, but only * integers can be static constant class members in C++. The * separation constant is set to 0.1, a value taken from the * paper by Davies and Higham. */ static const RealScalar separation() { return static_cast<RealScalar>(0.1); } MatrixFunction& operator=(const MatrixFunction&); }; /** \brief Constructor. * * \param[in] A argument of matrix function, should be a square matrix. * \param[in] atomic class for computing matrix function of atomic blocks. */ template <typename MatrixType, typename AtomicType> MatrixFunction<MatrixType,AtomicType,1>::MatrixFunction(const MatrixType& A, AtomicType& atomic) : m_A(A), m_atomic(atomic) { /* empty body */ } /** \brief Compute the matrix function. * * \param[out] result the function \p f applied to \p A, as * specified in the constructor. */ template <typename MatrixType, typename AtomicType> template <typename ResultType> void MatrixFunction<MatrixType,AtomicType,1>::compute(ResultType& result) { computeSchurDecomposition(); partitionEigenvalues(); computeClusterSize(); computeBlockStart(); constructPermutation(); permuteSchur(); computeBlockAtomic(); computeOffDiagonal(); result = m_U * (m_fT.template triangularView<Upper>() * m_U.adjoint()); } /** \brief Store the Schur decomposition of #m_A in #m_T and #m_U */ template <typename MatrixType, typename AtomicType> void MatrixFunction<MatrixType,AtomicType,1>::computeSchurDecomposition() { const ComplexSchur<MatrixType> schurOfA(m_A); m_T = schurOfA.matrixT(); m_U = schurOfA.matrixU(); } /** \brief Partition eigenvalues in clusters of ei'vals close to each other * * This function computes #m_clusters. This is a partition of the * eigenvalues of #m_T in clusters, such that * # Any eigenvalue in a certain cluster is at most separation() away * from another eigenvalue in the same cluster. * # The distance between two eigenvalues in different clusters is * more than separation(). * The implementation follows Algorithm 4.1 in the paper of Davies * and Higham. */ template <typename MatrixType, typename AtomicType> void MatrixFunction<MatrixType,AtomicType,1>::partitionEigenvalues() { using std::abs; const Index rows = m_T.rows(); VectorType diag = m_T.diagonal(); // contains eigenvalues of A for (Index i=0; i<rows; ++i) { // Find set containing diag(i), adding a new set if necessary typename ListOfClusters::iterator qi = findCluster(diag(i)); if (qi == m_clusters.end()) { Cluster l; l.push_back(diag(i)); m_clusters.push_back(l); qi = m_clusters.end(); --qi; } // Look for other element to add to the set for (Index j=i+1; j<rows; ++j) { if (abs(diag(j) - diag(i)) <= separation() && std::find(qi->begin(), qi->end(), diag(j)) == qi->end()) { typename ListOfClusters::iterator qj = findCluster(diag(j)); if (qj == m_clusters.end()) { qi->push_back(diag(j)); } else { qi->insert(qi->end(), qj->begin(), qj->end()); m_clusters.erase(qj); } } } } } /** \brief Find cluster in #m_clusters containing some value * \param[in] key Value to find * \returns Iterator to cluster containing \c key, or * \c m_clusters.end() if no cluster in m_clusters contains \c key. */ template <typename MatrixType, typename AtomicType> typename MatrixFunction<MatrixType,AtomicType,1>::ListOfClusters::iterator MatrixFunction<MatrixType,AtomicType,1>::findCluster(Scalar key) { typename Cluster::iterator j; for (typename ListOfClusters::iterator i = m_clusters.begin(); i != m_clusters.end(); ++i) { j = std::find(i->begin(), i->end(), key); if (j != i->end()) return i; } return m_clusters.end(); } /** \brief Compute #m_clusterSize and #m_eivalToCluster using #m_clusters */ template <typename MatrixType, typename AtomicType> void MatrixFunction<MatrixType,AtomicType,1>::computeClusterSize() { const Index rows = m_T.rows(); VectorType diag = m_T.diagonal(); const Index numClusters = static_cast<Index>(m_clusters.size()); m_clusterSize.setZero(numClusters); m_eivalToCluster.resize(rows); Index clusterIndex = 0; for (typename ListOfClusters::const_iterator cluster = m_clusters.begin(); cluster != m_clusters.end(); ++cluster) { for (Index i = 0; i < diag.rows(); ++i) { if (std::find(cluster->begin(), cluster->end(), diag(i)) != cluster->end()) { ++m_clusterSize[clusterIndex]; m_eivalToCluster[i] = clusterIndex; } } ++clusterIndex; } } /** \brief Compute #m_blockStart using #m_clusterSize */ template <typename MatrixType, typename AtomicType> void MatrixFunction<MatrixType,AtomicType,1>::computeBlockStart() { m_blockStart.resize(m_clusterSize.rows()); m_blockStart(0) = 