//==-- RetainCountChecker.cpp - Checks for leaks and other issues -*- C++ -*--// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the methods for RetainCountChecker, which implements // a reference count checker for Core Foundation and Cocoa on (Mac OS X). // //===----------------------------------------------------------------------===// #include "ClangSACheckers.h" #include "AllocationDiagnostics.h" #include "SelectorExtras.h" #include "clang/AST/Attr.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/ParentMap.h" #include "clang/Analysis/DomainSpecific/CocoaConventions.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/SourceManager.h" #include "clang/StaticAnalyzer/Checkers/ObjCRetainCount.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h" #include "clang/StaticAnalyzer/Core/Checker.h" #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/ImmutableList.h" #include "llvm/ADT/ImmutableMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include <cstdarg> using namespace clang; using namespace ento; using namespace objc_retain; using llvm::StrInStrNoCase; //===----------------------------------------------------------------------===// // Adapters for FoldingSet. //===----------------------------------------------------------------------===// namespace llvm { template <> struct FoldingSetTrait<ArgEffect> { static inline void Profile(const ArgEffect X, FoldingSetNodeID &ID) { ID.AddInteger((unsigned) X); } }; template <> struct FoldingSetTrait<RetEffect> { static inline void Profile(const RetEffect &X, FoldingSetNodeID &ID) { ID.AddInteger((unsigned) X.getKind()); ID.AddInteger((unsigned) X.getObjKind()); } }; } // end llvm namespace //===----------------------------------------------------------------------===// // Reference-counting logic (typestate + counts). //===----------------------------------------------------------------------===// /// ArgEffects summarizes the effects of a function/method call on all of /// its arguments. typedef llvm::ImmutableMap<unsigned,ArgEffect> ArgEffects; namespace { class RefVal { public: enum Kind { Owned = 0, // Owning reference. NotOwned, // Reference is not owned by still valid (not freed). Released, // Object has been released. ReturnedOwned, // Returned object passes ownership to caller. ReturnedNotOwned, // Return object does not pass ownership to caller. ERROR_START, ErrorDeallocNotOwned, // -dealloc called on non-owned object. ErrorDeallocGC, // Calling -dealloc with GC enabled. ErrorUseAfterRelease, // Object used after released. ErrorReleaseNotOwned, // Release of an object that was not owned. ERROR_LEAK_START, ErrorLeak, // A memory leak due to excessive reference counts. ErrorLeakReturned, // A memory leak due to the returning method not having // the correct naming conventions. ErrorGCLeakReturned, ErrorOverAutorelease, ErrorReturnedNotOwned }; /// Tracks how an object referenced by an ivar has been used. /// /// This accounts for us not knowing if an arbitrary ivar is supposed to be /// stored at +0 or +1. enum class IvarAccessHistory { None, AccessedDirectly, ReleasedAfterDirectAccess }; private: /// The number of outstanding retains. unsigned Cnt; /// The number of outstanding autoreleases. unsigned ACnt; /// The (static) type of the object at the time we started tracking it. QualType T; /// The current state of the object. /// /// See the RefVal::Kind enum for possible values. unsigned RawKind : 5; /// The kind of object being tracked (CF or ObjC), if known. /// /// See the RetEffect::ObjKind enum for possible values. unsigned RawObjectKind : 2; /// True if the current state and/or retain count may turn out to not be the /// best possible approximation of the reference counting state. /// /// If true, the checker may decide to throw away ("override") this state /// in favor of something else when it sees the object being used in new ways. /// /// This setting should not be propagated to state derived from this state. /// Once we start deriving new states, it would be inconsistent to override /// them. unsigned RawIvarAccessHistory : 2; RefVal(Kind k, RetEffect::ObjKind o, unsigned cnt, unsigned acnt, QualType t, IvarAccessHistory IvarAccess) : Cnt(cnt), ACnt(acnt), T(t), RawKind(static_cast<unsigned>(k)), RawObjectKind(static_cast<unsigned>(o)), RawIvarAccessHistory(static_cast<unsigned>(IvarAccess)) { assert(getKind() == k && "not enough bits for the kind"); assert(getObjKind() == o && "not enough bits for the object kind"); assert(getIvarAccessHistory() == IvarAccess && "not enough bits"); } public: Kind getKind() const { return static_cast<Kind>(RawKind); } RetEffect::ObjKind getObjKind() const { return static_cast<RetEffect::ObjKind>(RawObjectKind); } unsigned getCount() const { return Cnt; } unsigned getAutoreleaseCount() const { return ACnt; } unsigned getCombinedCounts() const { return Cnt + ACnt; } void clearCounts() { Cnt = 0; ACnt = 0; } void setCount(unsigned i) { Cnt = i; } void setAutoreleaseCount(unsigned i) { ACnt = i; } QualType getType() const { return T; } /// Returns what the analyzer knows about direct accesses to a particular /// instance variable. /// /// If the object with this refcount wasn't originally from an Objective-C /// ivar region, this should always return IvarAccessHistory::None. IvarAccessHistory getIvarAccessHistory() const { return static_cast<IvarAccessHistory>(RawIvarAccessHistory); } bool isOwned() const { return getKind() == Owned; } bool isNotOwned() const { return getKind() == NotOwned; } bool isReturnedOwned() const { return getKind() == ReturnedOwned; } bool isReturnedNotOwned() const { return getKind() == ReturnedNotOwned; } /// Create a state for an object whose lifetime is the responsibility of the /// current function, at least partially. /// /// Most commonly, this is an owned object with a retain count of +1. static RefVal makeOwned(RetEffect::ObjKind