// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_DGMRES_H #define EIGEN_DGMRES_H #include <Eigen/Eigenvalues> namespace Eigen { template< typename _MatrixType, typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> > class DGMRES; namespace internal { template< typename _MatrixType, typename _Preconditioner> struct traits<DGMRES<_MatrixType,_Preconditioner> > { typedef _MatrixType MatrixType; typedef _Preconditioner Preconditioner; }; /** \brief Computes a permutation vector to have a sorted sequence * \param vec The vector to reorder. * \param perm gives the sorted sequence on output. Must be initialized with 0..n-1 * \param ncut Put the ncut smallest elements at the end of the vector * WARNING This is an expensive sort, so should be used only * for small size vectors * TODO Use modified QuickSplit or std::nth_element to get the smallest values */ template <typename VectorType, typename IndexType> void sortWithPermutation (VectorType& vec, IndexType& perm, typename IndexType::Scalar& ncut) { eigen_assert(vec.size() == perm.size()); typedef typename IndexType::Scalar Index; typedef typename VectorType::Scalar Scalar; bool flag; for (Index k = 0; k < ncut; k++) { flag = false; for (Index j = 0; j < vec.size()-1; j++) { if ( vec(perm(j)) < vec(perm(j+1)) ) { std::swap(perm(j),perm(j+1)); flag = true; } if (!flag) break; // The vector is in sorted order } } } } /** * \ingroup IterativeLInearSolvers_Module * \brief A Restarted GMRES with deflation. * This class implements a modification of the GMRES solver for * sparse linear systems. The basis is built with modified * Gram-Schmidt. At each restart, a few approximated eigenvectors * corresponding to the smallest eigenvalues are used to build a * preconditioner for the next cycle. This preconditioner * for deflation can be combined with any other preconditioner, * the IncompleteLUT for instance. The preconditioner is applied * at right of the matrix and the combination is multiplicative. * * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix. * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner * Typical usage : * \code * SparseMatrix<double> A; * VectorXd x, b; * //Fill A and b ... * DGMRES<SparseMatrix<double> > solver; * solver.set_restart(30); // Set restarting value * solver.setEigenv(1); // Set the number of eigenvalues to deflate * solver.compute(A); * x = solver.solve(b); * \endcode * * References : * [1] D. NUENTSA WAKAM and F. PACULL, Memory Efficient Hybrid * Algebraic Solvers for Linear Systems Arising from Compressible * Flows, Computers and Fluids, In Press, * http://dx.doi.org/10.1016/j.compfluid.2012.03.023 * [2] K. Burrage and J. Erhel, On the performance of various * adaptive preconditioned GMRES strategies, 5(1998), 101-121. * [3] J. Erhel, K. Burrage and B. Pohl, Restarted GMRES * preconditioned by deflation,J. Computational and Applied * Mathematics, 69(1996), 303-318. * */ template< typename _MatrixType, typename _Preconditioner> class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> > { typedef IterativeSolverBase<DGMRES> Base; using Base::mp_matrix; using Base::m_error; using Base::m_iterations; using Base::m_info; using Base::m_isInitialized; using Base::m_tolerance; public: typedef _MatrixType MatrixType; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::Index Index; typedef typename MatrixType::RealScalar RealScalar; typedef _Preconditioner Preconditioner; typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; typedef Matrix<RealScalar,Dynamic,Dynamic> DenseRealMatrix; typedef Matrix<Scalar,Dynamic,1> DenseVector; typedef Matrix<RealScalar,Dynamic,1> DenseRealVector; typedef Matrix<std::complex<RealScalar>, Dynamic, 1> ComplexVector; /** Default constructor. */ DGMRES() : Base(),m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {} /** Initialize the solver with matrix \a A for further \c Ax=b solving. * * This constructor is a shortcut for the default constructor followed * by a call to compute(). * * \warning this class stores a reference to the matrix A