// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_GSL_HELPER #define EIGEN_GSL_HELPER #include <Eigen/Core> #include <gsl/gsl_blas.h> #include <gsl/gsl_multifit.h> #include <gsl/gsl_eigen.h> #include <gsl/gsl_linalg.h> #include <gsl/gsl_complex.h> #include <gsl/gsl_complex_math.h> namespace Eigen { template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> struct GslTraits { typedef gsl_matrix* Matrix; typedef gsl_vector* Vector; static Matrix createMatrix(int rows, int cols) { return gsl_matrix_alloc(rows,cols); } static Vector createVector(int size) { return gsl_vector_alloc(size); } static void free(Matrix& m) { gsl_matrix_free(m); m=0; } static void free(Vector& m) { gsl_vector_free(m); m=0; } static void prod(const Matrix& m, const Vector& v, Vector& x) { gsl_blas_dgemv(CblasNoTrans,1,m,v,0,x); } static void cholesky(Matrix& m) { gsl_linalg_cholesky_decomp(m); } static void cholesky_solve(const Matrix& m, const Vector& b, Vector& x) { gsl_linalg_cholesky_solve(m,b,x); } static void eigen_symm(const Matrix& m, Vector& eval, Matrix& evec) { gsl_eigen_symmv_workspace * w = gsl_eigen_symmv_alloc(m->size1); Matrix a = createMatrix(m->size1, m->size2); gsl_matrix_memcpy(a, m); gsl_eigen_symmv(a,eval,evec,w); gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC); gsl_eigen_symmv_free(w); free(a); } static void eigen_symm_gen(const Matrix& m, const Matrix& _b, Vector& eval, Matrix& evec) { gsl_eigen_gensymmv_workspace * w = gsl_eigen_gensymmv_alloc(m->size1); Matrix a = createMatrix(m->size1, m->size2); Matrix b = createMatrix(_b->size1, _b->size2); gsl_matrix_memcpy(a, m); gsl_matrix_memcpy(b, _b); gsl_eigen_gensymmv(a,b,eval,evec,w); gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC); gsl_eigen_gensymmv_free(w); free(a); } }; template<typename Scalar> struct GslTraits<Scalar,true> { typedef gsl_matrix_complex* Matrix; typedef gsl_vector_complex* Vector; static Matrix createMatrix(int rows, int cols) { return gsl_matrix_complex_alloc(rows,cols); } static Vector createVector(int size) { return gsl_vector_complex_alloc(size); } static void free(Matrix& m) { gsl_matrix_complex_free(m); m=0; } static void free(Vector& m) { gsl_vector_complex_free(m); m=0; } static void cholesky(Matrix& m) { gsl_linalg_complex_cholesky_decomp(m); } static void cholesky_solve(const Matrix& m, const Vector& b, Vector& x) { gsl_linalg_complex_cholesky_solve(m,b,x); } static void prod(const Matrix& m, const Vector& v, Vector& x) { gsl_blas_zgemv(CblasNoTrans,gsl_complex_rect(1,0),m,v,gsl_complex_rect(0,0),x); } static void eigen_symm(const Matrix& m, gsl_vector* &eval, Matrix& evec) { gsl_eigen_hermv_workspace * w = gsl_eigen_hermv_alloc(m->size1); Matrix a = createMatrix(m->size1, m->size2); gsl_matrix_complex_memcpy(a, m); gsl_eigen_hermv(a,eval,evec,w); gsl_eigen_hermv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC); gsl_eigen_hermv_free(w); free(a); } static void eigen_symm_gen(const Matrix& m, const Matrix& _b, gsl_vector* &eval, Matrix& evec) { gsl_eigen_genhermv_workspace * w = gsl_eigen_genhermv_alloc(m->size1); Matrix a = createMatrix(m->size1, m->size2); Matrix b = createMatrix(_b->size1, _b->size2); gsl_matrix_complex_memcpy(a, m); gsl_matrix_complex_memcpy(b, _b); gsl_eigen_genhermv(a,b,eval,evec,w); gsl_eigen_hermv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC); gsl_eigen_genhermv_free(w); free(a); } }; template<typename MatrixType> void convert(const MatrixType& m, gsl_matrix* &res) { // if (res) // gsl_matrix_free(res); res = gsl_matrix_alloc(m.rows(), m.cols()); for (int i=0 ; i<m.rows() ; ++i) for (int j=0 ; j<m.cols(); ++j) gsl_matrix_set(res, i, j, m(i,j)); } template<typename MatrixType> void convert(const gsl_matrix* m, MatrixType& res) { res.resize(int(m->size1), int(m->size2)); for (int i=0 ; i<res.rows() ; ++i) for (int j=0 ; j<res.cols(); ++j) res(i,j) = gsl_matrix_get(m,i,j); } template<typename VectorType> void convert(const VectorType& m, gsl_vector* &res) { if (res) gsl_vector_free(res); res = gsl_vector_alloc(m.size()); for (int i=0 ; i<m.size() ; ++i) gsl_vector_set(res, i, m[i]); } template<typename VectorType> void convert(const gsl_vector* m, VectorType& res) { res.resize (m->size); for (int i=0 ; i<res.rows() ; ++i) res[i] = gsl_vector_get(m, i); } template<typename MatrixType> void convert(const MatrixType& m, gsl_matrix_complex* &res) { res = gsl_matrix_complex_alloc(m.rows(), m.cols()); for (int i=0 ; i<m.rows() ; ++i) for (int j=0 ; j<m.cols(); ++j) { gsl_matrix_complex_set(res, i, j, gsl_complex_rect(m(i,j).real(), m(i,j).imag())); } } template<typename MatrixType> void convert(const gsl_matrix_complex* m, MatrixType& res) { res.resize(int(m->size1), int(m->size2)); for (int i=0 ; i<res.rows() ; ++i) for (int j=0 ; j<res.cols(); ++j) res(i,j) = typename MatrixType::Scalar( GSL_REAL(gsl_matrix_complex_get(m,i,j)), GSL_IMAG(gsl_matrix_complex_get(m,i,j))); } template<typename VectorType> void convert(const VectorType& m, gsl_vector_complex* &res) { res = gsl_vector_complex_alloc(m.size()); for (int i=0 ; i<m.size() ; ++i) gsl_vector_complex_set(res, i, gsl_complex_rect(m[i].real(), m[i].imag())); } template<typename VectorType> void convert(const gsl_vector_complex* m, VectorType& res) { res.resize(m->size); for (int i=0 ; i<res.rows() ; ++i) res[i] = typename VectorType::Scalar( GSL_REAL(gsl_vector_complex_get(m, i)), GSL_IMAG(gsl_vector_complex_get(m, i))); } } #endif // EIGEN_GSL_HELPER