// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2012, 2014 Kolja Brix <brix@igpm.rwth-aaachen.de> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_GMRES_H #define EIGEN_GMRES_H namespace Eigen { namespace internal { /** * Generalized Minimal Residual Algorithm based on the * Arnoldi algorithm implemented with Householder reflections. * * Parameters: * \param mat matrix of linear system of equations * \param Rhs right hand side vector of linear system of equations * \param x on input: initial guess, on output: solution * \param precond preconditioner used * \param iters on input: maximum number of iterations to perform * on output: number of iterations performed * \param restart number of iterations for a restart * \param tol_error on input: residual tolerance * on output: residuum achieved * * \sa IterativeMethods::bicgstab() * * * For references, please see: * * Saad, Y. and Schultz, M. H. * GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. * SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869. * * Saad, Y. * Iterative Methods for Sparse Linear Systems. * Society for Industrial and Applied Mathematics, Philadelphia, 2003. * * Walker, H. F. * Implementations of the GMRES method. * Comput.Phys.Comm. 53, 1989, pp. 311 - 320. * * Walker, H. F. * Implementation of the GMRES Method using Householder Transformations. * SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163. * */ template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond, int &iters, const int &restart, typename Dest::RealScalar & tol_error) { using std::sqrt; using std::abs; typedef typename Dest::RealScalar RealScalar; typedef typename Dest::Scalar Scalar; typedef Matrix < Scalar, Dynamic, 1 > VectorType; typedef Matrix < Scalar, Dynamic, Dynamic > FMatrixType; RealScalar tol = tol_error; const int maxIters = iters; iters = 0; const int m = mat.rows(); VectorType p0 = rhs - mat*x; VectorType r0 = precond.solve(p0); // is initial guess already good enough? if(abs(r0.norm()) < tol) { return true; } VectorType w = VectorType::Zero(restart + 1); FMatrixType H = FMatrixType::Zero(m, restart + 1); // Hessenberg matrix VectorType tau = VectorType::Zero(restart + 1); std::vector < JacobiRotation < Scalar > > G(restart); // generate first Householder vector VectorType e(m-1); RealScalar beta; r0.makeHouseholder(e, tau.coeffRef(0), beta); w(0)=(Scalar) beta; H.bottomLeftCorner(m - 1, 1) = e; for (int k = 1; k <= restart; ++k) { ++iters; VectorType v = VectorType::Unit(m, k - 1), workspace(m); // apply Householder reflections H_{1} ... H_{k-1} to v for (int i = k - 1; i >= 0; --i) { v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); } // apply matrix M to v: v = mat * v; VectorType t=mat*v; v=precond.solve(t); // apply Householder reflections H_{k-1} ... H_{1} to v for (int i = 0; i < k; ++i) { v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); } if (v.tail(m - k).norm() != 0.0) { if (k <= restart) { // generate new Householder vector VectorType e(m - k - 1); RealScalar beta; v.tail(m - k).makeHouseholder(e, tau.coeffRef(k), beta); H.col(k).tail(m - k - 1) = e; // apply Householder reflection H_{k} to v v.tail(m - k).applyHouseholderOnTheLeft(H.col(k).tail(m - k - 1), tau.coeffRef(k), workspace.data()); } } if (k > 1) { for (int i = 0; i < k - 1; ++i) { // apply old Givens rotations to v v.applyOnTheLeft(i, i + 1, G[i].adjoint()); } } if (k<m && v(k) != (Scalar) 0) { // determine next Givens rotation G[k - 1].makeGivens(v(k - 1), v(k)); // apply Givens rotation to v and w v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint()); w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint()); } // insert coefficients into upper matrix triangle H.col(k - 1).head(k) = v.head(k); bool stop=(k==m || abs(w(k)) < tol || iters == maxIters); if (stop || k == restart) { // solve upper triangular system VectorType y = w.head(k); H.topLeftCorner(k, k).template triangularView < Eigen::Upper > ().solveInPlace(y); // use Horner-like scheme to calculate solution vector VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1); // apply Householder reflection H_{k} to x_new x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data()); for (int i = k - 2; i >= 0; --i) { x_new += y(i) * VectorType::Unit(m, i); // apply Householder reflection H_{i} to x_new x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); } x += x_new; if (stop) { return true; } else { k=0; // reset data for a restart r0 = rhs - mat * x; VectorType p0=mat*x; VectorType p1=precond.solve(p0); r0 = rhs - p1; // r0_sqnorm = r0.squaredNorm(); w = VectorType::Zero(restart + 1); H = FMatrixType::Zero(m, restart + 1); tau = VectorType::Zero(restart + 1); // generate first Householder vector RealScalar beta; r0.makeHouseholder(e, tau.coeffRef(0), beta); w(0)=(Scalar) beta; H.bottomLeftCorner(m - 1, 1) = e; } } } return false; } } template< typename _MatrixType, typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> > class GMRES; namespace internal { template< typename _MatrixType, typename _Preconditioner> struct traits<GMRES<_MatrixType,_Preconditioner> > { typedef _MatrixType MatrixType; typedef _Preconditioner Preconditioner; }; } /** \ingroup IterativeLinearSolvers_Module * \brief A GMRES solver for sparse square problems * * This class allows to solve for A.x = b sparse linear problems using a generalized minimal * residual method. The vectors x and b can be either dense or sparse. * * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix. * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner * * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations * and NumTraits<Scalar>::epsilon() for the tolerance. * * This class can be used as the direct solver classes. Here is a typical usage example: * \code * int n = 10000; * VectorXd x(n), b(n); * SparseMatrix<double> A(n,n); * // fill A and b * GMRES<SparseMatrix<double> > solver(A); * x = solver.solve(b); * std::cout << "#iterations: " << solver.iterations() << std::endl; * std::cout << "estimated error: " << solver.error() << std::endl; * // update b, and solve again * x = solver.solve(b); * \endcode * * By default the iterations start with x=0 as an initial guess of the solution. * One can control the start using the solveWithGuess() method. Here is a step by * step execution example starting with a random guess and printing the evolution * of the estimated error: * * \code * x = VectorXd::Random(n); * solver.setMaxIterations(1); * int i = 0; * do { * x = solver.solveWithGuess(b,x); * std::cout << i << " : " << solver.error() << std::endl; * ++i; * } while (solver.info()!=Success && i<100); * \endcode * Note that such a step by step excution is slightly slower. * * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner */ template< typename _MatrixType, typename _Preconditioner> class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> > { typedef IterativeSolverBase<GMRES> Base; using Base::mp_matrix; using Base::m_error; using Base::m_iterations; using Base::m_info; using Base::m_isInitialized; private: int m_restart; public: typedef _MatrixType MatrixType; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::Index Index; typedef typename MatrixType::RealScalar RealScalar; typedef _Preconditioner Preconditioner; public: /** Default constructor. */ GMRES() : Base(), m_restart(30) {} /** Initialize the solver with matrix \a A for further \c Ax=b solving. * * This constructor is a shortcut for the default constructor followed * by a call to compute(). * * \warning this class stores a reference to the matrix A as well as some * precomputed values that depend on it. Therefore, if \a A is changed * this class becomes invalid. Call compute() to update it with the new * matrix A, or modify a copy of A. */ GMRES(const MatrixType& A) : Base(A), m_restart(30) {} ~GMRES() {} /** Get the number of iterations after that a restart is performed. */ int get_restart() { return m_restart; } /** Set the number of iterations after that a restart is performed. * \param restart number of iterations for a restarti, default is 30. */ void set_restart(const int restart) { m_restart=restart; } /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A * \a x0 as an initial solution. * * \sa compute() */ template<typename Rhs,typename Guess> inline const internal::solve_retval_with_guess<GMRES, Rhs, Guess> solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const { eigen_assert(m_isInitialized && "GMRES is not initialized."); eigen_assert(Base::rows()==b.rows() && "GMRES::solve(): invalid number of rows of the right hand side matrix b"); return internal::solve_retval_with_guess <GMRES, Rhs, Guess>(*this, b.derived(), x0); } /** \internal */ template<typename Rhs,typename Dest> void _solveWithGuess(const Rhs& b, Dest& x) const { bool failed = false; for(int j=0; j<b.cols(); ++j) { m_iterations = Base::maxIterations(); m_error = Base::m_tolerance; typename Dest::ColXpr xj(x,j); if(!internal::gmres(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error)) failed = true; } m_info = failed ? NumericalIssue : m_error <= Base::m_tolerance ? Success : NoConvergence; m_isInitialized = true; } /** \internal */ template<typename Rhs,typename Dest> void _solve(const Rhs& b, Dest& x) const { x = b; if(x.squaredNorm() == 0) return; // Check Zero right hand side _solveWithGuess(b,x); } protected: }; namespace internal { template<typename _MatrixType, typename _Preconditioner, typename Rhs> struct solve_retval<GMRES<_MatrixType, _Preconditioner>, Rhs> : solve_retval_base<GMRES<_MatrixType, _Preconditioner>, Rhs> { typedef GMRES<_MatrixType, _Preconditioner> Dec; EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) template<typename Dest> void evalTo(Dest& dst) const { dec()._solve(rhs(),dst); } }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_GMRES_H