// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include <iostream> #include <fstream> #include <Eigen/SparseCore> #include <bench/BenchTimer.h> #include <cstdlib> #include <string> #include <Eigen/Cholesky> #include <Eigen/Jacobi> #include <Eigen/Householder> #include <Eigen/IterativeLinearSolvers> #include <unsupported/Eigen/IterativeSolvers> #include <Eigen/LU> #include <unsupported/Eigen/SparseExtra> #include <Eigen/SparseLU> #include "spbenchstyle.h" #ifdef EIGEN_METIS_SUPPORT #include <Eigen/MetisSupport> #endif #ifdef EIGEN_CHOLMOD_SUPPORT #include <Eigen/CholmodSupport> #endif #ifdef EIGEN_UMFPACK_SUPPORT #include <Eigen/UmfPackSupport> #endif #ifdef EIGEN_PARDISO_SUPPORT #include <Eigen/PardisoSupport> #endif #ifdef EIGEN_SUPERLU_SUPPORT #include <Eigen/SuperLUSupport> #endif #ifdef EIGEN_PASTIX_SUPPORT #include <Eigen/PaStiXSupport> #endif // CONSTANTS #define EIGEN_UMFPACK 10 #define EIGEN_SUPERLU 20 #define EIGEN_PASTIX 30 #define EIGEN_PARDISO 40 #define EIGEN_SPARSELU_COLAMD 50 #define EIGEN_SPARSELU_METIS 51 #define EIGEN_BICGSTAB 60 #define EIGEN_BICGSTAB_ILUT 61 #define EIGEN_GMRES 70 #define EIGEN_GMRES_ILUT 71 #define EIGEN_SIMPLICIAL_LDLT 80 #define EIGEN_CHOLMOD_LDLT 90 #define EIGEN_PASTIX_LDLT 100 #define EIGEN_PARDISO_LDLT 110 #define EIGEN_SIMPLICIAL_LLT 120 #define EIGEN_CHOLMOD_SUPERNODAL_LLT 130 #define EIGEN_CHOLMOD_SIMPLICIAL_LLT 140 #define EIGEN_PASTIX_LLT 150 #define EIGEN_PARDISO_LLT 160 #define EIGEN_CG 170 #define EIGEN_CG_PRECOND 180 using namespace Eigen; using namespace std; // Global variables for input parameters int MaximumIters; // Maximum number of iterations double RelErr; // Relative error of the computed solution double best_time_val; // Current best time overall solvers int best_time_id; // id of the best solver for the current system template<typename T> inline typename NumTraits<T>::Real test_precision() { return NumTraits<T>::dummy_precision(); } template<> inline float test_precision<float>() { return 1e-3f; } template<> inline double test_precision<double>() { return 1e-6; } template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); } template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); } void printStatheader(std::ofstream& out) { // Print XML header // NOTE It would have been much easier to write these XML documents using external libraries like tinyXML or Xerces-C++. out << "<?xml version='1.0' encoding='UTF-8'?> \n"; out << "<?xml-stylesheet type='text/xsl' href='#stylesheet' ?> \n"; out << "<!DOCTYPE BENCH [\n<!ATTLIST xsl:stylesheet\n id\t ID #REQUIRED>\n]>"; out << "\n\n<!-- Generated by the Eigen library -->\n"; out << "\n<BENCH> \n" ; //root XML element // Print the xsl style section printBenchStyle(out); // List all available solvers out << " <AVAILSOLVER> \n"; #ifdef EIGEN_UMFPACK_SUPPORT out <<" <SOLVER ID='" << EIGEN_UMFPACK << "'>\n"; out << " <TYPE> LU </TYPE> \n"; out << " <PACKAGE> UMFPACK </PACKAGE> \n"; out << " </SOLVER> \n"; #endif #ifdef EIGEN_SUPERLU_SUPPORT out <<" <SOLVER ID='" << EIGEN_SUPERLU << "'>\n"; out << " <TYPE> LU </TYPE> \n"; out << " <PACKAGE> SUPERLU </PACKAGE> \n"; out << " </SOLVER> \n"; #endif #ifdef EIGEN_CHOLMOD_SUPPORT out <<" <SOLVER ID='" << EIGEN_CHOLMOD_SIMPLICIAL_LLT << "'>\n"; out << " <TYPE> LLT SP</TYPE> \n"; out << " <PACKAGE> CHOLMOD </PACKAGE> \n"; out << " </SOLVER> \n"; out <<" <SOLVER ID='" << EIGEN_CHOLMOD_SUPERNODAL_LLT << "'>\n"; out << " <TYPE> LLT</TYPE> \n"; out << " <PACKAGE> CHOLMOD </PACKAGE> \n"; out << " </SOLVER> \n"; out <<" <SOLVER ID='" << EIGEN_CHOLMOD_LDLT << "'>\n"; out << " <TYPE> LDLT </TYPE> \n"; out << " <PACKAGE> CHOLMOD </PACKAGE> \n"; out << " </SOLVER> \n"; #endif #ifdef EIGEN_PARDISO_SUPPORT out <<" <SOLVER ID='" << EIGEN_PARDISO << "'>\n"; out << " <TYPE> LU </TYPE> \n"; out << " <PACKAGE> PARDISO </PACKAGE> \n"; out << " </SOLVER> \n"; out <<" <SOLVER ID='" << EIGEN_PARDISO_LLT << "'>\n"; out << " <TYPE> LLT </TYPE> \n"; out << " <PACKAGE> PARDISO </PACKAGE> \n"; out << " </SOLVER> \n"; out <<" <SOLVER ID='" << EIGEN_PARDISO_LDLT << "'>\n"; out << " <TYPE> LDLT </TYPE> \n"; out << " <PACKAGE> PARDISO </PACKAGE> \n"; out << " </SOLVER> \n"; #endif #ifdef EIGEN_PASTIX_SUPPORT out <<" <SOLVER ID='" << EIGEN_PASTIX << "'>\n"; out << " <TYPE> LU </TYPE> \n"; out << " <PACKAGE> PASTIX </PACKAGE> \n"; out << " </SOLVER> \n"; out <<" <SOLVER ID='" << EIGEN_PASTIX_LLT << "'>\n"; out << " <TYPE> LLT </TYPE> \n"; out << " <PACKAGE> PASTIX </PACKAGE> \n"; out << " </SOLVER> \n"; out <<" <SOLVER ID='" << EIGEN_PASTIX_LDLT << "'>\n"; out << " <TYPE> LDLT </TYPE> \n"; out << " <PACKAGE> PASTIX </PACKAGE> \n"; out << " </SOLVER> \n"; #endif out <<" <SOLVER ID='" << EIGEN_BICGSTAB << "'>\n"; out << " <TYPE> BICGSTAB </TYPE> \n"; out << " <PACKAGE> EIGEN </PACKAGE> \n"; out << " </SOLVER> \n"; out <<" <SOLVER ID='" << EIGEN_BICGSTAB_ILUT << "'>\n"; out << " <TYPE> BICGSTAB_ILUT </TYPE> \n"; out << " <PACKAGE> EIGEN </PACKAGE> \n"; out << " </SOLVER> \n"; out <<" <SOLVER ID='" << EIGEN_GMRES_ILUT << "'>\n"; out << " <TYPE> GMRES_ILUT </TYPE> \n"; out << " <PACKAGE> EIGEN </PACKAGE> \n"; out << " </SOLVER> \n"; out <<" <SOLVER ID='" << EIGEN_SIMPLICIAL_LDLT << "'>\n"; out << " <TYPE> LDLT </TYPE> \n"; out << " <PACKAGE> EIGEN </PACKAGE> \n"; out << " </SOLVER> \n"; out <<" <SOLVER ID='" << EIGEN_SIMPLICIAL_LLT << "'>\n"; out << " <TYPE> LLT </TYPE> \n"; out << " <PACKAGE> EIGEN </PACKAGE> \n"; out << " </SOLVER> \n"; out <<" <SOLVER ID='" << EIGEN_CG << "'>\n"; out << " <TYPE> CG </TYPE> \n"; out << " <PACKAGE> EIGEN </PACKAGE> \n"; out << " </SOLVER> \n"; out <<" <SOLVER ID='" << EIGEN_SPARSELU_COLAMD << "'>\n"; out << " <TYPE> LU_COLAMD </TYPE> \n"; out << " <PACKAGE> EIGEN </PACKAGE> \n"; out << " </SOLVER> \n"; #ifdef EIGEN_METIS_SUPPORT out <<" <SOLVER ID='" << EIGEN_SPARSELU_METIS << "'>\n"; out << " <TYPE> LU_METIS </TYPE> \n"; out << " <PACKAGE> EIGEN </PACKAGE> \n"; out << " </SOLVER> \n"; #endif out << " </AVAILSOLVER> \n"; } template<typename Solver, typename Scalar> void call_solver(Solver &solver, const int solver_id, const typename