as well as some * precomputed values that depend on it. Therefore, if \a A is changed * this class becomes invalid. Call compute() to update it with the new * matrix A, or modify a copy of A. */ DGMRES(const MatrixType& A) : Base(A),m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {} ~DGMRES() {} /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A * \a x0 as an initial solution. * * \sa compute() */ template<typename Rhs,typename Guess> inline const internal::solve_retval_with_guess<DGMRES, Rhs, Guess> solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const { eigen_assert(m_isInitialized && "DGMRES is not initialized."); eigen_assert(Base::rows()==b.rows() && "DGMRES::solve(): invalid number of rows of the right hand side matrix b"); return internal::solve_retval_with_guess <DGMRES, Rhs, Guess>(*this, b.derived(), x0); } /** \internal */ template<typename Rhs,typename Dest> void _solveWithGuess(const Rhs& b, Dest& x) const { bool failed = false; for(int j=0; j<b.cols(); ++j) { m_iterations = Base::maxIterations(); m_error = Base::m_tolerance; typename Dest::ColXpr xj(x,j); dgmres(*mp_matrix, b.col(j), xj, Base::m_preconditioner); } m_info = failed ? NumericalIssue : m_error <= Base::m_tolerance ? Success : NoConvergence; m_isInitialized = true; } /** \internal */ template<typename Rhs,typename Dest> void _solve(const Rhs& b, Dest& x) const { x = b; _solveWithGuess(b,x); } /** * Get the restart value */ int restart() { return m_restart; } /** * Set the restart value (default is 30) */ void set_restart(const int restart) { m_restart=restart; } /** * Set the number of eigenvalues to deflate at each restart */ void setEigenv(const int neig) { m_neig = neig; if (neig+1 > m_maxNeig) m_maxNeig = neig+1; // To allow for complex conjugates } /** * Get the size of the deflation subspace size */ int deflSize() {return m_r; } /** * Set the maximum size of the deflation subspace */ void setMaxEigenv(const int maxNeig) { m_maxNeig = maxNeig; } protected: // DGMRES algorithm template<typename Rhs, typename Dest> void dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x, const Preconditioner& precond) const; // Perform one cycle of GMRES template<typename Dest> int dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, int& nbIts) const; // Compute data to use for deflation int dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, Index& neig) const; // Apply deflation to a vector template<typename RhsType, typename DestType> int dgmresApplyDeflation(const RhsType& In, DestType& Out) const; ComplexVector schurValues(const ComplexSchur<DenseMatrix>& schurofH) const; ComplexVector schurValues(const RealSchur<DenseMatrix>& schurofH) const; // Init data for deflation void dgmresInitDeflation(Index& rows) const; mutable DenseMatrix m_V; // Krylov basis vectors mutable DenseMatrix m_H; // Hessenberg matrix mutable DenseMatrix m_Hes; // Initial hessenberg matrix wihout Givens rotations applied mutable Index m_restart; // Maximum size of the Krylov subspace mutable DenseMatrix m_U; // Vectors that form the basis of the invariant subspace mutable DenseMatrix m_MU; // matrix operator applied to m_U (for next cycles) mutable DenseMatrix m_T; /* T=U^T*M^{-1}*A*U */ mutable PartialPivLU<DenseMatrix> m_luT; // LU factorization of m_T mutable int m_neig; //Number of eigenvalues to extract at each restart mutable int m_r; // Current number of deflated eigenvalues, size of m_U mutable int m_maxNeig; // Maximum number of eigenvalues to deflate mutable RealScalar m_lambdaN; //Modulus of the largest eigenvalue of A mutable bool m_isDeflAllocated; mutable bool m_isDeflInitialized; //Adaptive strategy mutable RealScalar m_smv; // Smaller multiple of the remaining number of steps allowed mutable bool m_force; // Force the use of deflation at each restart }; /** * \brief Perform several cycles of restarted GMRES with modified Gram Schmidt, * * A right preconditioner is used combined with deflation. * */ template< typename _MatrixType, typename _Preconditioner> template<typename