// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <functional> #include <Eigen/Array> using namespace std; template<typename Scalar> struct AddIfNull { const Scalar operator() (const Scalar a, const Scalar b) const {return a<=1e-3 ? b : a;} enum { Cost = NumTraits<Scalar>::AddCost }; }; template<typename MatrixType> void cwiseops(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; int rows = m.rows(); int cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), m4(rows, cols), mzero = MatrixType::Zero(rows, cols), mones = MatrixType::Ones(rows, cols), identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> ::Identity(rows, rows); VectorType vzero = VectorType::Zero(rows), vones = VectorType::Ones(rows), v3(rows); int r = ei_random<int>(0, rows-1), c = ei_random<int>(0, cols-1); Scalar s1 = ei_random<Scalar>(); // test Zero, Ones, Constant, and the set* variants m3 = MatrixType::Constant(rows, cols, s1); for (int j=0; j<cols; ++j) for (int i=0; i<rows; ++i) { VERIFY_IS_APPROX(mzero(i,j), Scalar(0)); VERIFY_IS_APPROX(mones(i,j), Scalar(1)); VERIFY_IS_APPROX(m3(i,j), s1); } VERIFY(mzero.isZero()); VERIFY(mones.isOnes()); VERIFY(m3.isConstant(s1)); VERIFY(identity.isIdentity()); VERIFY_IS_APPROX(m4.setConstant(s1), m3); VERIFY_IS_APPROX(m4.setConstant(rows,cols,s1), m3); VERIFY_IS_APPROX(m4.setZero(), mzero); VERIFY_IS_APPROX(m4.setZero(rows,cols), mzero); VERIFY_IS_APPROX(m4.setOnes(), mones); VERIFY_IS_APPROX(m4.setOnes(rows,cols), mones); m4.fill(s1); VERIFY_IS_APPROX(m4, m3); VERIFY_IS_APPROX(v3.setConstant(rows, s1), VectorType::Constant(rows,s1)); VERIFY_IS_APPROX(v3.setZero(rows), vzero); VERIFY_IS_APPROX(v3.setOnes(rows), vones); m2 = m2.template binaryExpr<AddIfNull<Scalar> >(mones); VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().abs2()); VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square()); VERIFY_IS_APPROX(m1.cwise().pow(3), m1.cwise().cube()); VERIFY_IS_APPROX(m1 + mones, m1.cwise()+Scalar(1)); VERIFY_IS_APPROX(m1 - mones, m1.cwise()-Scalar(1)); m3 = m1; m3.cwise() += 1; VERIFY_IS_APPROX(m1 + mones, m3); m3 = m1; m3.cwise() -= 1; VERIFY_IS_APPROX(m1 - mones, m3); VERIFY_IS_APPROX(m2, m2.cwise() * mones); VERIFY_IS_APPROX(m1.cwise() * m2, m2.cwise() * m1); m3 = m1; m3.cwise() *= m2; VERIFY_IS_APPROX(m3, m1.cwise() * m2); VERIFY_IS_APPROX(mones, m2.cwise()/m2); if(NumTraits<Scalar>::HasFloatingPoint) { VERIFY_IS_APPROX(m1.cwise() / m2, m1.cwise() * (m2.cwise().inverse())); m3 = m1.cwise().abs().cwise().sqrt(); VERIFY_IS_APPROX(m3.cwise().square(), m1.cwise().abs()); VERIFY_IS_APPROX(m1.cwise().square().cwise().sqrt(), m1.cwise().abs()); VERIFY_IS_APPROX(m1.cwise().abs().cwise().log().cwise().exp() , m1.cwise().abs()); VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square()); m3 = (m1.cwise().abs().cwise()<=RealScalar(0.01)).select(mones,m1); VERIFY_IS_APPROX(m3.cwise().pow(-1), m3.cwise().inverse()); m3 = m1.cwise().abs(); VERIFY_IS_APPROX(m3.cwise().pow(RealScalar(0.5)), m3.cwise().sqrt()); // VERIFY_IS_APPROX(m1.cwise().tan(), m1.cwise().sin().cwise() / m1.cwise().cos()); VERIFY_IS_APPROX(mones, m1.cwise().sin().cwise().square() + m1.cwise().cos().cwise().square()); m3 = m1; m3.cwise() /= m2; VERIFY_IS_APPROX(m3, m1.cwise() / m2); } // check min VERIFY_IS_APPROX( m1.cwise().min(m2), m2.cwise().min(m1) ); VERIFY_IS_APPROX( m1.cwise().min(m1+mones), m1 ); VERIFY_IS_APPROX( m1.cwise().min(m1-mones), m1-mones ); // check max VERIFY_IS_APPROX( m1.cwise().max(m2), m2.cwise().max(m1) ); VERIFY_IS_APPROX( m1.cwise().max(m1-mones), m1 ); VERIFY_IS_APPROX( m1.cwise().max(m1+mones), m1+mones ); VERIFY( (m1.cwise() == m1).all() ); VERIFY( (m1.cwise() != m2).any() ); VERIFY(!(m1.cwise() == (m1+mones)).any() ); if (rows*cols>1) { m3 = m1; m3(r,c) += 1; VERIFY( (m1.cwise() == m3).any() ); VERIFY( !(m1.cwise() == m3).all() ); } VERIFY( (m1.cwise().min(m2).cwise() <= m2).all() ); VERIFY( (m1.cwise().max(m2).cwise() >= m2).all() ); VERIFY( (m1.cwise().min(m2).cwise() < (m1+mones)).all() ); VERIFY( (m1.cwise().max(m2).cwise() > (m1-mones)).all() ); VERIFY( (m1.cwise()<m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).all() ); VERIFY( !(m1.cwise()<m1.unaryExpr(bind2nd(minus<Scalar>(), Scalar(1)))).all() ); VERIFY( !(m1.cwise()>m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).any() ); } void test_eigen2_cwiseop() { for(int i = 0; i < g_repeat ; i++) { CALL_SUBTEST_1( cwiseops(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( cwiseops(Matrix4d()) ); CALL_SUBTEST_3( cwiseops(MatrixXf(3, 3)) ); CALL_SUBTEST_3( cwiseops(MatrixXf(22, 22)) ); CALL_SUBTEST_4( cwiseops(MatrixXi(8, 12)) ); CALL_SUBTEST_5( cwiseops(MatrixXd(20, 20)) ); } }