// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Mark Borgerding mark a borgerding net // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. namespace Eigen { namespace internal { // This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft // Copyright 2003-2009 Mark Borgerding template <typename _Scalar> struct kiss_cpx_fft { typedef _Scalar Scalar; typedef std::complex<Scalar> Complex; std::vector<Complex> m_twiddles; std::vector<int> m_stageRadix; std::vector<int> m_stageRemainder; std::vector<Complex> m_scratchBuf; bool m_inverse; inline void make_twiddles(int nfft,bool inverse) { using std::acos; m_inverse = inverse; m_twiddles.resize(nfft); Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft; for (int i=0;i<nfft;++i) m_twiddles[i] = exp( Complex(0,i*phinc) ); } void factorize(int nfft) { //start factoring out 4's, then 2's, then 3,5,7,9,... int n= nfft; int p=4; do { while (n % p) { switch (p) { case 4: p = 2; break; case 2: p = 3; break; default: p += 2; break; } if (p*p>n) p=n;// impossible to have a factor > sqrt(n) } n /= p; m_stageRadix.push_back(p); m_stageRemainder.push_back(n); if ( p > 5 ) m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic }while(n>1); } template <typename _Src> inline void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride) { int p = m_stageRadix[stage]; int m = m_stageRemainder[stage]; Complex * Fout_beg = xout; Complex * Fout_end = xout + p*m; if (m>1) { do{ // recursive call: // DFT of size m*p performed by doing // p instances of smaller DFTs of size m, // each one takes a decimated version of the input work(stage+1, xout , xin, fstride*p,in_stride); xin += fstride*in_stride; }while( (xout += m) != Fout_end ); }else{ do{ *xout = *xin; xin += fstride*in_stride; }while(++xout != Fout_end ); } xout=Fout_beg; // recombine the p smaller DFTs switch (p) { case 2: bfly2(xout,fstride,m); break; case 3: bfly3(xout,fstride,m); break; case 4: bfly4(xout,fstride,m); break; case 5: bfly5(xout,fstride,m); break; default: bfly_generic(xout,fstride,m,p); break; } } inline void bfly2( Complex * Fout, const size_t fstride, int m) { for (int k=0;k<m;++k) { Complex t = Fout[m+k] * m_twiddles[k*fstride]; Fout[m+k] = Fout[k] - t; Fout[k] += t; } } inline void bfly4( Complex * Fout, const size_t fstride, const size_t m) { Complex scratch[6]; int negative_if_inverse = m_inverse * -2 +1; for (size_t k=0;k<m;++k) { scratch[0] = Fout[k+m] * m_twiddles[k*fstride]; scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2]; scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3]; scratch[5] = Fout[k] - scratch[1]; Fout[k] += scratch[1]; scratch[3] = scratch[0] + scratch[2]; scratch[4] = scratch[0] - scratch[2]; scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse ); Fout[k+2*m] = Fout[k] - scratch[3]; Fout[k] += scratch[3]; Fout[k+m] = scratch[5] + scratch[4]; Fout[k+3*m] = scratch[5] - scratch[4]; } } inline void bfly3( Complex * Fout, const size_t fstride, const size_t m) { size_t k=m; const size_t m2 = 2*m; Complex *tw1,*tw2; Complex scratch[5]; Complex epi3; epi3 = m_twiddles[fstride*m]; tw1=tw2=&m_twiddles[0]; do{ scratch[1]=Fout[m] * *tw1; scratch[2]=Fout[m2] * *tw2; scratch[3]=scratch[1]+scratch[2]; scratch[0]=scratch[1]-scratch[2]; tw1 += fstride; tw2 += fstride*2; Fout[m] = Complex( Fout->real() - Scalar(.5)*scratch[3].real() , Fout->imag() - Scalar(.5)*scratch[3].imag() ); scratch[0] *= epi3.imag(); *Fout += scratch[3]; Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() ); Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() ); ++Fout; }while(--k); } inline void bfly5( Complex * Fout, const size_t fstride, const size_t m) { Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4; size_t u; Complex scratch[13]; Complex * twiddles = &m_twiddles[0]; Complex *tw; Complex ya,yb; ya = twiddles[fstride*m]; yb = twiddles[fstride*2*m]; Fout0=Fout; Fout1=Fout0+m; Fout2=Fout0+2*m; Fout3=Fout0+3*m; Fout4=Fout0+4*m; tw=twiddles; for ( u=0; u<m; ++u ) { scratch[0] = *Fout0; scratch[1] = *Fout1 * tw[u*fstride]; scratch[2] = *Fout2 * tw[2*u*fstride]; scratch[3] = *Fout3 * tw[3*u*fstride]; scratch[4] = *Fout4 * tw[4*u*fstride]; scratch[7] = scratch[1] + scratch[4]; scratch[10] = scratch[1] - scratch[4]; scratch[8] = scratch[2] + scratch[3]; scratch[9] = scratch[2] - scratch[3]; *Fout0 += scratch[7]; *Fout0 += scratch[8]; scratch[5] = scratch[0] + Complex( (scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ), (scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real()) ); scratch[6] = Complex( (scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()), -(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag()) ); *Fout1 = scratch[5] - scratch[6]; *Fout4 = scratch[5] + scratch[6]; scratch[11] = scratch[0] + Complex( (scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()), (scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real()) ); scratch[12] = Complex( -(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()), (scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag()) ); *Fout2=scratch[11]+scratch[12]; *Fout3=scratch[11]-scratch[12]; ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4; } } /* perform the butterfly for one stage of a mixed radix FFT */ inline void bfly_generic( Complex * Fout, const size_t fstride, int m, int p ) { int u,k,q1,q; Complex * twiddles = &m_twiddles[0]; Complex t; int Norig = static_cast<int>(m_twiddles.size()); Complex * scratchbuf = &m_scratchBuf[0]; for ( u=0; u<m; ++u ) { k=u; for ( q1=0 ; q1<p ; ++q1 ) { scratchbuf[q1] = Fout[ k ]; k += m; } k=u; for ( q1=0 ; q1<p ; ++q1 ) { int twidx=0; Fout[ k ] = scratchbuf[0]; for (q=1;q<p;++q ) { twidx += static_cast<int>(fstride) * k; if (twidx>=Norig) twidx-=Norig; t=scratchbuf[q] * twiddles[twidx]; Fout[ k ] += t; } k += m; } } } }; template <typename _Scalar> struct kissfft_impl { typedef _Scalar Scalar; typedef std::complex<Scalar> Complex; void clear() { m_plans.clear(); m_realTwiddles.clear(); } inline void fwd( Complex * dst,const Complex *src,int nfft) { get_plan(nfft,false).work(0, dst, src, 1,1); } inline void fwd2( Complex * dst,const Complex *src,int n0,int n1) { EIGEN_UNUSED_VARIABLE(dst); EIGEN_UNUSED_VARIABLE(src); EIGEN_UNUSED_VARIABLE(n0); EIGEN_UNUSED_VARIABLE(n1); } inline void inv2( Complex * dst,const Complex *src,int n0,int n1) { EIGEN_UNUSED_VARIABLE(dst); EIGEN_UNUSED_VARIABLE(src); EIGEN_UNUSED_VARIABLE(n0); EIGEN_UNUSED_VARIABLE(n1); } // real-to-complex forward FFT // perform two FFTs of src even and src odd // then twiddle to recombine them into the half-spectrum format // then fill in the conjugate symmetric half inline void fwd( Complex * dst,const Scalar * src,int nfft) { if ( nfft&3 ) { // use generic mode for odd m_tmpBuf1.resize(nfft); get_plan(nfft,false).work(0, &m_tmpBuf1[0], src, 1,1); std::copy(m_tmpBuf1.begin(),m_tmpBuf1.begin()+(nfft>>1)+1,dst ); }else{ int ncfft = nfft>>1; int ncfft2 = nfft>>2; Complex * rtw = real_twiddles(ncfft2); // use optimized mode for even real fwd( dst, reinterpret_cast<const Complex*> (src), ncfft); Complex dc = dst[0].real() + dst[0].imag(); Complex nyquist = dst[0].real() - dst[0].imag(); int k; for ( k=1;k <= ncfft2 ; ++k ) { Complex fpk = dst[k]; Complex fpnk = conj(dst[ncfft-k]); Complex f1k = fpk + fpnk; Complex f2k = fpk - fpnk; Complex tw= f2k * rtw[k-1]; dst[k] = (f1k + tw) * Scalar(.5); dst[ncfft-k] = conj(f1k -tw)*Scalar(.5); } dst[0] = dc; dst[ncfft] = nyquist; } } // inverse complex-to-complex inline void inv(Complex * dst,const Complex *src,int nfft) { get_plan(nfft,true).work(0, dst, src, 1,1); } // half-complex to scalar inline void inv( Scalar * dst,const Complex * src,int nfft) { if (nfft&3) { m_tmpBuf1.resize(nfft); m_tmpBuf2.resize(nfft); std::copy(src,src+(nfft>>1)+1,m_tmpBuf1.begin() ); for (int k=1;k<(nfft>>1)+1;++k) m_tmpBuf1[nfft-k] = conj(m_tmpBuf1[k]); inv(&m_tmpBuf2[0],&m_tmpBuf1[0],nfft); for (int k=0;k<nfft;++k) dst[k] = m_tmpBuf2[k].real(); }else{ // optimized version for multiple of 4 int ncfft = nfft>>1; int ncfft2 = nfft>>2; Complex * rtw = real_twiddles(ncfft2); m_tmpBuf1.resize(ncfft); m_tmpBuf1[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() ); for (int k = 1; k <= ncfft / 2; ++k) { Complex fk = src[k]; Complex fnkc = conj(src[ncfft-k]); Complex fek = fk + fnkc; Complex tmp = fk - fnkc; Complex fok = tmp * conj(rtw[k-1]); m_tmpBuf1[k] = fek + fok; m_tmpBuf1[ncfft-k] = conj(fek - fok); } get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf1[0], 1,1); } } protected: typedef kiss_cpx_fft<Scalar> PlanData; typedef std::map<int,PlanData> PlanMap; PlanMap m_plans; std::map<int, std::vector<Complex> > m_realTwiddles; std::vector<Complex> m_tmpBuf1; std::vector<Complex> m_tmpBuf2; inline int PlanKey(int nfft, bool isinverse) const { return (nfft<<1) | int(isinverse); } inline PlanData & get_plan(int nfft, bool inverse) { // TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles PlanData & pd = m_plans[ PlanKey(nfft,inverse) ]; if ( pd.m_twiddles.size() == 0 ) { pd.make_twiddles(nfft,inverse); pd.factorize(nfft); } return pd; } inline Complex * real_twiddles(int ncfft2) { using std::acos; std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there if ( (int)twidref.size() != ncfft2 ) { twidref.resize(ncfft2); int ncfft= ncfft2<<1; Scalar pi = acos( Scalar(-1) ); for (int k=1;k<=ncfft2;++k) twidref[k-1] = exp( Complex(0,-pi * (Scalar(k) / ncfft + Scalar(.5)) ) ); } return &twidref[0]; } }; } // end namespace internal } // end namespace Eigen /* vim: set filetype=cpp et sw=2 ts=2 ai: */