/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL ES 2.0 Module * ------------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Depth & stencil tests. *//*--------------------------------------------------------------------*/ #include "es2fDepthStencilTests.hpp" #include "glsFragmentOpUtil.hpp" #include "gluPixelTransfer.hpp" #include "gluStrUtil.hpp" #include "tcuSurface.hpp" #include "tcuRenderTarget.hpp" #include "tcuTestLog.hpp" #include "tcuImageCompare.hpp" #include "tcuCommandLine.hpp" #include "tcuTextureUtil.hpp" #include "deRandom.hpp" #include "deStringUtil.hpp" #include "deMemory.h" #include "deString.h" #include "rrFragmentOperations.hpp" #include "sglrReferenceUtils.hpp" #include <algorithm> #include <sstream> #include "glw.h" namespace deqp { namespace gles2 { namespace Functional { using std::vector; using tcu::IVec2; using tcu::Vec2; using tcu::Vec4; using tcu::TestLog; using std::ostringstream; enum { VIEWPORT_WIDTH = 4*3*4, VIEWPORT_HEIGHT = 4*12, NUM_RANDOM_CASES = 25, NUM_RANDOM_SUB_CASES = 10 }; namespace DepthStencilCaseUtil { struct StencilParams { deUint32 function; int reference; deUint32 compareMask; deUint32 stencilFailOp; deUint32 depthFailOp; deUint32 depthPassOp; deUint32 writeMask; StencilParams (void) : function (0) , reference (0) , compareMask (0) , stencilFailOp (0) , depthFailOp (0) , depthPassOp (0) , writeMask (0) { } }; struct DepthStencilParams { rr::FaceType visibleFace; //!< Quad visible face. bool stencilTestEnabled; StencilParams stencil[rr::FACETYPE_LAST]; bool depthTestEnabled; deUint32 depthFunc; float depth; bool depthWriteMask; DepthStencilParams (void) : visibleFace (rr::FACETYPE_LAST) , stencilTestEnabled (false) , depthTestEnabled (false) , depthFunc (0) , depth (0.0f) , depthWriteMask (false) { } }; tcu::TestLog& operator<< (tcu::TestLog& log, const StencilParams& params) { log << TestLog::Message << " func = " << glu::getCompareFuncStr(params.function) << "\n" << " ref = " << params.reference << "\n" << " compare mask = " << tcu::toHex(params.compareMask) << "\n" << " stencil fail = " << glu::getStencilOpStr(params.stencilFailOp) << "\n" << " depth fail = " << glu::getStencilOpStr(params.depthFailOp) << "\n" << " depth pass = " << glu::getStencilOpStr(params.depthPassOp) << "\n" << " write mask = " << tcu::toHex(params.writeMask) << "\n" << TestLog::EndMessage; return log; } tcu::TestLog& operator<< (tcu::TestLog& log, const DepthStencilParams& params) { log << TestLog::Message << "Stencil test: " << (params.stencilTestEnabled ? "enabled" : "disabled") << TestLog::EndMessage; if (params.stencilTestEnabled) { log << TestLog::Message << "Front-face stencil state: " << TestLog::EndMessage; log << params.stencil[rr::FACETYPE_FRONT]; log << TestLog::Message << "Back-face stencil state: " << TestLog::EndMessage; log << params.stencil[rr::FACETYPE_BACK]; } log << TestLog::Message << "Depth test: " << (params.depthTestEnabled ? "enabled" : "disabled") << TestLog::EndMessage; if (params.depthTestEnabled) { log << TestLog::Message << " func = " << glu::getCompareFuncStr(params.depthFunc) << "\n" " depth value = " << params.depth << "\n" " write mask = " << (params.depthWriteMask ? "true" : "false") << "\n" << TestLog::EndMessage; } log << TestLog::Message << "Triangles are " << (params.visibleFace == rr::FACETYPE_FRONT ? "front" : "back") << "-facing" << TestLog::EndMessage; return log; } struct ClearCommand { rr::WindowRectangle rect; deUint32 buffers; tcu::Vec4 color; int stencil; // \note No depth here - don't use clears for setting depth values; use quad rendering instead. Cleared depths are in [0, 1] to begin with, // whereas rendered depths are given in [-1, 1] and then mapped to [0, 1]; this discrepancy could cause precision issues in depth tests. ClearCommand (void) : rect (0, 0, 0, 0) , buffers (0) , stencil (0) { } ClearCommand (const rr::WindowRectangle& rect_, deUint32 buffers_, const tcu::Vec4& color_, int stencil_) : rect (rect_) , buffers (buffers_) , color (color_) , stencil (stencil_) { } }; struct RenderCommand { DepthStencilParams params; rr::WindowRectangle rect; tcu::Vec4 color; tcu::BVec4 colorMask; RenderCommand (void) : rect(0, 0, 0, 0) { } }; struct RefRenderCommand { gls::FragmentOpUtil::IntegerQuad quad; rr::FragmentOperationState state; }; struct TestRenderTarget { int width; int height; int depthBits; int stencilBits; TestRenderTarget (int width_, int height_, int