o, QualType t, unsigned Count = 1) { return RefVal(Owned, o, Count, 0, t, IvarAccessHistory::None); } /// Create a state for an object whose lifetime is not the responsibility of /// the current function. /// /// Most commonly, this is an unowned object with a retain count of +0. static RefVal makeNotOwned(RetEffect::ObjKind o, QualType t, unsigned Count = 0) { return RefVal(NotOwned, o, Count, 0, t, IvarAccessHistory::None); } RefVal operator-(size_t i) const { return RefVal(getKind(), getObjKind(), getCount() - i, getAutoreleaseCount(), getType(), getIvarAccessHistory()); } RefVal operator+(size_t i) const { return RefVal(getKind(), getObjKind(), getCount() + i, getAutoreleaseCount(), getType(), getIvarAccessHistory()); } RefVal operator^(Kind k) const { return RefVal(k, getObjKind(), getCount(), getAutoreleaseCount(), getType(), getIvarAccessHistory()); } RefVal autorelease() const { return RefVal(getKind(), getObjKind(), getCount(), getAutoreleaseCount()+1, getType(), getIvarAccessHistory()); } RefVal withIvarAccess() const { assert(getIvarAccessHistory() == IvarAccessHistory::None); return RefVal(getKind(), getObjKind(), getCount(), getAutoreleaseCount(), getType(), IvarAccessHistory::AccessedDirectly); } RefVal releaseViaIvar() const { assert(getIvarAccessHistory() == IvarAccessHistory::AccessedDirectly); return RefVal(getKind(), getObjKind(), getCount(), getAutoreleaseCount(), getType(), IvarAccessHistory::ReleasedAfterDirectAccess); } // Comparison, profiling, and pretty-printing. bool hasSameState(const RefVal &X) const { return getKind() == X.getKind() && Cnt == X.Cnt && ACnt == X.ACnt && getIvarAccessHistory() == X.getIvarAccessHistory(); } bool operator==(const RefVal& X) const { return T == X.T && hasSameState(X) && getObjKind() == X.getObjKind(); } void Profile(llvm::FoldingSetNodeID& ID) const { ID.Add(T); ID.AddInteger(RawKind); ID.AddInteger(Cnt); ID.AddInteger(ACnt); ID.AddInteger(RawObjectKind); ID.AddInteger(RawIvarAccessHistory); } void print(raw_ostream &Out) const; }; void RefVal::print(raw_ostream &Out) const { if (!T.isNull()) Out << "Tracked " << T.getAsString() << '/'; switch (getKind()) { default: llvm_unreachable("Invalid RefVal kind"); case Owned: { Out << "Owned"; unsigned cnt = getCount(); if (cnt) Out << " (+ " << cnt << ")"; break; } case NotOwned: { Out << "NotOwned"; unsigned cnt = getCount(); if (cnt) Out << " (+ " << cnt << ")"; break; } case ReturnedOwned: { Out << "ReturnedOwned"; unsigned cnt = getCount(); if (cnt) Out << " (+ " << cnt << ")"; break; } case ReturnedNotOwned: { Out << "ReturnedNotOwned"; unsigned cnt = getCount(); if (cnt) Out << " (+ " << cnt << ")"; break; } case Released: Out << "Released"; break; case ErrorDeallocGC: Out << "-dealloc (GC)"; break; case ErrorDeallocNotOwned: Out << "-dealloc (not-owned)"; break; case ErrorLeak: Out << "Leaked"; break; case ErrorLeakReturned: Out << "Leaked (Bad naming)"; break; case ErrorGCLeakReturned: Out << "Leaked (GC-ed at return)"; break; case ErrorUseAfterRelease: Out << "Use-After-Release [ERROR]"; break; case ErrorReleaseNotOwned: Out << "Release of Not-Owned [ERROR]"; break; case RefVal::ErrorOverAutorelease: Out << "Over-autoreleased"; break; case RefVal::ErrorReturnedNotOwned: Out << "Non-owned object returned instead of owned"; break; } switch (getIvarAccessHistory()) { case IvarAccessHistory::None: break; case IvarAccessHistory::AccessedDirectly: Out << " [direct ivar access]"; break; case IvarAccessHistory::ReleasedAfterDirectAccess: Out << " [released after direct ivar access]"; } if (ACnt) { Out << " [autorelease -" << ACnt << ']'; } } } //end anonymous namespace //===----------------------------------------------------------------------===// // RefBindings - State used to track object reference counts. //===----------------------------------------------------------------------===// REGISTER_MAP_WITH_PROGRAMSTATE(RefBindings, SymbolRef, RefVal) static inline const RefVal *getRefBinding(ProgramStateRef State, SymbolRef Sym) { return State->get<RefBindings>(Sym); } static inline ProgramStateRef setRefBinding(ProgramStateRef State, SymbolRef Sym, RefVal Val) { return State->set<RefBindings>(Sym, Val); } static ProgramStateRef removeRefBinding(ProgramStateRef State, SymbolRef Sym) { return State->remove<RefBindings>(Sym); } //===----------------------------------------------------------------------===// // Function/Method behavior summaries. //===----------------------------------------------------------------------===// namespace { class RetainSummary { /// Args - a map of (index, ArgEffect) pairs, where index /// specifies the argument (starting from 0). This can be sparsely /// populated; arguments with no entry in Args use 'DefaultArgEffect'. ArgEffects Args; /// DefaultArgEffect - The default ArgEffect to apply to arguments that /// do not have an entry in Args. ArgEffect DefaultArgEffect; /// Receiver - If this summary applies to an Objective-C message expression, /// this is the effect applied to the state of the receiver. ArgEffect Receiver; /// Ret - The effect on the return value. Used to indicate if the /// function/method call returns a new tracked symbol. RetEffect Ret; public: RetainSummary(ArgEffects A, RetEffect R, ArgEffect defaultEff, ArgEffect ReceiverEff) : Args(A), DefaultArgEffect(defaultEff), Receiver(ReceiverEff), Ret(R) {} /// getArg - Return the argument effect on the argument specified by /// idx (starting from 0). ArgEffect getArg(unsigned idx) const { if (const ArgEffect *AE = Args.lookup(idx)) return *AE; return DefaultArgEffect; } void addArg(ArgEffects::Factory &af, unsigned idx, ArgEffect e) { Args = af.add(Args, idx, e); } /// setDefaultArgEffect - Set the default argument effect. void setDefaultArgEffect(ArgEffect E) { DefaultArgEffect = E; } /// getRetEffect - Returns the effect on the return value of