0; for (Index i = 1; i < m_clusterSize.rows(); i++) { m_blockStart(i) = m_blockStart(i-1) + m_clusterSize(i-1); } } /** \brief Compute #m_permutation using #m_eivalToCluster and #m_blockStart */ template <typename MatrixType, typename AtomicType> void MatrixFunction<MatrixType,AtomicType,1>::constructPermutation() { DynamicIntVectorType indexNextEntry = m_blockStart; m_permutation.resize(m_T.rows()); for (Index i = 0; i < m_T.rows(); i++) { Index cluster = m_eivalToCluster[i]; m_permutation[i] = indexNextEntry[cluster]; ++indexNextEntry[cluster]; } } /** \brief Permute Schur decomposition in #m_U and #m_T according to #m_permutation */ template <typename MatrixType, typename AtomicType> void MatrixFunction<MatrixType,AtomicType,1>::permuteSchur() { IntVectorType p = m_permutation; for (Index i = 0; i < p.rows() - 1; i++) { Index j; for (j = i; j < p.rows(); j++) { if (p(j) == i) break; } eigen_assert(p(j) == i); for (Index k = j-1; k >= i; k--) { swapEntriesInSchur(k); std::swap(p.coeffRef(k), p.coeffRef(k+1)); } } } /** \brief Swap rows \a index and \a index+1 in Schur decomposition in #m_U and #m_T */ template <typename MatrixType, typename AtomicType> void MatrixFunction<MatrixType,AtomicType,1>::swapEntriesInSchur(Index index) { JacobiRotation<Scalar> rotation; rotation.makeGivens(m_T(index, index+1), m_T(index+1, index+1) - m_T(index, index)); m_T.applyOnTheLeft(index, index+1, rotation.adjoint()); m_T.applyOnTheRight(index, index+1, rotation); m_U.applyOnTheRight(index, index+1, rotation); } /** \brief Compute block diagonal part of #m_fT. * * This routine computes the matrix function applied to the block diagonal part of #m_T, with the blocking * given by #m_blockStart. The matrix function of each diagonal block is computed by #m_atomic. The * off-diagonal parts of #m_fT are set to zero. */ template <typename MatrixType, typename AtomicType> void MatrixFunction<MatrixType,AtomicType,1>::computeBlockAtomic() { m_fT.resize(m_T.rows(), m_T.cols()); m_fT.setZero(); for (Index i = 0; i < m_clusterSize.rows(); ++i) { block(m_fT, i, i) = m_atomic.compute(block(m_T, i, i)); } } /** \brief Return block of matrix according to blocking given by #m_blockStart */ template <typename MatrixType, typename AtomicType> Block<MatrixType> MatrixFunction<MatrixType,AtomicType,1>::block(MatrixType& A, Index i, Index j) { return A.block(m_blockStart(i), m_blockStart(j), m_clusterSize(i), m_clusterSize(j)); } /** \brief Compute part of #m_fT above block diagonal. * * This routine assumes that the block diagonal part of #m_fT (which * equals the matrix function applied to #m_T) has already been computed and computes * the part above the block diagonal. The part below the diagonal is * zero, because #m_T is upper triangular. */ template <typename MatrixType, typename AtomicType> void MatrixFunction<MatrixType,AtomicType,1>::computeOffDiagonal() { for (Index diagIndex = 1; diagIndex < m_clusterSize.rows(); diagIndex++) { for (Index blockIndex = 0; blockIndex < m_clusterSize.rows() - diagIndex; blockIndex++) { // compute (blockIndex, blockIndex+diagIndex) block DynMatrixType A = block(m_T, blockIndex, blockIndex); DynMatrixType B = -block(m_T, blockIndex+diagIndex, blockIndex+diagIndex); DynMatrixType C = block(m_fT, blockIndex, blockIndex) * block(m_T, blockIndex, blockIndex+diagIndex); C -= block(m_T, blockIndex, blockIndex+diagIndex) * block(m_fT, blockIndex+diagIndex, blockIndex+diagIndex); for (Index k = blockIndex + 1; k < blockIndex + diagIndex; k++) { C += block(m_fT, blockIndex, k) * block(m_T, k, blockIndex+diagIndex); C -= block(m_T, blockIndex, k) * block(m_fT, k, blockIndex+diagIndex); } block(m_fT, blockIndex, blockIndex+diagIndex) = solveTriangularSylvester(A, B, C); } } } /** \brief Solve a triangular Sylvester equation AX + XB = C * * \param[in] A the matrix A; should be square and upper triangular * \param[in] B the matrix B; should be square and upper triangular * \param[in] C the matrix C; should have correct size. * * \returns the solution X. * * If A is m-by-m and B is n-by-n, then both C and X are m-by-n. * The (i,j)-th component of the Sylvester equation is * \f[ * \sum_{k=i}^m A_{ik} X_{kj} + \sum_{k=1}^j X_{ik} B_{kj} = C_{ij}. * \f] * This can be re-arranged to yield: * \f[ * X_{ij} = \frac{1}{A_{ii} + B_{jj}} \Bigl( C_{ij} * - \sum_{k=i+1}^m A_{ik} X_{kj} - \sum_{k=1}^{j-1} X_{ik} B_{kj} \Bigr). * \f] * It is assumed that A and B are such that the numerator is never * zero (otherwise the Sylvester