depthBits_, int stencilBits_) : width (width_) , height (height_) , depthBits (depthBits_) , stencilBits (stencilBits_) { } TestRenderTarget (void) : width (0) , height (0) , depthBits (0) , stencilBits (0) { } }; void getStencilTestValues (int stencilBits, int numValues, int* values) { int numLowest = numValues/2; int numHighest = numValues-numLowest; int maxVal = (1<<stencilBits)-1; for (int ndx = 0; ndx < numLowest; ndx++) values[ndx] = ndx; for (int ndx = 0; ndx < numHighest; ndx++) values[numValues-ndx-1] = maxVal-ndx; } void generateBaseClearAndDepthCommands (const TestRenderTarget& target, vector<ClearCommand>& clearCommands, vector<RenderCommand>& renderCommands) { DE_ASSERT(clearCommands.empty()); DE_ASSERT(renderCommands.empty()); const int numL0CellsX = 4; const int numL0CellsY = 4; const int numL1CellsX = 3; const int numL1CellsY = 1; int cellL0Width = target.width/numL0CellsX; int cellL0Height = target.height/numL0CellsY; int cellL1Width = cellL0Width/numL1CellsX; int cellL1Height = cellL0Height/numL1CellsY; int stencilValues[numL0CellsX*numL0CellsY]; float depthValues[numL1CellsX*numL1CellsY]; if (cellL0Width <= 0 || cellL1Width <= 0 || cellL0Height <= 0 || cellL1Height <= 0) throw tcu::NotSupportedError("Too small render target"); // Fullscreen clear to black. clearCommands.push_back(ClearCommand(rr::WindowRectangle(0, 0, target.width, target.height), GL_COLOR_BUFFER_BIT, Vec4(0.0f, 0.0f, 0.0f, 1.0f), 0)); // Compute stencil values: numL0CellsX*numL0CellsY combinations of lowest and highest bits. getStencilTestValues(target.stencilBits, numL0CellsX*numL0CellsY, &stencilValues[0]); // Compute depth values { int numValues = DE_LENGTH_OF_ARRAY(depthValues); float depthStep = 2.0f/(numValues-1); for (int ndx = 0; ndx < numValues; ndx++) depthValues[ndx] = -1.0f + depthStep*ndx; } for (int y0 = 0; y0 < numL0CellsY; y0++) { for (int x0 = 0; x0 < numL0CellsX; x0++) { int stencilValue = stencilValues[y0*numL0CellsX + x0]; for (int y1 = 0; y1 < numL1CellsY; y1++) { for (int x1 = 0; x1 < numL1CellsX; x1++) { int x = x0*cellL0Width + x1*cellL1Width; int y = y0*cellL0Height + y1*cellL1Height; rr::WindowRectangle cellL1Rect (x, y, cellL1Width, cellL1Height); clearCommands.push_back(ClearCommand(cellL1Rect, GL_STENCIL_BUFFER_BIT, Vec4(0), stencilValue)); RenderCommand renderCmd; renderCmd.params.visibleFace = rr::FACETYPE_FRONT; renderCmd.params.depth = depthValues[y1*numL1CellsX + x1];; renderCmd.params.depthTestEnabled = true; renderCmd.params.depthFunc = GL_ALWAYS; renderCmd.params.depthWriteMask = true; renderCmd.colorMask = tcu::BVec4(false); renderCmd.rect = cellL1Rect; renderCommands.push_back(renderCmd); } } } } } void generateDepthVisualizeCommands (const TestRenderTarget& target, vector<RenderCommand>& commands) { const float epsilon = -0.05f; static const float depthSteps[] = {-1.0f, -0.5f, 0.0f, 0.5f, 1.0f}; int numSteps = DE_LENGTH_OF_ARRAY(depthSteps); const float colorStep = 1.0f / (float)(numSteps-1); for (int ndx = 0; ndx < numSteps; ndx++) { RenderCommand cmd; cmd.params.visibleFace = rr::FACETYPE_FRONT; cmd.rect = rr::WindowRectangle(0, 0, target.width, target.height); cmd.color = Vec4(0.0f, 0.0f, colorStep*ndx, 0.0f); cmd.colorMask = tcu::BVec4(false, false, true, false); cmd.params.depth = depthSteps[ndx]+epsilon; cmd.params.depthTestEnabled = true; cmd.params.depthFunc = GL_LESS; cmd.params.depthWriteMask = false; commands.push_back(cmd); } } void generateStencilVisualizeCommands (const TestRenderTarget& target, vector<RenderCommand>& commands) { const int numValues = 4*4; float colorStep = 1.0f / numValues; // 0 is reserved for non-matching. int stencilValues[numValues]; getStencilTestValues(target.stencilBits, numValues, &stencilValues[0]); for (int ndx = 0; ndx < numValues; ndx++) { RenderCommand cmd; cmd.params.visibleFace = rr::FACETYPE_FRONT; cmd.rect = rr::WindowRectangle(0, 0, target.width, target.height); cmd.color = Vec4(0.0f, colorStep*(ndx+1), 0.0f, 0.0f); cmd.colorMask = tcu::BVec4(false, true, false, false); cmd.params.stencilTestEnabled = true; cmd.params.stencil[rr::FACETYPE_FRONT].function = GL_EQUAL; cmd.params.stencil[rr::FACETYPE_FRONT].reference = stencilValues[ndx]; cmd.params.stencil[rr::FACETYPE_FRONT].compareMask = ~0u; cmd.params.stencil[rr::FACETYPE_FRONT].stencilFailOp = GL_KEEP; cmd.params.stencil[rr::FACETYPE_FRONT].depthFailOp = GL_KEEP; cmd.params.stencil[rr::FACETYPE_FRONT].depthPassOp = GL_KEEP; cmd.params.stencil[rr::FACETYPE_FRONT].writeMask = 0u; cmd.params.stencil[rr::FACETYPE_BACK] = cmd.params.stencil[rr::FACETYPE_FRONT]; commands.push_back(cmd); } } void translateStencilState (const StencilParams& src, rr::StencilState& dst) { dst.func = sglr::rr_util::mapGLTestFunc(src.function); dst.ref = src.reference; dst.compMask = src.compareMask; dst.sFail = sglr::rr_util::mapGLStencilOp(src.stencilFailOp); dst.dpFail = sglr::rr_util::mapGLStencilOp(src.depthFailOp); dst.dpPass = sglr::rr_util::mapGLStencilOp(src.depthPassOp); dst.writeMask = src.writeMask; } void translateCommand (const RenderCommand& src, RefRenderCommand& dst, const TestRenderTarget& renderTarget) { const float far = 1.0f; const float near = 0.0f; bool hasDepth = renderTarget.depthBits > 0; bool hasStencil = renderTarget.stencilBits > 0; bool isFrontFacing = src.params.visibleFace == rr::FACETYPE_FRONT; dst.quad.posA = IVec2(isFrontFacing ? src.rect.left : (src.rect.left+src.rect.width-1), src.rect.bottom); dst.quad.posB = IVec2(isFrontFacing ? (src.rect.left+src.rect.width-1) : src.rect.left, src.rect.bottom+src.rect.height-1); std::fill(DE_ARRAY_BEGIN(dst.quad.color), DE_ARRAY_END(dst.quad.color), src.color); std::fill(DE_ARRAY_BEGIN(dst.quad.depth), DE_ARRAY_END(dst.quad.depth), ((far-near)/2.0f) * src.params.depth + (near+far)/2.0f); dst.state.colorMask = src.colorMask; dst.state.scissorTestEnabled = false; dst.state.stencilTestEnabled = hasStencil && src.params.stencilTestEnabled; dst.state.depthTestEnabled = hasDepth && src.params.depthTestEnabled; dst.state.blendMode = rr::BLENDMODE_NONE; dst.state.numStencilBits = renderTarget.stencilBits; if (dst.state.depthTestEnabled) { dst.state.depthFunc = sglr::rr_util::mapGLTestFunc(src.params.depthFunc); dst.state.depthMask = src.params.depthWriteMask; } if (dst.state.stencilTestEnabled) { translateStencilState(src.params.stencil[rr::FACETYPE_BACK], dst.state.stencilStates[rr::FACETYPE_BACK]); translateStencilState(src.params.stencil[rr::FACETYPE_FRONT], dst.state.stencilStates[rr::FACETYPE_FRONT]); } } void render (const vector<ClearCommand>& clears, int viewportX, int viewportY) { glEnable(GL_SCISSOR_TEST); for (int ndx = 0; ndx < (int)clears.size(); ndx++) { const ClearCommand& clear = clears[ndx]; if (clear.buffers & GL_COLOR_BUFFER_BIT) glClearColor(clear.color.x(), clear.color.y(), clear.color.z(), clear.color.w()); if (clear.buffers & GL_STENCIL_BUFFER_BIT) glClearStencil(clear.stencil); DE_ASSERT(clear.buffers == (clear.buffers & (GL_COLOR_BUFFER_BIT|GL_STENCIL_BUFFER_BIT))); // \note Don't use clear for depths. glScissor(clear.rect.left+viewportX, clear.rect.bottom+viewportY, clear.rect.width, clear.rect.height); glClear(clear.buffers); } glDisable(GL_SCISSOR_TEST); } void render (gls::FragmentOpUtil::QuadRenderer& renderer, const RenderCommand& command, int viewportX, int viewportY) { if (command.params.stencilTestEnabled) { glEnable(GL_STENCIL_TEST); for (int face = 0; face < rr::FACETYPE_LAST; face++) { deUint32 glFace = face == rr::FACETYPE_BACK ? GL_BACK : GL_FRONT; const StencilParams& sParams = command.params.stencil[face]; glStencilFuncSeparate(glFace, sParams.function, sParams.reference, sParams.compareMask); glStencilOpSeparate(glFace, sParams.stencilFailOp, sParams.depthFailOp, sParams.depthPassOp); glStencilMaskSeparate(glFace, sParams.writeMask); } } else glDisable(GL_STENCIL_TEST); if (command.params.depthTestEnabled) { glEnable(GL_DEPTH_TEST); glDepthFunc(command.params.depthFunc); glDepthMask(command.params.depthWriteMask ? GL_TRUE : GL_FALSE); } else glDisable(GL_DEPTH_TEST); glColorMask(command.colorMask[0] ? GL_TRUE : GL_FALSE, command.colorMask[1] ? GL_TRUE : GL_FALSE, command.colorMask[2] ? GL_TRUE : GL_FALSE, command.colorMask[3] ? GL_TRUE : GL_FALSE); glViewport(command.rect.left+viewportX, command.rect.bottom+viewportY, command.rect.width, command.rect.height); gls::FragmentOpUtil::Quad quad; bool isFrontFacing = command.params.visibleFace == rr::FACETYPE_FRONT; quad.posA = Vec2(isFrontFacing ? -1.0f : 1.0f, -1.0f); quad.posB = Vec2(isFrontFacing ? 