the call. RetEffect getRetEffect() const { return Ret; } /// setRetEffect - Set the effect of the return value of the call. void setRetEffect(RetEffect E) { Ret = E; } /// Sets the effect on the receiver of the message. void setReceiverEffect(ArgEffect e) { Receiver = e; } /// getReceiverEffect - Returns the effect on the receiver of the call. /// This is only meaningful if the summary applies to an ObjCMessageExpr*. ArgEffect getReceiverEffect() const { return Receiver; } /// Test if two retain summaries are identical. Note that merely equivalent /// summaries are not necessarily identical (for example, if an explicit /// argument effect matches the default effect). bool operator==(const RetainSummary &Other) const { return Args == Other.Args && DefaultArgEffect == Other.DefaultArgEffect && Receiver == Other.Receiver && Ret == Other.Ret; } /// Profile this summary for inclusion in a FoldingSet. void Profile(llvm::FoldingSetNodeID& ID) const { ID.Add(Args); ID.Add(DefaultArgEffect); ID.Add(Receiver); ID.Add(Ret); } /// A retain summary is simple if it has no ArgEffects other than the default. bool isSimple() const { return Args.isEmpty(); } private: ArgEffects getArgEffects() const { return Args; } ArgEffect getDefaultArgEffect() const { return DefaultArgEffect; } friend class RetainSummaryManager; }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Data structures for constructing summaries. //===----------------------------------------------------------------------===// namespace { class ObjCSummaryKey { IdentifierInfo* II; Selector S; public: ObjCSummaryKey(IdentifierInfo* ii, Selector s) : II(ii), S(s) {} ObjCSummaryKey(const ObjCInterfaceDecl *d, Selector s) : II(d ? d->getIdentifier() : nullptr), S(s) {} ObjCSummaryKey(Selector s) : II(nullptr), S(s) {} IdentifierInfo *getIdentifier() const { return II; } Selector getSelector() const { return S; } }; } namespace llvm { template <> struct DenseMapInfo<ObjCSummaryKey> { static inline ObjCSummaryKey getEmptyKey() { return ObjCSummaryKey(DenseMapInfo<IdentifierInfo*>::getEmptyKey(), DenseMapInfo<Selector>::getEmptyKey()); } static inline ObjCSummaryKey getTombstoneKey() { return ObjCSummaryKey(DenseMapInfo<IdentifierInfo*>::getTombstoneKey(), DenseMapInfo<Selector>::getTombstoneKey()); } static unsigned getHashValue(const ObjCSummaryKey &V) { typedef std::pair<IdentifierInfo*, Selector> PairTy; return DenseMapInfo<PairTy>::getHashValue(PairTy(V.getIdentifier(), V.getSelector())); } static bool isEqual(const ObjCSummaryKey& LHS, const ObjCSummaryKey& RHS) { return LHS.getIdentifier() == RHS.getIdentifier() && LHS.getSelector() == RHS.getSelector(); } }; } // end llvm namespace namespace { class ObjCSummaryCache { typedef llvm::DenseMap<ObjCSummaryKey, const RetainSummary *> MapTy; MapTy M; public: ObjCSummaryCache() {} const RetainSummary * find(const ObjCInterfaceDecl *D, Selector S) { // Do a lookup with the (D,S) pair. If we find a match return // the iterator. ObjCSummaryKey K(D, S); MapTy::iterator I = M.find(K); if (I != M.end()) return I->second; if (!D) return nullptr; // Walk the super chain. If we find a hit with a parent, we'll end // up returning that summary. We actually allow that key (null,S), as // we cache summaries for the null ObjCInterfaceDecl* to allow us to // generate initial summaries without having to worry about NSObject // being declared. // FIXME: We may change this at some point. for (ObjCInterfaceDecl *C=D->getSuperClass() ;; C=C->getSuperClass()) { if ((I = M.find(ObjCSummaryKey(C, S))) != M.end()) break; if (!C) return nullptr; } // Cache the summary with original key to make the next lookup faster // and return the iterator. const RetainSummary *Summ = I->second; M[K] = Summ; return Summ; } const RetainSummary *find(IdentifierInfo* II, Selector S) { // FIXME: Class method lookup. Right now we dont' have a good way // of going between IdentifierInfo* and the class hierarchy. MapTy::iterator I = M.find(ObjCSummaryKey(II, S)); if (I == M.end()) I = M.find(ObjCSummaryKey(S)); return I == M.end() ? nullptr : I->second; } const RetainSummary *& operator[](ObjCSummaryKey K) { return M[K]; } const RetainSummary *& operator[](Selector S) { return M[ ObjCSummaryKey(S) ]; } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Data structures for managing collections of summaries. //===----------------------------------------------------------------------===// namespace { class RetainSummaryManager { //==-----------------------------------------------------------------==// // Typedefs. //==-----------------------------------------------------------------==// typedef llvm::DenseMap<const FunctionDecl*, const RetainSummary *> FuncSummariesTy; typedef ObjCSummaryCache ObjCMethodSummariesTy; typedef llvm::FoldingSetNodeWrapper<RetainSummary> CachedSummaryNode; //==-----------------------------------------------------------------==// // Data. //==-----------------------------------------------------------------==// /// Ctx - The ASTContext object for the analyzed ASTs. ASTContext &Ctx; /// GCEnabled - Records whether or not the analyzed code runs in GC mode. const bool GCEnabled; /// Records whether or not the analyzed code runs in ARC mode. const bool ARCEnabled; /// FuncSummaries - A map from FunctionDecls to summaries. FuncSummariesTy FuncSummaries; /// ObjCClassMethodSummaries - A map from selectors (for instance methods) /// to summaries. ObjCMethodSummariesTy ObjCClassMethodSummaries; /// ObjCMethodSummaries - A map from selectors to summaries. ObjCMethodSummariesTy ObjCMethodSummaries; /// BPAlloc - A BumpPtrAllocator used for allocating summaries, ArgEffects, /// and all other data used by the checker. llvm::BumpPtrAllocator BPAlloc; /// AF - A factory for ArgEffects objects. ArgEffects::Factory AF; /// ScratchArgs - A holding buffer for construct ArgEffects. ArgEffects