Rhs, typename Dest> void DGMRES<_MatrixType, _Preconditioner>::dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x, const Preconditioner& precond) const { //Initialization int n = mat.rows(); DenseVector r0(n); int nbIts = 0; m_H.resize(m_restart+1, m_restart); m_Hes.resize(m_restart, m_restart); m_V.resize(n,m_restart+1); //Initial residual vector and intial norm x = precond.solve(x); r0 = rhs - mat * x; RealScalar beta = r0.norm(); RealScalar normRhs = rhs.norm(); m_error = beta/normRhs; if(m_error < m_tolerance) m_info = Success; else m_info = NoConvergence; // Iterative process while (nbIts < m_iterations && m_info == NoConvergence) { dgmresCycle(mat, precond, x, r0, beta, normRhs, nbIts); // Compute the new residual vector for the restart if (nbIts < m_iterations && m_info == NoConvergence) r0 = rhs - mat * x; } } /** * \brief Perform one restart cycle of DGMRES * \param mat The coefficient matrix * \param precond The preconditioner * \param x the new approximated solution * \param r0 The initial residual vector * \param beta The norm of the residual computed so far * \param normRhs The norm of the right hand side vector * \param nbIts The number of iterations */ template< typename _MatrixType, typename _Preconditioner> template<typename Dest> int DGMRES<_MatrixType, _Preconditioner>::dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, int& nbIts) const { //Initialization DenseVector g(m_restart+1); // Right hand side of the least square problem g.setZero(); g(0) = Scalar(beta); m_V.col(0) = r0/beta; m_info = NoConvergence; std::vector<JacobiRotation<Scalar> >gr(m_restart); // Givens rotations int it = 0; // Number of inner iterations int n = mat.rows(); DenseVector tv1(n), tv2(n); //Temporary vectors while (m_info == NoConvergence && it < m_restart && nbIts < m_iterations) { // Apply preconditioner(s) at right if (m_isDeflInitialized ) { dgmresApplyDeflation(m_V.col(it), tv1); // Deflation tv2 = precond.solve(tv1); } else { tv2 = precond.solve(m_V.col(it)); // User's selected preconditioner } tv1 = mat * tv2; // Orthogonalize it with the previous basis in the basis using modified Gram-Schmidt Scalar coef; for (int i = 0; i <= it; ++i) { coef = tv1.dot(m_V.col(i)); tv1 = tv1 - coef * m_V.col(i); m_H(i,it) = coef; m_Hes(i,it) = coef; } // Normalize the vector coef = tv1.norm(); m_V.col(it+1) = tv1/coef; m_H(it+1, it) = coef; // m_Hes(it+1,it) = coef; // FIXME Check for happy breakdown // Update Hessenberg matrix with Givens rotations for (int i = 1; i <= it; ++i) { m_H.col(it).applyOnTheLeft(i-1,i,gr[i-1].adjoint()); } // Compute the new plane rotation gr[it].makeGivens(m_H(it, it), m_H(it+1,it)); // Apply the new rotation m_H.col(it).applyOnTheLeft(it,it+1,gr[it].adjoint()); g.applyOnTheLeft(it,it+1, gr[it].adjoint()); beta = std::abs(g(it+1)); m_error = beta/normRhs; std::cerr << nbIts << " Relative Residual Norm " << m_error << std::endl; it++; nbIts++; if (m_error < m_tolerance) { // The method has converged m_info = Success; break; } } // Compute the new coefficients by solving the least square problem // it++; //FIXME Check first if the matrix is singular ... zero diagonal DenseVector nrs(m_restart); nrs = m_H.topLeftCorner(it,it).template triangularView<Upper>().solve(g.head(it)); // Form the new solution if (m_isDeflInitialized) { tv1 = m_V.leftCols(it) * nrs; dgmresApplyDeflation(tv1, tv2); x = x + precond.solve(tv2); } else x = x + precond.solve(m_V.leftCols(it) * nrs); // Go for a new cycle and compute data for deflation if(nbIts < m_iterations && m_info == NoConvergence && m_neig > 0 && (m_r+m_neig) < m_maxNeig) dgmresComputeDeflationData(mat, precond, it, m_neig); return 0; } template< typename _MatrixType, typename _Preconditioner> void DGMRES<_MatrixType, _Preconditioner>::dgmresInitDeflation(Index& rows) const { m_U.resize(rows, m_maxNeig); m_MU.resize(rows, m_maxNeig); m_T.resize(m_maxNeig, m_maxNeig); m_lambdaN = 0.0; m_isDeflAllocated = true; } template< typename _MatrixType, typename _Preconditioner> inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const