// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_INCOMPLETE_CHOlESKY_H #define EIGEN_INCOMPLETE_CHOlESKY_H #include "Eigen/src/IterativeLinearSolvers/IncompleteLUT.h" #include <Eigen/OrderingMethods> #include <list> namespace Eigen { /** * \brief Modified Incomplete Cholesky with dual threshold * * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with * Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999 * * \tparam _MatrixType The type of the sparse matrix. It should be a symmetric * matrix. It is advised to give a row-oriented sparse matrix * \tparam _UpLo The triangular part of the matrix to reference. * \tparam _OrderingType */ template <typename Scalar, int _UpLo = Lower, typename _OrderingType = NaturalOrdering<int> > class IncompleteCholesky : internal::noncopyable { public: typedef SparseMatrix<Scalar,ColMajor> MatrixType; typedef _OrderingType OrderingType; typedef typename MatrixType::RealScalar RealScalar; typedef typename MatrixType::Index Index; typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType; typedef Matrix<Scalar,Dynamic,1> ScalarType; typedef Matrix<Index,Dynamic, 1> IndexType; typedef std::vector<std::list<Index> > VectorList; enum { UpLo = _UpLo }; public: IncompleteCholesky() : m_shift(1),m_factorizationIsOk(false) {} IncompleteCholesky(const MatrixType& matrix) : m_shift(1),m_factorizationIsOk(false) { compute(matrix); } Index rows() const { return m_L.rows(); } Index cols() const { return m_L.cols(); } /** \brief Reports whether previous computation was successful. * * \returns \c Success if computation was succesful, * \c NumericalIssue if the matrix appears to be negative. */ ComputationInfo info() const { eigen_assert(m_isInitialized && "IncompleteLLT is not initialized."); return m_info; } /** * \brief Set the initial shift parameter */ void setShift( Scalar shift) { m_shift = shift; } /** * \brief Computes the fill reducing permutation vector. */ template<typename MatrixType> void analyzePattern(const MatrixType& mat) { OrderingType ord; ord(mat.template selfadjointView<UpLo>(), m_perm); m_analysisIsOk = true; } template<typename MatrixType> void factorize(const MatrixType& amat); template<typename MatrixType> void compute (const MatrixType& matrix) { analyzePattern(matrix); factorize(matrix); } template<typename Rhs, typename Dest> void _solve(const Rhs& b, Dest& x) const { eigen_assert(m_factorizationIsOk && "factorize() should be called first"); if (m_perm.rows() == b.rows()) x = m_perm.inverse() * b; else x = b; x = m_scal.asDiagonal() * x; x = m_L.template triangularView<UnitLower>().solve(x); x = m_L.adjoint().template triangularView<Upper>().solve(x); if (m_perm.rows() == b.rows()) x = m_perm * x; x = m_scal.asDiagonal() * x; } template<typename Rhs> inline const internal::solve_retval<IncompleteCholesky, Rhs> solve(const MatrixBase<Rhs>& b) const { eigen_assert(m_factorizationIsOk && "IncompleteLLT did not succeed"); eigen_assert(m_isInitialized && "IncompleteLLT is not initialized."); eigen_assert(cols()==b.rows() && "IncompleteLLT::solve(): invalid number of rows of the right hand side matrix b"); return internal::solve_retval<IncompleteCholesky, Rhs>(*this, b.derived()); } protected: SparseMatrix<Scalar,ColMajor> m_L; // The lower part stored in CSC ScalarType m_scal; // The vector for scaling the matrix Scalar m_shift; //The initial shift parameter bool m_analysisIsOk; bool m_factorizationIsOk; bool m_isInitialized; ComputationInfo m_info; PermutationType m_perm; private: template <typename IdxType, typename SclType> inline void updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol); }; template<typename Scalar, int _UpLo, typename OrderingType> template<typename _MatrixType> void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat) { using std::sqrt; using std::min; eigen_assert(m_analysisIsOk && "analyzePattern() should be called first"); // Dropping strategies : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added // Apply the fill-reducing permutation