ScratchArgs; /// ObjCAllocRetE - Default return effect for methods returning Objective-C /// objects. RetEffect ObjCAllocRetE; /// ObjCInitRetE - Default return effect for init methods returning /// Objective-C objects. RetEffect ObjCInitRetE; /// SimpleSummaries - Used for uniquing summaries that don't have special /// effects. llvm::FoldingSet<CachedSummaryNode> SimpleSummaries; //==-----------------------------------------------------------------==// // Methods. //==-----------------------------------------------------------------==// /// getArgEffects - Returns a persistent ArgEffects object based on the /// data in ScratchArgs. ArgEffects getArgEffects(); enum UnaryFuncKind { cfretain, cfrelease, cfautorelease, cfmakecollectable }; const RetainSummary *getUnarySummary(const FunctionType* FT, UnaryFuncKind func); const RetainSummary *getCFSummaryCreateRule(const FunctionDecl *FD); const RetainSummary *getCFSummaryGetRule(const FunctionDecl *FD); const RetainSummary *getCFCreateGetRuleSummary(const FunctionDecl *FD); const RetainSummary *getPersistentSummary(const RetainSummary &OldSumm); const RetainSummary *getPersistentSummary(RetEffect RetEff, ArgEffect ReceiverEff = DoNothing, ArgEffect DefaultEff = MayEscape) { RetainSummary Summ(getArgEffects(), RetEff, DefaultEff, ReceiverEff); return getPersistentSummary(Summ); } const RetainSummary *getDoNothingSummary() { return getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing); } const RetainSummary *getDefaultSummary() { return getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, MayEscape); } const RetainSummary *getPersistentStopSummary() { return getPersistentSummary(RetEffect::MakeNoRet(), StopTracking, StopTracking); } void InitializeClassMethodSummaries(); void InitializeMethodSummaries(); private: void addNSObjectClsMethSummary(Selector S, const RetainSummary *Summ) { ObjCClassMethodSummaries[S] = Summ; } void addNSObjectMethSummary(Selector S, const RetainSummary *Summ) { ObjCMethodSummaries[S] = Summ; } void addClassMethSummary(const char* Cls, const char* name, const RetainSummary *Summ, bool isNullary = true) { IdentifierInfo* ClsII = &Ctx.Idents.get(Cls); Selector S = isNullary ? GetNullarySelector(name, Ctx) : GetUnarySelector(name, Ctx); ObjCClassMethodSummaries[ObjCSummaryKey(ClsII, S)] = Summ; } void addInstMethSummary(const char* Cls, const char* nullaryName, const RetainSummary *Summ) { IdentifierInfo* ClsII = &Ctx.Idents.get(Cls); Selector S = GetNullarySelector(nullaryName, Ctx); ObjCMethodSummaries[ObjCSummaryKey(ClsII, S)] = Summ; } void addMethodSummary(IdentifierInfo *ClsII, ObjCMethodSummariesTy &Summaries, const RetainSummary *Summ, va_list argp) { Selector S = getKeywordSelector(Ctx, argp); Summaries[ObjCSummaryKey(ClsII, S)] = Summ; } void addInstMethSummary(const char* Cls, const RetainSummary * Summ, ...) { va_list argp; va_start(argp, Summ); addMethodSummary(&Ctx.Idents.get(Cls), ObjCMethodSummaries, Summ, argp); va_end(argp); } void addClsMethSummary(const char* Cls, const RetainSummary * Summ, ...) { va_list argp; va_start(argp, Summ); addMethodSummary(&Ctx.Idents.get(Cls),ObjCClassMethodSummaries, Summ, argp); va_end(argp); } void addClsMethSummary(IdentifierInfo *II, const RetainSummary * Summ, ...) { va_list argp; va_start(argp, Summ); addMethodSummary(II, ObjCClassMethodSummaries, Summ, argp); va_end(argp); } public: RetainSummaryManager(ASTContext &ctx, bool gcenabled, bool usesARC) : Ctx(ctx), GCEnabled(gcenabled), ARCEnabled(usesARC), AF(BPAlloc), ScratchArgs(AF.getEmptyMap()), ObjCAllocRetE(gcenabled ? RetEffect::MakeGCNotOwned() : (usesARC ? RetEffect::MakeNotOwned(RetEffect::ObjC) : RetEffect::MakeOwned(RetEffect::ObjC, true))), ObjCInitRetE(gcenabled ? RetEffect::MakeGCNotOwned() : (usesARC ? RetEffect::MakeNotOwned(RetEffect::ObjC) : RetEffect::MakeOwnedWhenTrackedReceiver())) { InitializeClassMethodSummaries(); InitializeMethodSummaries(); } const RetainSummary *getSummary(const CallEvent &Call, ProgramStateRef State = nullptr); const RetainSummary *getFunctionSummary(const FunctionDecl *FD); const RetainSummary *getMethodSummary(Selector S, const ObjCInterfaceDecl *ID, const ObjCMethodDecl *MD, QualType RetTy, ObjCMethodSummariesTy &CachedSummaries); const RetainSummary *getInstanceMethodSummary(const ObjCMethodCall &M, ProgramStateRef State); const RetainSummary *getClassMethodSummary(const ObjCMethodCall &M) { assert(!M.isInstanceMessage()); const ObjCInterfaceDecl *Class = M.getReceiverInterface(); return getMethodSummary(M.getSelector(), Class, M.getDecl(), M.getResultType(), ObjCClassMethodSummaries); } /// getMethodSummary - This version of getMethodSummary is used to query /// the summary for the current method being analyzed. const RetainSummary *getMethodSummary(const ObjCMethodDecl *MD) { const ObjCInterfaceDecl *ID = MD->getClassInterface(); Selector S = MD->getSelector(); QualType ResultTy = MD->getReturnType(); ObjCMethodSummariesTy *CachedSummaries; if (MD->isInstanceMethod()) CachedSummaries = &ObjCMethodSummaries; else CachedSummaries = &ObjCClassMethodSummaries; return getMethodSummary(S, ID, MD, ResultTy, *CachedSummaries); } const RetainSummary *getStandardMethodSummary(const ObjCMethodDecl *MD, Selector S, QualType RetTy); /// Determine if there is a special return effect for this function or method. Optional<RetEffect> getRetEffectFromAnnotations(QualType RetTy, const Decl *D); void updateSummaryFromAnnotations(const RetainSummary *&Summ, const ObjCMethodDecl *MD); void updateSummaryFromAnnotations(const RetainSummary *&Summ, const FunctionDecl *FD); void updateSummaryForCall(const RetainSummary *&Summ, const CallEvent &Call); bool isGCEnabled() const { return GCEnabled; } bool isARCEnabled() const { return ARCEnabled; } bool isARCorGCEnabled() const { return GCEnabled || ARCEnabled; } RetEffect getObjAllocRetEffect() const { return