1.0f : -1.0f, 1.0f); std::fill(DE_ARRAY_BEGIN(quad.color), DE_ARRAY_END(quad.color), command.color); std::fill(DE_ARRAY_BEGIN(quad.depth), DE_ARRAY_END(quad.depth), command.params.depth); renderer.render(quad); GLU_CHECK(); } void renderReference (const vector<ClearCommand>& clears, const tcu::PixelBufferAccess& dstColor, const tcu::PixelBufferAccess& dstStencil, int stencilBits) { for (int ndx = 0; ndx < (int)clears.size(); ndx++) { const ClearCommand& clear = clears[ndx]; if (clear.buffers & GL_COLOR_BUFFER_BIT) tcu::clear(tcu::getSubregion(dstColor, clear.rect.left, clear.rect.bottom, clear.rect.width, clear.rect.height), clear.color); if (clear.buffers & GL_STENCIL_BUFFER_BIT && stencilBits > 0) { int maskedVal = clear.stencil & ((1<<stencilBits)-1); tcu::clearStencil(tcu::getSubregion(dstStencil, clear.rect.left, clear.rect.bottom, clear.rect.width, clear.rect.height), maskedVal); } DE_ASSERT(clear.buffers == (clear.buffers & (GL_COLOR_BUFFER_BIT|GL_STENCIL_BUFFER_BIT))); // \note Don't use clear for depths. } } } // DepthStencilCaseUtil using namespace DepthStencilCaseUtil; class DepthStencilCase : public TestCase { public: DepthStencilCase (Context& context, const char* name, const char* desc, const std::vector<DepthStencilParams>& cases); ~DepthStencilCase (void); void init (void); void deinit (void); IterateResult iterate (void); private: DepthStencilCase (const DepthStencilCase& other); DepthStencilCase& operator= (const DepthStencilCase& other); std::vector<DepthStencilParams> m_cases; TestRenderTarget m_renderTarget; std::vector<ClearCommand> m_baseClears; std::vector<RenderCommand> m_baseDepthRenders; std::vector<RenderCommand> m_visualizeCommands; std::vector<RefRenderCommand> m_refBaseDepthRenders; std::vector<RefRenderCommand> m_refVisualizeCommands; gls::FragmentOpUtil::QuadRenderer* m_renderer; tcu::Surface* m_refColorBuffer; tcu::TextureLevel* m_refDepthBuffer; tcu::TextureLevel* m_refStencilBuffer; gls::FragmentOpUtil::ReferenceQuadRenderer* m_refRenderer; int m_iterNdx; }; DepthStencilCase::DepthStencilCase (Context& context, const char* name, const char* desc, const std::vector<DepthStencilParams>& cases) : TestCase (context, name, desc) , m_cases (cases) , m_renderer (DE_NULL) , m_refColorBuffer (DE_NULL) , m_refDepthBuffer (DE_NULL) , m_refStencilBuffer (DE_NULL) , m_refRenderer (DE_NULL) , m_iterNdx (0) { } DepthStencilCase::~DepthStencilCase (void) { delete m_renderer; delete m_refColorBuffer; delete m_refDepthBuffer; delete m_refStencilBuffer; delete m_refRenderer; } void DepthStencilCase::init (void) { DE_ASSERT(!m_renderer && !m_refColorBuffer && !m_refDepthBuffer && !m_refStencilBuffer && !m_refRenderer); // Compute render target. int viewportW = de::min<int>(m_context.getRenderTarget().getWidth(), VIEWPORT_WIDTH); int viewportH = de::min<int>(m_context.getRenderTarget().getHeight(), VIEWPORT_HEIGHT); m_renderTarget = TestRenderTarget(viewportW, viewportH, m_context.getRenderTarget().getDepthBits(), m_context.getRenderTarget().getStencilBits()); // Compute base clears & visualization commands. generateBaseClearAndDepthCommands(m_renderTarget, m_baseClears, m_baseDepthRenders); generateDepthVisualizeCommands(m_renderTarget, m_visualizeCommands); generateStencilVisualizeCommands(m_renderTarget, m_visualizeCommands); // Translate to ref commands. m_refBaseDepthRenders.resize(m_baseDepthRenders.size()); for (int ndx = 0; ndx < (int)m_baseDepthRenders.size(); ndx++) translateCommand(m_baseDepthRenders[ndx], m_refBaseDepthRenders[ndx], m_renderTarget); m_refVisualizeCommands.resize(m_visualizeCommands.size()); for (int ndx = 0; ndx < (int)m_visualizeCommands.size(); ndx++) translateCommand(m_visualizeCommands[ndx], m_refVisualizeCommands[ndx], m_renderTarget); m_renderer = new gls::FragmentOpUtil::QuadRenderer(m_context.getRenderContext(), glu::GLSL_VERSION_100_ES); m_refColorBuffer = new tcu::Surface(viewportW, viewportH); m_refDepthBuffer = new tcu::TextureLevel(tcu::TextureFormat(tcu::TextureFormat::D, tcu::TextureFormat::FLOAT), viewportW, viewportH); m_refStencilBuffer = new tcu::TextureLevel(tcu::TextureFormat(tcu::TextureFormat::S, tcu::TextureFormat::UNSIGNED_INT32), viewportW, viewportH); m_refRenderer = new gls::FragmentOpUtil::ReferenceQuadRenderer(); m_iterNdx = 0; m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); } void DepthStencilCase::deinit (void) { delete m_renderer; delete m_refColorBuffer; delete m_refDepthBuffer; delete m_refStencilBuffer; delete m_refRenderer; m_renderer = DE_NULL; m_refColorBuffer = DE_NULL; m_refDepthBuffer = DE_NULL; m_refStencilBuffer = DE_NULL; m_refRenderer = DE_NULL; m_baseClears.clear(); m_baseDepthRenders.clear(); m_visualizeCommands.clear(); m_refBaseDepthRenders.clear(); m_refVisualizeCommands.clear(); } DepthStencilCase::IterateResult