Solver::MatrixType& A, const Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX,std::ofstream& statbuf) { double total_time; double compute_time; double solve_time; double rel_error; Matrix<Scalar, Dynamic, 1> x; BenchTimer timer; timer.reset(); timer.start(); solver.compute(A); if (solver.info() != Success) { std::cerr << "Solver failed ... \n"; return; } timer.stop(); compute_time = timer.value(); statbuf << " <TIME>\n"; statbuf << " <COMPUTE> " << timer.value() << "</COMPUTE>\n"; std::cout<< "COMPUTE TIME : " << timer.value() <<std::endl; timer.reset(); timer.start(); x = solver.solve(b); if (solver.info() == NumericalIssue) { std::cerr << "Solver failed ... \n"; return; } timer.stop(); solve_time = timer.value(); statbuf << " <SOLVE> " << timer.value() << "</SOLVE>\n"; std::cout<< "SOLVE TIME : " << timer.value() <<std::endl; total_time = solve_time + compute_time; statbuf << " <TOTAL> " << total_time << "</TOTAL>\n"; std::cout<< "TOTAL TIME : " << total_time <<std::endl; statbuf << " </TIME>\n"; // Verify the relative error if(refX.size() != 0) rel_error = (refX - x).norm()/refX.norm(); else { // Compute the relative residual norm Matrix<Scalar, Dynamic, 1> temp; temp = A * x; rel_error = (b-temp).norm()/b.norm(); } statbuf << " <ERROR> " << rel_error << "</ERROR>\n"; std::cout<< "REL. ERROR : " << rel_error << "\n\n" ; if ( rel_error <= RelErr ) { // check the best time if convergence if(!best_time_val || (best_time_val > total_time)) { best_time_val = total_time; best_time_id = solver_id; } } } template<typename Solver, typename Scalar> void call_directsolver(Solver& solver, const int solver_id, const typename Solver::MatrixType& A, const Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX, std::string& statFile) { std::ofstream statbuf(statFile.c_str(), std::ios::app); statbuf << " <SOLVER_STAT ID='" << solver_id <<"'>\n"; call_solver(solver, solver_id, A, b, refX,statbuf); statbuf << " </SOLVER_STAT>\n"; statbuf.close(); } template<typename Solver, typename Scalar> void call_itersolver(Solver &solver, const int solver_id, const typename Solver::MatrixType& A, const Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX, std::string& statFile) { solver.setTolerance(RelErr); solver.setMaxIterations(MaximumIters); std::ofstream statbuf(statFile.c_str(), std::ios::app); statbuf << " <SOLVER_STAT ID='" << solver_id <<"'>\n"; call_solver(solver, solver_id, A, b, refX,statbuf); statbuf << " <ITER> "<< solver.iterations() << "</ITER>\n"; statbuf << " </SOLVER_STAT>\n"; std::cout << "ITERATIONS : " << solver.iterations() <<"\n\n\n"; } template <typename Scalar> void SelectSolvers(const SparseMatrix<Scalar>&A, unsigned int sym, Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX, std::string& statFile) { typedef SparseMatrix<Scalar, ColMajor> SpMat; // First, deal with Nonsymmetric and symmetric matrices best_time_id = 0; best_time_val = 0.0; //UMFPACK #ifdef EIGEN_UMFPACK_SUPPORT { cout << "Solving with UMFPACK LU ... \n"; UmfPackLU<SpMat> solver; call_directsolver(solver, EIGEN_UMFPACK, A, b, refX,statFile); } #endif //SuperLU #ifdef EIGEN_SUPERLU_SUPPORT { cout << "\nSolving with SUPERLU ... \n"; SuperLU<SpMat> solver; call_directsolver(solver, EIGEN_SUPERLU, A, b, refX,statFile); } #endif // PaStix LU #ifdef EIGEN_PASTIX_SUPPORT { cout << "\nSolving with PASTIX LU ... \n"; PastixLU<SpMat> solver; call_directsolver(solver, EIGEN_PASTIX, A, b, refX,statFile) ; } #endif //PARDISO LU #ifdef EIGEN_PARDISO_SUPPORT { cout << "\nSolving with PARDISO LU ... \n"; PardisoLU<SpMat> solver; call_directsolver(solver, EIGEN_PARDISO, A, b, refX,statFile); } #endif // Eigen SparseLU METIS cout << "\n Solving with Sparse LU AND COLAMD ... \n"; SparseLU<SpMat, COLAMDOrdering<int> > solver; call_directsolver(solver, EIGEN_SPARSELU_COLAMD, A, b, refX, statFile); // Eigen SparseLU METIS #ifdef EIGEN_METIS_SUPPORT { cout << "\n Solving with Sparse LU AND METIS ... \n"; SparseLU<SpMat, MetisOrdering<int> > solver; call_directsolver(solver, EIGEN_SPARSELU_METIS, A, b, refX, statFile); } #endif //BiCGSTAB { cout << "\nSolving with BiCGSTAB ... \n"; BiCGSTAB<SpMat> solver; call_itersolver(solver, EIGEN_BICGSTAB, A, b, refX,statFile); } //BiCGSTAB+ILUT { cout << "\nSolving with BiCGSTAB and ILUT ... \n"; BiCGSTAB<SpMat, IncompleteLUT<Scalar> > solver; call_itersolver(solver, EIGEN_BICGSTAB_ILUT, A, b, refX,statFile); } //GMRES // { // cout << "\nSolving with GMRES ... \n"; // GMRES<SpMat> solver; // call_itersolver(solver, EIGEN_GMRES, A, b, refX,statFile); // } //GMRES+ILUT { cout << "\nSolving with GMRES and ILUT ... \n"; GMRES<SpMat, IncompleteLUT<Scalar> > solver; call_itersolver(solver, EIGEN_GMRES_ILUT, A, b, refX,statFile); } // Hermitian and not necessarily positive-definites if (sym != NonSymmetric) { // Internal Cholesky { cout << "\nSolving with Simplicial LDLT ... \n"; SimplicialLDLT<SpMat, Lower> solver; call_directsolver(solver, EIGEN_SIMPLICIAL_LDLT, A, b, refX,statFile); } // CHOLMOD #ifdef EIGEN_CHOLMOD_SUPPORT { cout << "\nSolving with CHOLMOD LDLT ... \n"; CholmodDecomposition<SpMat, Lower> solver; solver.setMode(CholmodLDLt); call_directsolver(solver,EIGEN_CHOLMOD_LDLT, A, b, refX,statFile); } #endif //PASTIX LLT #ifdef EIGEN_PASTIX_SUPPORT { cout << "\nSolving with PASTIX LDLT ... \n"; PastixLDLT<SpMat, Lower> solver; call_directsolver(solver,EIGEN_PASTIX_LDLT, A, b, refX,statFile); } #endif //PARDISO LLT #ifdef EIGEN_PARDISO_SUPPORT { cout << "\nSolving with PARDISO LDLT ... \n"; PardisoLDLT<SpMat, Lower> solver; call_directsolver(solver,EIGEN_PARDISO_LDLT, A, b, refX,statFile); } #endif } // Now, symmetric POSITIVE DEFINITE matrices if (sym == SPD) { //Internal Sparse Cholesky { cout << "\nSolving with SIMPLICIAL LLT ... \n"; SimplicialLLT<SpMat, Lower> solver; call_directsolver(solver,EIGEN_SIMPLICIAL_LLT, A, b, refX,statFile); } // CHOLMOD #ifdef EIGEN_CHOLMOD_SUPPORT { // CholMOD SuperNodal LLT cout << "\nSolving with CHOLMOD LLT (Supernodal)... \n"; CholmodDecomposition<SpMat, Lower> solver; solver.setMode(CholmodSupernodalLLt); call_directsolver(solver,EIGEN_CHOLMOD_SUPERNODAL_LLT, A, b, refX,statFile); // CholMod Simplicial LLT cout << "\nSolving with CHOLMOD