ObjCAllocRetE; } friend class RetainSummaryTemplate; }; // Used to avoid allocating long-term (BPAlloc'd) memory for default retain // summaries. If a function or method looks like it has a default summary, but // it has annotations, the annotations are added to the stack-based template // and then copied into managed memory. class RetainSummaryTemplate { RetainSummaryManager &Manager; const RetainSummary *&RealSummary; RetainSummary ScratchSummary; bool Accessed; public: RetainSummaryTemplate(const RetainSummary *&real, RetainSummaryManager &mgr) : Manager(mgr), RealSummary(real), ScratchSummary(*real), Accessed(false) {} ~RetainSummaryTemplate() { if (Accessed) RealSummary = Manager.getPersistentSummary(ScratchSummary); } RetainSummary &operator*() { Accessed = true; return ScratchSummary; } RetainSummary *operator->() { Accessed = true; return &ScratchSummary; } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Implementation of checker data structures. //===----------------------------------------------------------------------===// ArgEffects RetainSummaryManager::getArgEffects() { ArgEffects AE = ScratchArgs; ScratchArgs = AF.getEmptyMap(); return AE; } const RetainSummary * RetainSummaryManager::getPersistentSummary(const RetainSummary &OldSumm) { // Unique "simple" summaries -- those without ArgEffects. if (OldSumm.isSimple()) { llvm::FoldingSetNodeID ID; OldSumm.Profile(ID); void *Pos; CachedSummaryNode *N = SimpleSummaries.FindNodeOrInsertPos(ID, Pos); if (!N) { N = (CachedSummaryNode *) BPAlloc.Allocate<CachedSummaryNode>(); new (N) CachedSummaryNode(OldSumm); SimpleSummaries.InsertNode(N, Pos); } return &N->getValue(); } RetainSummary *Summ = (RetainSummary *) BPAlloc.Allocate<RetainSummary>(); new (Summ) RetainSummary(OldSumm); return Summ; } //===----------------------------------------------------------------------===// // Summary creation for functions (largely uses of Core Foundation). //===----------------------------------------------------------------------===// static bool isRetain(const FunctionDecl *FD, StringRef FName) { return FName.endswith("Retain"); } static bool isRelease(const FunctionDecl *FD, StringRef FName) { return FName.endswith("Release"); } static bool isAutorelease(const FunctionDecl *FD, StringRef FName) { return FName.endswith("Autorelease"); } static bool isMakeCollectable(const FunctionDecl *FD, StringRef FName) { // FIXME: Remove FunctionDecl parameter. // FIXME: Is it really okay if MakeCollectable isn't a suffix? return FName.find("MakeCollectable") != StringRef::npos; } static ArgEffect getStopTrackingHardEquivalent(ArgEffect E) { switch (E) { case DoNothing: case Autorelease: case DecRefBridgedTransferred: case IncRef: case IncRefMsg: case MakeCollectable: case MayEscape: case StopTracking: case StopTrackingHard: return StopTrackingHard; case DecRef: case DecRefAndStopTrackingHard: return DecRefAndStopTrackingHard; case DecRefMsg: case DecRefMsgAndStopTrackingHard: return DecRefMsgAndStopTrackingHard; case Dealloc: return Dealloc; } llvm_unreachable("Unknown ArgEffect kind"); } void RetainSummaryManager::updateSummaryForCall(const RetainSummary *&S, const CallEvent &Call) { if (Call.hasNonZeroCallbackArg()) { ArgEffect RecEffect = getStopTrackingHardEquivalent(S->getReceiverEffect()); ArgEffect DefEffect = getStopTrackingHardEquivalent(S->getDefaultArgEffect()); ArgEffects CustomArgEffects = S->getArgEffects(); for (ArgEffects::iterator I = CustomArgEffects.begin(), E = CustomArgEffects.end(); I != E; ++I) { ArgEffect Translated = getStopTrackingHardEquivalent(I->second); if (Translated != DefEffect) ScratchArgs = AF.add(ScratchArgs, I->first, Translated); } RetEffect RE = RetEffect::MakeNoRetHard(); // Special cases where the callback argument CANNOT free the return value. // This can generally only happen if we know that the callback will only be // called when the return value is already being deallocated. if (const SimpleFunctionCall *FC = dyn_cast<SimpleFunctionCall>(&Call)) { if (IdentifierInfo *Name = FC->getDecl()->getIdentifier()) { // When the CGBitmapContext is deallocated, the callback here will free // the associated data buffer. if (Name->isStr("CGBitmapContextCreateWithData")) RE = S->getRetEffect(); } } S = getPersistentSummary(RE, RecEffect, DefEffect); } // Special case '[super init];' and '[self init];' // // Even though calling '[super init]' without assigning the result to self // and checking if the parent returns 'nil' is a bad pattern, it is common. // Additionally, our Self Init checker already warns about it. To avoid // overwhelming the user with messages from both checkers, we model the case // of '[super init]' in cases when it is not consumed by another expression // as if the call preserves the value of 'self'; essentially, assuming it can // never fail and return 'nil'. // Note, we don't want to just stop tracking the value since we want the // RetainCount checker to report leaks and use-after-free if SelfInit checker // is turned off. if (const ObjCMethodCall *MC = dyn_cast<ObjCMethodCall>(&Call)) { if (MC->getMethodFamily() == OMF_init && MC->isReceiverSelfOrSuper()) { // Check if the message is not consumed, we know it will not be used in // an assignment, ex: "self = [super init]". const Expr *ME = MC->getOriginExpr(); const LocationContext *LCtx = MC->getLocationContext(); ParentMap &PM = LCtx->getAnalysisDeclContext()->getParentMap(); if (!PM.isConsumedExpr(ME)) { RetainSummaryTemplate ModifiableSummaryTemplate(S, *this); ModifiableSummaryTemplate->setReceiverEffect(DoNothing); ModifiableSummaryTemplate->setRetEffect(RetEffect::MakeNoRet()); } } } } const RetainSummary * RetainSummaryManager::getSummary(const CallEvent &Call, ProgramStateRef State) { const RetainSummary *Summ; switch (Call.getKind()) { case CE_Function: Summ = getFunctionSummary(cast<SimpleFunctionCall>(Call).getDecl()); break; case