DepthStencilCase::iterate (void) { de::Random rnd (deStringHash(getName()) ^ deInt32Hash(m_iterNdx)); int viewportX = rnd.getInt(0, m_context.getRenderTarget().getWidth()-m_renderTarget.width); int viewportY = rnd.getInt(0, m_context.getRenderTarget().getHeight()-m_renderTarget.height); RenderCommand testCmd; tcu::Surface renderedImg (m_renderTarget.width, m_renderTarget.height); tcu::RGBA threshold = m_context.getRenderTarget().getPixelFormat().getColorThreshold(); // Fill in test command for this iteration. testCmd.color = Vec4(1.0f, 0.0f, 0.0f, 1.0f); testCmd.colorMask = tcu::BVec4(true); testCmd.rect = rr::WindowRectangle(0, 0, m_renderTarget.width, m_renderTarget.height); testCmd.params = m_cases[m_iterNdx]; if (m_iterNdx == 0) { m_testCtx.getLog() << TestLog::Message << "Channels:\n" " RED: passing pixels\n" " GREEN: stencil values\n" " BLUE: depth values" << TestLog::EndMessage; } if (m_cases.size() > 1) m_testCtx.getLog() << TestLog::Message << "Iteration " << m_iterNdx << "..." << TestLog::EndMessage; m_testCtx.getLog() << m_cases[m_iterNdx]; // Submit render commands to gl GL. // Base clears. render(m_baseClears, viewportX, viewportY); // Base depths. for (vector<RenderCommand>::const_iterator cmd = m_baseDepthRenders.begin(); cmd != m_baseDepthRenders.end(); ++cmd) render(*m_renderer, *cmd, viewportX, viewportY); // Test command. render(*m_renderer, testCmd, viewportX, viewportY); // Visualization commands. for (vector<RenderCommand>::const_iterator cmd = m_visualizeCommands.begin(); cmd != m_visualizeCommands.end(); ++cmd) render(*m_renderer, *cmd, viewportX, viewportY); // Re-enable all write masks. glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glDepthMask(GL_TRUE); glStencilMask(~0u); // Ask GPU to start rendering. glFlush(); // Render reference while GPU is doing work. { RefRenderCommand refTestCmd; translateCommand(testCmd, refTestCmd, m_renderTarget); // Base clears. renderReference(m_baseClears, m_refColorBuffer->getAccess(), m_refStencilBuffer->getAccess(), m_renderTarget.depthBits); // Base depths. for (vector<RefRenderCommand>::const_iterator cmd = m_refBaseDepthRenders.begin(); cmd != m_refBaseDepthRenders.end(); ++cmd) m_refRenderer->render(gls::FragmentOpUtil::getMultisampleAccess(m_refColorBuffer->getAccess()), gls::FragmentOpUtil::getMultisampleAccess(m_refDepthBuffer->getAccess()), gls::FragmentOpUtil::getMultisampleAccess(m_refStencilBuffer->getAccess()), cmd->quad, cmd->state); // Test command. m_refRenderer->render(gls::FragmentOpUtil::getMultisampleAccess(m_refColorBuffer->getAccess()), gls::FragmentOpUtil::getMultisampleAccess(m_refDepthBuffer->getAccess()), gls::FragmentOpUtil::getMultisampleAccess(m_refStencilBuffer->getAccess()), refTestCmd.quad, refTestCmd.state); // Visualization commands. for (vector<RefRenderCommand>::const_iterator cmd = m_refVisualizeCommands.begin(); cmd != m_refVisualizeCommands.end(); ++cmd) m_refRenderer->render(gls::FragmentOpUtil::getMultisampleAccess(m_refColorBuffer->getAccess()), gls::FragmentOpUtil::getMultisampleAccess(m_refDepthBuffer->getAccess()), gls::FragmentOpUtil::getMultisampleAccess(m_refStencilBuffer->getAccess()), cmd->quad, cmd->state); } // Read rendered image. glu::readPixels(m_context.getRenderContext(), viewportX, viewportY, renderedImg.getAccess()); m_iterNdx += 1; // Compare to reference. bool isLastIter = m_iterNdx >= (int)m_cases.size(); bool compareOk = tcu::pixelThresholdCompare(m_testCtx.getLog(), "CompareResult", "Image Comparison Result", *m_refColorBuffer, renderedImg, threshold, tcu::COMPARE_LOG_RESULT); m_testCtx.getLog() << TestLog::Message << (compareOk ? " Passed." : " FAILED!") << TestLog::EndMessage; if (!compareOk) m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image comparison failed"); if (compareOk && !isLastIter) return CONTINUE; else return STOP; } DepthStencilTests::DepthStencilTests (Context& context) : TestCaseGroup(context, "depth_stencil", "Depth and Stencil Op Tests") { } DepthStencilTests::~DepthStencilTests (void) { } static void randomDepthStencilState (de::Random& rnd, DepthStencilParams& params) { const float stencilTestProbability = 0.8f; const float depthTestProbability = 0.7f; static const deUint32 compareFuncs[] = { GL_NEVER, GL_ALWAYS, GL_LESS, GL_LEQUAL, GL_EQUAL, GL_GEQUAL, GL_GREATER, GL_NOTEQUAL }; static const deUint32 