equation does not have a unique * solution). In that case, these equations can be evaluated in the * order \f$ i=m,\ldots,1 \f$ and \f$ j=1,\ldots,n \f$. */ template <typename MatrixType, typename AtomicType> typename MatrixFunction<MatrixType,AtomicType,1>::DynMatrixType MatrixFunction<MatrixType,AtomicType,1>::solveTriangularSylvester( const DynMatrixType& A, const DynMatrixType& B, const DynMatrixType& C) { eigen_assert(A.rows() == A.cols()); eigen_assert(A.isUpperTriangular()); eigen_assert(B.rows() == B.cols()); eigen_assert(B.isUpperTriangular()); eigen_assert(C.rows() == A.rows()); eigen_assert(C.cols() == B.rows()); Index m = A.rows(); Index n = B.rows(); DynMatrixType X(m, n); for (Index i = m - 1; i >= 0; --i) { for (Index j = 0; j < n; ++j) { // Compute AX = \sum_{k=i+1}^m A_{ik} X_{kj} Scalar AX; if (i == m - 1) { AX = 0; } else { Matrix<Scalar,1,1> AXmatrix = A.row(i).tail(m-1-i) * X.col(j).tail(m-1-i); AX = AXmatrix(0,0); } // Compute XB = \sum_{k=1}^{j-1} X_{ik} B_{kj} Scalar XB; if (j == 0) { XB = 0; } else { Matrix<Scalar,1,1> XBmatrix = X.row(i).head(j) * B.col(j).head(j); XB = XBmatrix(0,0); } X(i,j) = (C(i,j) - AX - XB) / (A(i,i) + B(j,j)); } } return X; } /** \ingroup MatrixFunctions_Module * * \brief Proxy for the matrix function of some matrix (expression). * * \tparam Derived Type of the argument to the matrix function. * * This class holds the argument to the matrix function until it is * assigned or evaluated for some other reason (so the argument * should not be changed in the meantime). It is the return type of * matrixBase::matrixFunction() and related functions and most of the * time this is the only way it is used. */ template<typename Derived> class MatrixFunctionReturnValue : public ReturnByValue<MatrixFunctionReturnValue<Derived> > { public: typedef typename Derived::Scalar Scalar; typedef typename Derived::Index Index; typedef typename internal::stem_function<Scalar>::type StemFunction; /** \brief Constructor. * * \param[in] A %Matrix (expression) forming the argument of the * matrix function. * \param[in] f Stem function for matrix function under consideration. */ MatrixFunctionReturnValue(const Derived& A, StemFunction f) : m_A(A), m_f(f) { } /** \brief Compute the matrix function. * * \param[out] result \p f applied to \p A, where \p f and \p A * are as in the constructor. */ template <typename ResultType> inline void evalTo(ResultType& result) const { typedef typename Derived::PlainObject PlainObject; typedef internal::traits<PlainObject> Traits; static const int RowsAtCompileTime = Traits::RowsAtCompileTime; static const int ColsAtCompileTime = Traits::ColsAtCompileTime; static const int Options = PlainObject::Options; typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar; typedef Matrix<ComplexScalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType; typedef MatrixFunctionAtomic<DynMatrixType> AtomicType; AtomicType atomic(m_f); const PlainObject Aevaluated = m_A.eval(); MatrixFunction<PlainObject, AtomicType> mf(Aevaluated, atomic); mf.compute(result); } Index rows() const { return m_A.rows(); } Index cols() const { return m_A.cols(); } private: typename internal::nested<Derived>::type m_A; StemFunction *m_f; MatrixFunctionReturnValue& operator=(const MatrixFunctionReturnValue&); }; namespace internal { template<typename Derived> struct traits<MatrixFunctionReturnValue<Derived> > { typedef typename Derived::PlainObject ReturnType; }; } /********** MatrixBase methods **********/ template <typename Derived> const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const { eigen_assert(rows() == cols()); return MatrixFunctionReturnValue<Derived>(derived(), f); } template <typename Derived> const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const { eigen_assert(rows() == cols()); typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sin); } template <typename Derived> const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const { eigen_assert(rows() == cols()); typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cos); } template <typename Derived> const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const { eigen_assert(rows() == cols()); typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sinh); } template <typename Derived> const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const { eigen_assert(rows() == cols()); typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cosh); } } // end namespace Eigen #endif // EIGEN_MATRIX_FUNCTION