CE_CXXMember: case CE_CXXMemberOperator: case CE_Block: case CE_CXXConstructor: case CE_CXXDestructor: case CE_CXXAllocator: // FIXME: These calls are currently unsupported. return getPersistentStopSummary(); case CE_ObjCMessage: { const ObjCMethodCall &Msg = cast<ObjCMethodCall>(Call); if (Msg.isInstanceMessage()) Summ = getInstanceMethodSummary(Msg, State); else Summ = getClassMethodSummary(Msg); break; } } updateSummaryForCall(Summ, Call); assert(Summ && "Unknown call type?"); return Summ; } const RetainSummary * RetainSummaryManager::getFunctionSummary(const FunctionDecl *FD) { // If we don't know what function we're calling, use our default summary. if (!FD) return getDefaultSummary(); // Look up a summary in our cache of FunctionDecls -> Summaries. FuncSummariesTy::iterator I = FuncSummaries.find(FD); if (I != FuncSummaries.end()) return I->second; // No summary? Generate one. const RetainSummary *S = nullptr; bool AllowAnnotations = true; do { // We generate "stop" summaries for implicitly defined functions. if (FD->isImplicit()) { S = getPersistentStopSummary(); break; } // [PR 3337] Use 'getAs<FunctionType>' to strip away any typedefs on the // function's type. const FunctionType* FT = FD->getType()->getAs<FunctionType>(); const IdentifierInfo *II = FD->getIdentifier(); if (!II) break; StringRef FName = II->getName(); // Strip away preceding '_'. Doing this here will effect all the checks // down below. FName = FName.substr(FName.find_first_not_of('_')); // Inspect the result type. QualType RetTy = FT->getReturnType(); // FIXME: This should all be refactored into a chain of "summary lookup" // filters. assert(ScratchArgs.isEmpty()); if (FName == "pthread_create" || FName == "pthread_setspecific") { // Part of: <rdar://problem/7299394> and <rdar://problem/11282706>. // This will be addressed better with IPA. S = getPersistentStopSummary(); } else if (FName == "NSMakeCollectable") { // Handle: id NSMakeCollectable(CFTypeRef) S = (RetTy->isObjCIdType()) ? getUnarySummary(FT, cfmakecollectable) : getPersistentStopSummary(); // The headers on OS X 10.8 use cf_consumed/ns_returns_retained, // but we can fully model NSMakeCollectable ourselves. AllowAnnotations = false; } else if (FName == "CFPlugInInstanceCreate") { S = getPersistentSummary(RetEffect::MakeNoRet()); } else if (FName == "IOBSDNameMatching" || FName == "IOServiceMatching" || FName == "IOServiceNameMatching" || FName == "IORegistryEntrySearchCFProperty" || FName == "IORegistryEntryIDMatching" || FName == "IOOpenFirmwarePathMatching") { // Part of <rdar://problem/6961230>. (IOKit) // This should be addressed using a API table. S = getPersistentSummary(RetEffect::MakeOwned(RetEffect::CF, true), DoNothing, DoNothing); } else if (FName == "IOServiceGetMatchingService" || FName == "IOServiceGetMatchingServices") { // FIXES: <rdar://problem/6326900> // This should be addressed using a API table. This strcmp is also // a little gross, but there is no need to super optimize here. ScratchArgs = AF.add(ScratchArgs, 1, DecRef); S = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing); } else if (FName == "IOServiceAddNotification" || FName == "IOServiceAddMatchingNotification") { // Part of <rdar://problem/6961230>. (IOKit) // This should be addressed using a API table. ScratchArgs = AF.add(ScratchArgs, 2, DecRef); S = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing); } else if (FName == "CVPixelBufferCreateWithBytes") { // FIXES: <rdar://problem/7283567> // Eventually this can be improved by recognizing that the pixel // buffer passed to CVPixelBufferCreateWithBytes is released via // a callback and doing full IPA to make sure this is done correctly. // FIXME: This function has an out parameter that returns an // allocated object. ScratchArgs = AF.add(ScratchArgs, 7, StopTracking); S = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing); } else if (FName == "CGBitmapContextCreateWithData") { // FIXES: <rdar://problem/7358899> // Eventually this can be improved by recognizing that 'releaseInfo' // passed to CGBitmapContextCreateWithData is released via // a callback and doing full IPA to make sure this is done correctly. ScratchArgs = AF.add(ScratchArgs, 8, StopTracking); S = getPersistentSummary(RetEffect::MakeOwned(RetEffect::CF, true), DoNothing, DoNothing); } else if (FName == "CVPixelBufferCreateWithPlanarBytes") { // FIXES: <rdar://problem/7283567> // Eventually this can be improved by recognizing that the pixel // buffer passed to CVPixelBufferCreateWithPlanarBytes is released // via a callback and doing full IPA to make sure this is done // correctly. ScratchArgs = AF.add(ScratchArgs, 12, StopTracking); S = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing); } else if (FName == "dispatch_set_context" || FName == "xpc_connection_set_context") { // <rdar://problem/11059275> - The analyzer currently doesn't have // a good way to reason about the finalizer function for libdispatch. // If we pass a context object that is memory managed, stop tracking it. // <rdar://problem/13783514> - Same problem, but for XPC. // FIXME: this hack should possibly go away once we can handle // libdispatch and XPC finalizers. ScratchArgs = AF.add(ScratchArgs, 1, StopTracking); S = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing); } else if (FName.startswith("NSLog")) { S = getDoNothingSummary(); } else if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos)) { // Whitelist NSXXInsertXX, for example NSMapInsertIfAbsent, since they can // be deallocated by NSMapRemove. (radar://11152419) ScratchArgs = AF.add(ScratchArgs, 1, StopTracking); ScratchArgs = AF.add(ScratchArgs, 2, StopTracking); S = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing); } // Did we get a summary? if (S) break; if (RetTy->isPointerType()) { // For CoreFoundation ('CF') types. if (cocoa::isRefType(RetTy, "CF", FName)) { if (isRetain(FD, FName)) { S = getUnarySummary(FT, cfretain); } else if (isAutorelease(FD, FName)) { S = getUnarySummary(FT, cfautorelease); // The headers use cf_consumed, but we can fully model CFAutorelease // ourselves. AllowAnnotations = false; } else if (isMakeCollectable(FD, FName)) { S = getUnarySummary(FT, cfmakecollectable); AllowAnnotations = false; } else { S = getCFCreateGetRuleSummary(FD); } break; } // For CoreGraphics ('CG') types. if (cocoa::isRefType(RetTy, "CG", FName)) { if (isRetain(FD, FName)) S = getUnarySummary(FT, cfretain); else S = getCFCreateGetRuleSummary(FD); break; } // For the Disk Arbitration API (DiskArbitration/DADisk.h) if (cocoa::isRefType(RetTy, "DADisk") || cocoa::isRefType(RetTy, "DADissenter") || cocoa::isRefType(RetTy, "DASessionRef")) { S = getCFCreateGetRuleSummary(FD); break; } if (FD->hasAttr<CFAuditedTransferAttr>()) { S = getCFCreateGetRuleSummary(FD); break; } break; } // Check for release functions, the only kind of functions that we care // about that don't return a pointer type. if (FName[0] == 'C' && (FName[1] == 'F' || FName[1] == 'G')) { // Test for 'CGCF'. FName = FName.substr(FName.startswith("CGCF") ? 4 : 2); if (isRelease(FD, FName)) S = getUnarySummary(FT, cfrelease); else { assert (ScratchArgs.isEmpty()); // Remaining CoreFoundation and CoreGraphics functions. // We use to assume that they all strictly followed the ownership idiom // and that ownership cannot be transferred. While this is technically // correct, many methods allow a tracked object to escape. For example: // // CFMutableDictionaryRef x = CFDictionaryCreateMutable(...); // CFDictionaryAddValue(y, key, x); // CFRelease(x); // ... it is okay to use 'x' since 'y' has a reference to it // // We handle this and similar cases with the follow heuristic. If the // function name contains "InsertValue", "SetValue", "AddValue", // "AppendValue", or "SetAttribute", then we assume that arguments may // "escape." This means that something else holds on to the object, // allowing it be used even after its local retain count drops to 0. ArgEffect E = (StrInStrNoCase(FName, "InsertValue") != StringRef::npos|| StrInStrNoCase(FName, "AddValue") != StringRef::npos || StrInStrNoCase(FName, "SetValue") != StringRef::npos || StrInStrNoCase(FName, "AppendValue") != StringRef::npos|| StrInStrNoCase(FName, "SetAttribute") != StringRef::npos) ? MayEscape : DoNothing; S = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, E); } } } while (0); // If we got all the way here without any luck, use a default summary. if (!S) S = getDefaultSummary(); // Annotations override defaults. if (AllowAnnotations) updateSummaryFromAnnotations(S, FD); FuncSummaries[FD] = S; return S; } const RetainSummary * RetainSummaryManager::getCFCreateGetRuleSummary(const FunctionDecl *FD) { if (coreFoundation::followsCreateRule(FD)) return getCFSummaryCreateRule(FD); return getCFSummaryGetRule(FD); } const RetainSummary * RetainSummaryManager::getUnarySummary(const FunctionType* FT, UnaryFuncKind func) { // Sanity check that this is *really* a unary function. This can // happen if people do weird things. const FunctionProtoType* FTP = dyn_cast<FunctionProtoType>(FT); if (!FTP || FTP->getNumParams() != 1) return getPersistentStopSummary(); assert (ScratchArgs.isEmpty()); ArgEffect Effect; switch (func) { case cfretain: Effect = IncRef; break; case cfrelease: Effect = DecRef; break; case cfautorelease: Effect = Autorelease; break; case cfmakecollectable: Effect = MakeCollectable; break; } ScratchArgs = AF.add(ScratchArgs, 0, Effect); return getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing); } const RetainSummary * RetainSummaryManager::getCFSummaryCreateRule(const FunctionDecl *FD) { assert (ScratchArgs.isEmpty()); return getPersistentSummary(RetEffect::MakeOwned(RetEffect::CF, true)); } const RetainSummary * RetainSummaryManager::getCFSummaryGetRule(const FunctionDecl *FD) { assert (ScratchArgs.isEmpty()); return getPersistentSummary(RetEffect::MakeNotOwned(RetEffect::CF), DoNothing, DoNothing); } //===----------------------------------------------------------------------===// // Summary creation for Selectors. //===----------------------------------------------------------------------===// Optional<RetEffect> RetainSummaryManager::getRetEffectFromAnnotations(QualType RetTy, const Decl *D) { if (cocoa::isCocoaObjectRef(RetTy)) { if (D->hasAttr<NSReturnsRetainedAttr>()) return ObjCAllocRetE; if (D->hasAttr<NSReturnsNotRetainedAttr>() || D->hasAttr<NSReturnsAutoreleasedAttr>()) return RetEffect::MakeNotOwned(RetEffect::ObjC); } else if (!RetTy->isPointerType()) { return None; } if (D->hasAttr<CFReturnsRetainedAttr>()) return RetEffect::MakeOwned(RetEffect::CF, true); if (D->hasAttr<CFReturnsNotRetainedAttr>()) return RetEffect::MakeNotOwned(RetEffect::CF); return None; } void RetainSummaryManager::updateSummaryFromAnnotations(const RetainSummary *&Summ, const FunctionDecl *FD) { if (!FD) return; assert(Summ && "Must have a summary to add annotations to."); RetainSummaryTemplate Template(Summ, *this); // Effects on the parameters. unsigned parm_idx = 0; for (FunctionDecl::param_const_iterator pi = FD->param_begin(), pe = FD->param_end(); pi != pe; ++pi, ++parm_idx) { const ParmVarDecl *pd = *pi; if (pd->hasAttr<NSConsumedAttr>()) Template->addArg(AF, parm_idx, DecRefMsg); else if (pd->hasAttr<CFConsumedAttr>()) Template->addArg(AF, parm_idx, DecRef); } QualType RetTy = FD->getReturnType(); if (Optional<RetEffect> RetE = getRetEffectFromAnnotations(RetTy, FD)) Template->setRetEffect(*RetE); } void RetainSummaryManager::updateSummaryFromAnnotations(const RetainSummary *&Summ, const ObjCMethodDecl *MD) { if (!MD) return; assert(Summ && "Must have a valid summary to add annotations to"); RetainSummaryTemplate Template(Summ, *this); // Effects