stencilOps[] = { GL_KEEP, GL_ZERO, GL_REPLACE, GL_INCR, GL_DECR, GL_INVERT, GL_INCR_WRAP, GL_DECR_WRAP }; static const float depthValues[] = { -1.0f, -0.8f, -0.6f, -0.4f, -0.2f, 0.0f, 0.2f, 0.4f, 0.6f, 0.8f, 1.0f }; params.visibleFace = rnd.getBool() ? rr::FACETYPE_FRONT : rr::FACETYPE_BACK; params.stencilTestEnabled = rnd.getFloat() < stencilTestProbability; params.depthTestEnabled = !params.stencilTestEnabled || (rnd.getFloat() < depthTestProbability); if (params.stencilTestEnabled) { for (int ndx = 0; ndx < 2; ndx++) { params.stencil[ndx].function = rnd.choose<deUint32>(DE_ARRAY_BEGIN(compareFuncs), DE_ARRAY_END(compareFuncs)); params.stencil[ndx].reference = rnd.getInt(-2, 260); params.stencil[ndx].compareMask = rnd.getUint32(); params.stencil[ndx].stencilFailOp = rnd.choose<deUint32>(DE_ARRAY_BEGIN(stencilOps), DE_ARRAY_END(stencilOps)); params.stencil[ndx].depthFailOp = rnd.choose<deUint32>(DE_ARRAY_BEGIN(stencilOps), DE_ARRAY_END(stencilOps)); params.stencil[ndx].depthPassOp = rnd.choose<deUint32>(DE_ARRAY_BEGIN(stencilOps), DE_ARRAY_END(stencilOps)); params.stencil[ndx].writeMask = rnd.getUint32(); } } if (params.depthTestEnabled) { params.depthFunc = rnd.choose<deUint32>(DE_ARRAY_BEGIN(compareFuncs), DE_ARRAY_END(compareFuncs)); params.depth = rnd.choose<float>(DE_ARRAY_BEGIN(depthValues), DE_ARRAY_END(depthValues)); params.depthWriteMask = rnd.getBool(); } } void DepthStencilTests::init (void) { static const struct { const char* name; deUint32 func; } compareFuncs[] = { { "never", GL_NEVER }, { "always", GL_ALWAYS }, { "less", GL_LESS }, { "lequal", GL_LEQUAL }, { "equal", GL_EQUAL }, { "gequal", GL_GEQUAL }, { "greater", GL_GREATER }, { "notequal", GL_NOTEQUAL } }; static const struct { const char* name; deUint32 op; } stencilOps[] = { { "keep", GL_KEEP }, { "zero", GL_ZERO }, { "replace", GL_REPLACE }, { "incr", GL_INCR }, { "decr", GL_DECR }, { "invert", GL_INVERT }, { "incr_wrap", GL_INCR_WRAP }, { "decr_wrap", GL_DECR_WRAP } }; static const struct { rr::FaceType visibleFace; deUint32 sFail; deUint32 dFail; deUint32 dPass; int stencilRef; deUint32 compareMask; deUint32 writeMask; float depth; } functionCases[] = { { rr::FACETYPE_BACK, GL_DECR, GL_INCR, GL_INVERT, 4, ~0u, ~0u, -0.7f }, { rr::FACETYPE_FRONT, GL_DECR, GL_INCR, GL_INVERT, 2, ~0u, ~0u, 0.0f }, { rr::FACETYPE_BACK, GL_DECR, GL_INCR, GL_INVERT, 1, ~0u, ~0u, 0.2f }, { rr::FACETYPE_FRONT, GL_DECR_WRAP, GL_INVERT, GL_REPLACE, 4, ~0u, ~0u, 1.0f } }; // All combinations of depth stencil functions. { tcu::TestCaseGroup* functionsGroup = new tcu::TestCaseGroup(m_testCtx, "stencil_depth_funcs", "Combinations of Depth and Stencil Functions"); addChild(functionsGroup); for (int stencilFunc = 0; stencilFunc < DE_LENGTH_OF_ARRAY(compareFuncs)+1; stencilFunc++) { // One extra: depth test disabled. for (int depthFunc = 0; depthFunc < DE_LENGTH_OF_ARRAY(compareFuncs)+1; depthFunc++) { DepthStencilParams params; ostringstream name; bool hasStencilFunc = de::inBounds(stencilFunc, 0, DE_LENGTH_OF_ARRAY(compareFuncs)); bool hasDepthFunc = de::inBounds(depthFunc, 0, DE_LENGTH_OF_ARRAY(compareFuncs)); if (hasStencilFunc) name << "stencil_" << compareFuncs[stencilFunc].name << "_"; else name << "no_stencil_"; if (hasDepthFunc) name << "depth_" << compareFuncs[depthFunc].name; else name << "no_depth"; params.depthFunc = hasDepthFunc ? compareFuncs[depthFunc].func : 0; params.depthTestEnabled = hasDepthFunc; params.depthWriteMask = true; params.stencilTestEnabled = hasStencilFunc; vector<DepthStencilParams> cases; for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(functionCases); ndx++) { rr::FaceType visible = functionCases[ndx].visibleFace; rr::FaceType notVisible = visible == rr::FACETYPE_FRONT ? rr::FACETYPE_BACK : rr::FACETYPE_FRONT; params.depth = functionCases[ndx].depth; params.visibleFace = visible; params.stencil[visible].function = hasStencilFunc ? compareFuncs[stencilFunc].func : 0; params.stencil[visible].reference = functionCases[ndx].stencilRef; params.stencil[visible].stencilFailOp = functionCases[ndx].sFail; params.stencil[visible].depthFailOp = functionCases[ndx].dFail; params.stencil[visible].depthPassOp = functionCases[ndx].dPass; params.stencil[visible].compareMask = functionCases[ndx].compareMask; params.stencil[visible].writeMask = functionCases[ndx].writeMask; params.stencil[notVisible].function = GL_ALWAYS; params.stencil[notVisible].reference = 0; params.stencil[notVisible].stencilFailOp = GL_REPLACE; params.stencil[notVisible].depthFailOp = GL_REPLACE; params.stencil[notVisible].depthPassOp = GL_REPLACE; params.stencil[notVisible].compareMask = 0u; params.stencil[notVisible].writeMask = ~0u; cases.push_back(params); } functionsGroup->addChild(new DepthStencilCase(m_context, name.str().c_str(), "", cases)); } } } static const struct { rr::FaceType visibleFace; deUint32 func; int ref; deUint32 compareMask; deUint32 writeMask; } opCombinationCases[] = { { rr::FACETYPE_BACK, GL_LESS, 4, ~0u, ~0u }, { rr::FACETYPE_FRONT, GL_GREATER, 2, ~0u, ~0u }, { rr::FACETYPE_BACK, GL_EQUAL, 3, ~2u, ~0u }, { rr::FACETYPE_FRONT, GL_NOTEQUAL, 1, ~0u, ~1u } }; // All combinations of stencil ops. { tcu::TestCaseGroup* opCombinationGroup = new tcu::TestCaseGroup(m_testCtx, "stencil_ops", "Stencil Op Combinations"); addChild(opCombinationGroup); for (int sFail = 0; sFail < DE_LENGTH_OF_ARRAY(stencilOps); sFail++) { for (int dFail = 0; dFail < DE_LENGTH_OF_ARRAY(stencilOps); dFail++) { for (int dPass = 0; dPass < DE_LENGTH_OF_ARRAY(stencilOps); dPass++) { DepthStencilParams params; ostringstream name; name << stencilOps[sFail].name << "_" << stencilOps[dFail].name << "_" << stencilOps[dPass].name; params.depthFunc = GL_LEQUAL; params.depth = 0.0f; params.depthTestEnabled = true; params.depthWriteMask = true; params.stencilTestEnabled = true; vector<DepthStencilParams> cases; for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(opCombinationCases); ndx++) { rr::FaceType visible = opCombinationCases[ndx].visibleFace; rr::FaceType notVisible = visible == rr::FACETYPE_FRONT ? rr::FACETYPE_BACK : rr::FACETYPE_FRONT; params.visibleFace = visible; params.stencil[visible].function = opCombinationCases[ndx].func; params.stencil[visible].reference = opCombinationCases[ndx].ref; params.stencil[visible].stencilFailOp = stencilOps[sFail].op; params.stencil[visible].depthFailOp = stencilOps[dFail].op; params.stencil[visible].depthPassOp = stencilOps[dPass].op; params.stencil[visible].compareMask = opCombinationCases[ndx].compareMask; params.stencil[visible].writeMask = opCombinationCases[ndx].writeMask; params.stencil[notVisible].function = GL_ALWAYS; params.stencil[notVisible].reference = 0; params.stencil[notVisible].stencilFailOp = GL_REPLACE; params.stencil[notVisible].depthFailOp = GL_REPLACE; params.stencil[notVisible].depthPassOp = GL_REPLACE; params.stencil[notVisible].compareMask = 0u; params.stencil[notVisible].writeMask = ~0u; cases.push_back(params); } opCombinationGroup->addChild(new DepthStencilCase(m_context, name.str().c_str(), "", cases)); } } } } // Write masks { tcu::TestCaseGroup* writeMaskGroup = new tcu::TestCaseGroup(m_testCtx, "write_mask", "Depth and Stencil Write Masks"); addChild(writeMaskGroup); // Depth mask { DepthStencilParams params; params.depthFunc = GL_LEQUAL; params.depth = 0.0f; params.depthTestEnabled = true; params.stencilTestEnabled = true; params.stencil[rr::FACETYPE_FRONT].function = GL_NOTEQUAL; params.stencil[rr::FACETYPE_FRONT].reference = 1; params.stencil[rr::FACETYPE_FRONT].stencilFailOp = GL_INVERT; params.stencil[rr::FACETYPE_FRONT].depthFailOp = GL_INCR; params.stencil[rr::FACETYPE_FRONT].depthPassOp = GL_DECR; params.stencil[rr::FACETYPE_FRONT].compareMask = ~0u; params.stencil[rr::FACETYPE_FRONT].writeMask = ~0u; params.stencil[rr::FACETYPE_BACK].function = GL_ALWAYS; params.stencil[rr::FACETYPE_BACK].reference = 0; params.stencil[rr::FACETYPE_BACK].stencilFailOp = GL_REPLACE; params.stencil[rr::FACETYPE_BACK].depthFailOp = GL_INVERT; params.stencil[rr::FACETYPE_BACK].depthPassOp = GL_INCR; params.stencil[rr::FACETYPE_BACK].compareMask = ~0u; params.stencil[rr::FACETYPE_BACK].writeMask = ~0u; vector<DepthStencilParams> cases; // Case 1: front, depth write enabled params.visibleFace = rr::FACETYPE_FRONT; params.depthWriteMask = true; cases.push_back(params); // Case 2: front, depth write disabled params.visibleFace = rr::FACETYPE_FRONT; params.depthWriteMask = false; cases.push_back(params); // Case 3: back, depth write enabled params.visibleFace = rr::FACETYPE_BACK; params.depthWriteMask = true; cases.push_back(params); // Case 4: back, depth write disabled params.visibleFace = rr::FACETYPE_BACK; params.depthWriteMask = false; cases.push_back(params); writeMaskGroup->addChild(new DepthStencilCase(m_context, "depth", "Depth Write Mask", cases)); } // Stencil write masks. { static const struct { rr::FaceType visibleFace; deUint32 