computed in analyzePattern() if (m_perm.rows() == mat.rows() ) // To detect the null permutation m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>().twistedBy(m_perm); else m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>(); Index n = m_L.cols(); Index nnz = m_L.nonZeros(); Map<ScalarType> vals(m_L.valuePtr(), nnz); //values Map<IndexType> rowIdx(m_L.innerIndexPtr(), nnz); //Row indices Map<IndexType> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row IndexType firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization VectorList listCol(n); // listCol(j) is a linked list of columns to update column j ScalarType curCol(n); // Store a nonzero values in each column IndexType irow(n); // Row indices of nonzero elements in each column // Computes the scaling factors m_scal.resize(n); for (int j = 0; j < n; j++) { m_scal(j) = m_L.col(j).norm(); m_scal(j) = sqrt(m_scal(j)); } // Scale and compute the shift for the matrix Scalar mindiag = vals[0]; for (int j = 0; j < n; j++){ for (int k = colPtr[j]; k < colPtr[j+1]; k++) vals[k] /= (m_scal(j) * m_scal(rowIdx[k])); mindiag = (min)(vals[colPtr[j]], mindiag); } if(mindiag < Scalar(0.)) m_shift = m_shift - mindiag; // Apply the shift to the diagonal elements of the matrix for (int j = 0; j < n; j++) vals[colPtr[j]] += m_shift; // jki version of the Cholesky factorization for (int j=0; j < n; ++j) { //Left-looking factorize the column j // First, load the jth column into curCol Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored curCol.setZero(); irow.setLinSpaced(n,0,n-1); for (int i = colPtr[j] + 1; i < colPtr[j+1]; i++) { curCol(rowIdx[i]) = vals[i]; irow(rowIdx[i]) = rowIdx[i]; } std::list<int>::iterator k; // Browse all previous columns that will update column j for(k = listCol[j].begin(); k != listCol[j].end(); k++) { int jk = firstElt(*k); // First element to use in the column jk += 1; for (int i = jk; i < colPtr[*k+1]; i++) { curCol(rowIdx[i]) -= vals[i] * vals[jk] ; } updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol); } // Scale the current column if(RealScalar(diag) <= 0) { std::cerr << "\nNegative diagonal during Incomplete factorization... "<< j << "\n"; m_info = NumericalIssue; return; } RealScalar rdiag = sqrt(RealScalar(diag)); vals[colPtr[j]] = rdiag; for (int i = j+1; i < n; i++) { //Scale curCol(i) /= rdiag; //Update the remaining diagonals with curCol vals[colPtr[i]] -= curCol(i) * curCol(i); } // Select the largest p elements // p is the original number of elements in the column (without the diagonal) int p = colPtr[j+1] - colPtr[j] - 1 ; internal::QuickSplit(curCol, irow, p); // Insert the largest p elements in the matrix int cpt = 0; for (int i = colPtr[j]+1; i < colPtr[j+1]; i++) { vals[i] = curCol(cpt); rowIdx[i] = irow(cpt); cpt ++; } // Get the first smallest row index and put it after the diagonal element Index jk = colPtr(j)+1; updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol); } m_factorizationIsOk = true; m_isInitialized = true; m_info = Success; } template<typename Scalar, int _UpLo, typename OrderingType> template <typename IdxType, typename SclType> inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol) { if (jk < colPtr(col+1) ) { Index p = colPtr(col+1) - jk; Index minpos; rowIdx.segment(jk,p).minCoeff(&minpos); minpos += jk; if (rowIdx(minpos) != rowIdx(jk)) { //Swap std::swap(rowIdx(jk),rowIdx(minpos)); std::swap(vals(jk),vals(minpos)); } firstElt(col) = jk; listCol[rowIdx(jk)].push_back(col); } } namespace internal { template<typename _Scalar, int _UpLo, typename OrderingType, typename Rhs> struct solve_retval<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs> : solve_retval_base<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs> { typedef IncompleteCholesky<_Scalar, _UpLo, OrderingType> Dec; EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) template<typename Dest> void evalTo(Dest& dst) const { dec()._solve(rhs(),dst); } }; } // end namespace internal } // end namespace Eigen #endif