ComplexSchur<DenseMatrix>& schurofH) const { return schurofH.matrixT().diagonal(); } template< typename _MatrixType, typename _Preconditioner> inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const RealSchur<DenseMatrix>& schurofH) const { typedef typename MatrixType::Index Index; const DenseMatrix& T = schurofH.matrixT(); Index it = T.rows(); ComplexVector eig(it); Index j = 0; while (j < it-1) { if (T(j+1,j) ==Scalar(0)) { eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0)); j++; } else { eig(j) = std::complex<RealScalar>(T(j,j),T(j+1,j)); eig(j+1) = std::complex<RealScalar>(T(j,j+1),T(j+1,j+1)); j++; } } if (j < it-1) eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0)); return eig; } template< typename _MatrixType, typename _Preconditioner> int DGMRES<_MatrixType, _Preconditioner>::dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, Index& neig) const { // First, find the Schur form of the Hessenberg matrix H typename internal::conditional<NumTraits<Scalar>::IsComplex, ComplexSchur<DenseMatrix>, RealSchur<DenseMatrix> >::type schurofH; bool computeU = true; DenseMatrix matrixQ(it,it); matrixQ.setIdentity(); schurofH.computeFromHessenberg(m_Hes.topLeftCorner(it,it), matrixQ, computeU); ComplexVector eig(it); Matrix<Index,Dynamic,1>perm(it); eig = this->schurValues(schurofH); // Reorder the absolute values of Schur values DenseRealVector modulEig(it); for (int j=0; j<it; ++j) modulEig(j) = std::abs(eig(j)); perm.setLinSpaced(it,0,it-1); internal::sortWithPermutation(modulEig, perm, neig); if (!m_lambdaN) { m_lambdaN = (std::max)(modulEig.maxCoeff(), m_lambdaN); } //Count the real number of extracted eigenvalues (with complex conjugates) int nbrEig = 0; while (nbrEig < neig) { if(eig(perm(it-nbrEig-1)).imag() == RealScalar(0)) nbrEig++; else nbrEig += 2; } // Extract the Schur vectors corresponding to the smallest Ritz values DenseMatrix Sr(it, nbrEig); Sr.setZero(); for (int j = 0; j < nbrEig; j++) { Sr.col(j) = schurofH.matrixU().col(perm(it-j-1)); } // Form the Schur vectors of the initial matrix using the Krylov basis DenseMatrix X; X = m_V.leftCols(it) * Sr; if (m_r) { // Orthogonalize X against m_U using modified Gram-Schmidt for (int j = 0; j < nbrEig; j++) for (int k =0; k < m_r; k++) X.col(j) = X.col(j) - (m_U.col(k).dot(X.col(j)))*m_U.col(k); } // Compute m_MX = A * M^-1 * X Index m = m_V.rows(); if (!m_isDeflAllocated) dgmresInitDeflation(m); DenseMatrix MX(m, nbrEig); DenseVector tv1(m); for (int j = 0; j < nbrEig; j++) { tv1 = mat * X.col(j); MX.col(j) = precond.solve(tv1); } //Update m_T = [U'MU U'MX; X'MU X'MX] m_T.block(m_r, m_r, nbrEig, nbrEig) = X.transpose() * MX; if(m_r) { m_T.block(0, m_r, m_r, nbrEig) = m_U.leftCols(m_r).transpose() * MX; m_T.block(m_r, 0, nbrEig, m_r) = X.transpose() * m_MU.leftCols(m_r); } // Save X into m_U and m_MX in m_MU for (int j = 0; j < nbrEig; j++) m_U.col(m_r+j) = X.col(j); for (int j = 0; j < nbrEig; j++) m_MU.col(m_r+j) = MX.col(j); // Increase the size of the invariant subspace m_r += nbrEig; // Factorize m_T into m_luT m_luT.compute(m_T.topLeftCorner(m_r, m_r)); //FIXME CHeck if the factorization was correctly done (nonsingular matrix) m_isDeflInitialized = true; return 0; } template<typename _MatrixType, typename _Preconditioner> template<typename RhsType, typename DestType> int DGMRES<_MatrixType, _Preconditioner>::dgmresApplyDeflation(const RhsType &x, DestType &y) const { DenseVector x1 = m_U.leftCols(m_r).transpose() * x; y = x + m_U.leftCols(m_r) * ( m_lambdaN * m_luT.solve(x1) - x1); return 0; } namespace internal { template<typename _MatrixType, typename _Preconditioner, typename Rhs> struct solve_retval<DGMRES<_MatrixType, _Preconditioner>, Rhs> : solve_retval_base<DGMRES<_MatrixType, _Preconditioner>, Rhs> { typedef DGMRES<_MatrixType, _Preconditioner> Dec; EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) template<typename Dest> void evalTo(Dest& dst) const { dec()._solve(rhs(),dst); } }; } // end namespace internal } // end namespace Eigen #endif