frontWriteMask; deUint32 backWriteMask; } stencilWmaskCases[] = { { rr::FACETYPE_FRONT, ~0u, 0u }, { rr::FACETYPE_FRONT, 0u, ~0u }, { rr::FACETYPE_FRONT, 0xfu, 0xf0u }, { rr::FACETYPE_FRONT, 0x2u, 0x4u }, { rr::FACETYPE_BACK, 0u, ~0u }, { rr::FACETYPE_BACK, ~0u, 0u }, { rr::FACETYPE_BACK, 0xf0u, 0xfu }, { rr::FACETYPE_BACK, 0x4u, 0x2u } }; DepthStencilParams params; params.depthFunc = GL_LEQUAL; params.depth = 0.0f; params.depthTestEnabled = true; params.depthWriteMask = true; params.stencilTestEnabled = true; params.stencil[rr::FACETYPE_FRONT].function = GL_NOTEQUAL; params.stencil[rr::FACETYPE_FRONT].reference = 1; params.stencil[rr::FACETYPE_FRONT].stencilFailOp = GL_INVERT; params.stencil[rr::FACETYPE_FRONT].depthFailOp = GL_INCR; params.stencil[rr::FACETYPE_FRONT].depthPassOp = GL_DECR; params.stencil[rr::FACETYPE_FRONT].compareMask = ~0u; params.stencil[rr::FACETYPE_BACK].function = GL_ALWAYS; params.stencil[rr::FACETYPE_BACK].reference = 0; params.stencil[rr::FACETYPE_BACK].stencilFailOp = GL_REPLACE; params.stencil[rr::FACETYPE_BACK].depthFailOp = GL_INVERT; params.stencil[rr::FACETYPE_BACK].depthPassOp = GL_INCR; params.stencil[rr::FACETYPE_BACK].compareMask = ~0u; vector<DepthStencilParams> cases; for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(stencilWmaskCases); ndx++) { params.visibleFace = stencilWmaskCases[ndx].visibleFace; params.stencil[rr::FACETYPE_FRONT].writeMask = stencilWmaskCases[ndx].frontWriteMask; params.stencil[rr::FACETYPE_BACK].writeMask = stencilWmaskCases[ndx].backWriteMask; cases.push_back(params); } writeMaskGroup->addChild(new DepthStencilCase(m_context, "stencil", "Stencil Write Mask", cases)); } // Depth & stencil write masks. { static const struct { bool depthWriteMask; rr::FaceType visibleFace; deUint32 frontWriteMask; deUint32 backWriteMask; } depthStencilWmaskCases[] = { { false, rr::FACETYPE_FRONT, ~0u, 0u }, { false, rr::FACETYPE_FRONT, 0u, ~0u }, { false, rr::FACETYPE_FRONT, 0xfu, 0xf0u }, { true, rr::FACETYPE_FRONT, ~0u, 0u }, { true, rr::FACETYPE_FRONT, 0u, ~0u }, { true, rr::FACETYPE_FRONT, 0xfu, 0xf0u }, { false, rr::FACETYPE_BACK, 0u, ~0u }, { false, rr::FACETYPE_BACK, ~0u, 0u }, { false, rr::FACETYPE_BACK, 0xf0u, 0xfu }, { true, rr::FACETYPE_BACK, 0u, ~0u }, { true, rr::FACETYPE_BACK, ~0u, 0u }, { true, rr::FACETYPE_BACK, 0xf0u, 0xfu } }; DepthStencilParams params; params.depthFunc = GL_LEQUAL; params.depth = 0.0f; params.depthTestEnabled = true; params.depthWriteMask = true; params.stencilTestEnabled = true; params.stencil[rr::FACETYPE_FRONT].function = GL_NOTEQUAL; params.stencil[rr::FACETYPE_FRONT].reference = 1; params.stencil[rr::FACETYPE_FRONT].stencilFailOp = GL_INVERT; params.stencil[rr::FACETYPE_FRONT].depthFailOp = GL_INCR; params.stencil[rr::FACETYPE_FRONT].depthPassOp = GL_DECR; params.stencil[rr::FACETYPE_FRONT].compareMask = ~0u; params.stencil[rr::FACETYPE_BACK].function = GL_ALWAYS; params.stencil[rr::FACETYPE_BACK].reference = 0; params.stencil[rr::FACETYPE_BACK].stencilFailOp = GL_REPLACE; params.stencil[rr::FACETYPE_BACK].depthFailOp = GL_INVERT; params.stencil[rr::FACETYPE_BACK].depthPassOp = GL_INCR; params.stencil[rr::FACETYPE_BACK].compareMask = ~0u; vector<DepthStencilParams> cases; for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(depthStencilWmaskCases); ndx++) { params.depthWriteMask = depthStencilWmaskCases[ndx].depthWriteMask; params.visibleFace = depthStencilWmaskCases[ndx].visibleFace; params.stencil[rr::FACETYPE_FRONT].writeMask = depthStencilWmaskCases[ndx].frontWriteMask; params.stencil[rr::FACETYPE_BACK].writeMask = depthStencilWmaskCases[ndx].backWriteMask; cases.push_back(params); } writeMaskGroup->addChild(new DepthStencilCase(m_context, "both", "Depth and Stencil Write Masks", cases)); } } // Randomized cases { tcu::TestCaseGroup* randomGroup = new tcu::TestCaseGroup(m_testCtx, "random", "Randomized Depth and Stencil Test Cases"); addChild(randomGroup); for (int caseNdx = 0; caseNdx < NUM_RANDOM_CASES; caseNdx++) { vector<DepthStencilParams> subCases (NUM_RANDOM_SUB_CASES); de::Random rnd (deInt32Hash(caseNdx) ^ deInt32Hash(m_testCtx.getCommandLine().getBaseSeed())); for (vector<DepthStencilParams>::iterator iter = subCases.begin(); iter != subCases.end(); ++iter) randomDepthStencilState(rnd, *iter); randomGroup->addChild(new DepthStencilCase(m_context, de::toString(caseNdx).c_str(), "", subCases)); } } } } // Functional } // gles2 } // deqp