LLT (Simplicial) ... \n"; solver.setMode(CholmodSimplicialLLt); call_directsolver(solver,EIGEN_CHOLMOD_SIMPLICIAL_LLT, A, b, refX,statFile); } #endif //PASTIX LLT #ifdef EIGEN_PASTIX_SUPPORT { cout << "\nSolving with PASTIX LLT ... \n"; PastixLLT<SpMat, Lower> solver; call_directsolver(solver,EIGEN_PASTIX_LLT, A, b, refX,statFile); } #endif //PARDISO LLT #ifdef EIGEN_PARDISO_SUPPORT { cout << "\nSolving with PARDISO LLT ... \n"; PardisoLLT<SpMat, Lower> solver; call_directsolver(solver,EIGEN_PARDISO_LLT, A, b, refX,statFile); } #endif // Internal CG { cout << "\nSolving with CG ... \n"; ConjugateGradient<SpMat, Lower> solver; call_itersolver(solver,EIGEN_CG, A, b, refX,statFile); } //CG+IdentityPreconditioner // { // cout << "\nSolving with CG and IdentityPreconditioner ... \n"; // ConjugateGradient<SpMat, Lower, IdentityPreconditioner> solver; // call_itersolver(solver,EIGEN_CG_PRECOND, A, b, refX,statFile); // } } // End SPD matrices } /* Browse all the matrices available in the specified folder * and solve the associated linear system. * The results of each solve are printed in the standard output * and optionally in the provided html file */ template <typename Scalar> void Browse_Matrices(const string folder, bool statFileExists, std::string& statFile, int maxiters, double tol) { MaximumIters = maxiters; // Maximum number of iterations, global variable RelErr = tol; //Relative residual error as stopping criterion for iterative solvers MatrixMarketIterator<Scalar> it(folder); for ( ; it; ++it) { //print the infos for this linear system if(statFileExists) { std::ofstream statbuf(statFile.c_str(), std::ios::app); statbuf << "<LINEARSYSTEM> \n"; statbuf << " <MATRIX> \n"; statbuf << " <NAME> " << it.matname() << " </NAME>\n"; statbuf << " <SIZE> " << it.matrix().rows() << " </SIZE>\n"; statbuf << " <ENTRIES> " << it.matrix().nonZeros() << "</ENTRIES>\n"; if (it.sym()!=NonSymmetric) { statbuf << " <SYMMETRY> Symmetric </SYMMETRY>\n" ; if (it.sym() == SPD) statbuf << " <POSDEF> YES </POSDEF>\n"; else statbuf << " <POSDEF> NO </POSDEF>\n"; } else { statbuf << " <SYMMETRY> NonSymmetric </SYMMETRY>\n" ; statbuf << " <POSDEF> NO </POSDEF>\n"; } statbuf << " </MATRIX> \n"; statbuf.close(); } cout<< "\n\n===================================================== \n"; cout<< " ====== SOLVING WITH MATRIX " << it.matname() << " ====\n"; cout<< " =================================================== \n\n"; Matrix<Scalar, Dynamic, 1> refX; if(it.hasrefX()) refX = it.refX(); // Call all suitable solvers for this linear system SelectSolvers<Scalar>(it.matrix(), it.sym(), it.rhs(), refX, statFile); if(statFileExists) { std::ofstream statbuf(statFile.c_str(), std::ios::app); statbuf << " <BEST_SOLVER ID='"<< best_time_id << "'></BEST_SOLVER>\n"; statbuf << " </LINEARSYSTEM> \n"; statbuf.close(); } } } bool get_options(int argc, char **args, string option, string* value=0) { int idx = 1, found=false; while (idx<argc && !found){ if (option.compare(args[idx]) == 0){ found = true; if(value) *value = args[idx+1]; } idx+=2; } return found; }