on the receiver. if (MD->hasAttr<NSConsumesSelfAttr>()) Template->setReceiverEffect(DecRefMsg); // Effects on the parameters. unsigned parm_idx = 0; for (ObjCMethodDecl::param_const_iterator pi=MD->param_begin(), pe=MD->param_end(); pi != pe; ++pi, ++parm_idx) { const ParmVarDecl *pd = *pi; if (pd->hasAttr<NSConsumedAttr>()) Template->addArg(AF, parm_idx, DecRefMsg); else if (pd->hasAttr<CFConsumedAttr>()) { Template->addArg(AF, parm_idx, DecRef); } } QualType RetTy = MD->getReturnType(); if (Optional<RetEffect> RetE = getRetEffectFromAnnotations(RetTy, MD)) Template->setRetEffect(*RetE); } const RetainSummary * RetainSummaryManager::getStandardMethodSummary(const ObjCMethodDecl *MD, Selector S, QualType RetTy) { // Any special effects? ArgEffect ReceiverEff = DoNothing; RetEffect ResultEff = RetEffect::MakeNoRet(); // Check the method family, and apply any default annotations. switch (MD ? MD->getMethodFamily() : S.getMethodFamily()) { case OMF_None: case OMF_initialize: case OMF_performSelector: // Assume all Objective-C methods follow Cocoa Memory Management rules. // FIXME: Does the non-threaded performSelector family really belong here? // The selector could be, say, @selector(copy). if (cocoa::isCocoaObjectRef(RetTy)) ResultEff = RetEffect::MakeNotOwned(RetEffect::ObjC); else if (coreFoundation::isCFObjectRef(RetTy)) { // ObjCMethodDecl currently doesn't consider CF objects as valid return // values for alloc, new, copy, or mutableCopy, so we have to // double-check with the selector. This is ugly, but there aren't that // many Objective-C methods that return CF objects, right? if (MD) { switch (S.getMethodFamily()) { case OMF_alloc: case OMF_new: case OMF_copy: case OMF_mutableCopy: ResultEff = RetEffect::MakeOwned(RetEffect::CF, true); break; default: ResultEff = RetEffect::MakeNotOwned(RetEffect::CF); break; } } else { ResultEff = RetEffect::MakeNotOwned(RetEffect::CF); } } break; case OMF_init: ResultEff = ObjCInitRetE; ReceiverEff = DecRefMsg; break; case OMF_alloc: case OMF_new: case OMF_copy: case OMF_mutableCopy: if (cocoa::isCocoaObjectRef(RetTy)) ResultEff = ObjCAllocRetE; else if (coreFoundation::isCFObjectRef(RetTy)) ResultEff = RetEffect::MakeOwned(RetEffect::CF, true); break; case OMF_autorelease: ReceiverEff = Autorelease; break; case OMF_retain: ReceiverEff = IncRefMsg; break; case OMF_release: ReceiverEff = DecRefMsg; break; case OMF_dealloc: ReceiverEff = Dealloc; break; case OMF_self: // -self is handled specially by the ExprEngine to propagate the receiver. break; case OMF_retainCount: case OMF_finalize: // These methods don't return objects. break; } // If one of the arguments in the selector has the keyword 'delegate' we // should stop tracking the reference count for the receiver. This is // because the reference count is quite possibly handled by a delegate // method. if (S.isKeywordSelector()) { for (unsigned i = 0, e = S.getNumArgs(); i != e; ++i) { StringRef Slot = S.getNameForSlot(i); if (Slot.substr(Slot.size() - 8).equals_lower("delegate")) { if (ResultEff == ObjCInitRetE) ResultEff = RetEffect::MakeNoRetHard(); else ReceiverEff = StopTrackingHard; } } } if (ScratchArgs.isEmpty() && ReceiverEff == DoNothing && ResultEff.getKind() == RetEffect::NoRet) return getDefaultSummary(); return getPersistentSummary(ResultEff, ReceiverEff, MayEscape); } const RetainSummary * RetainSummaryManager::getInstanceMethodSummary(const ObjCMethodCall &Msg, ProgramStateRef State) { const ObjCInterfaceDecl *ReceiverClass = nullptr; // We do better tracking of the type of the object than the core ExprEngine. // See if we have its type in our private state. // FIXME: Eventually replace the use of state->get<RefBindings> with // a generic API for reasoning about the Objective-C types of symbolic // objects. SVal ReceiverV = Msg.getReceiverSVal(); if (SymbolRef Sym = ReceiverV.getAsLocSymbol()) if (const RefVal *T = getRefBinding(State, Sym)) if (const ObjCObjectPointerType *PT = T->getType()->getAs<ObjCObjectPointerType>()) ReceiverClass = PT->getInterfaceDecl(); // If we don't know what kind of object this is, fall back to its static type. if (!ReceiverClass) ReceiverClass = Msg.getReceiverInterface(); // FIXME: The receiver could be a reference to a class, meaning that // we should use the class method. // id x = [NSObject class]; // [x performSelector:... withObject:... afterDelay:...]; Selector S = Msg.getSelector(); const ObjCMethodDecl *Method = Msg.getDecl(); if (!Method && ReceiverClass) Method = ReceiverClass->getInstanceMethod(S); return getMethodSummary(S, ReceiverClass, Method, Msg.getResultType(), ObjCMethodSummaries); } const RetainSummary * RetainSummaryManager::getMethodSummary(Selector S, const ObjCInterfaceDecl *ID, const ObjCMethodDecl *MD, QualType RetTy, ObjCMethodSummariesTy &CachedSummaries) { // Look up a summary in our summary cache. const RetainSummary *Summ = CachedSummaries.find(ID, S); if (!Summ) { Summ = getStandardMethodSummary(MD, S, RetTy); // Annotations override defaults. updateSummaryFromAnnotations(Summ, MD); // Memoize the summary. CachedSummaries[ObjCSummaryKey(ID, S)] = Summ; } return Summ; } void RetainSummaryManager::InitializeClassMethodSummaries() { assert(ScratchArgs.isEmpty()); // Create the [NSAssertionHandler currentHander] summary. addClassMethSummary("NSAssertionHandler", "currentHandler", getPersistentSummary(RetEffect::MakeNotOwned(RetEffect::ObjC))); // Create the [NSAutoreleasePool addObject:] summary. ScratchArgs = AF.add(ScratchArgs, 0, Autorelease); addClassMethSummary("NSAutoreleasePool", "addObject", getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, Autorelease)); } void RetainSummaryManager::InitializeMethodSummaries() { assert (ScratchArgs.isEmpty()); // Create the "init" selector. It just acts as a pass-through for the // receiver. const RetainSummary *InitSumm = getPersistentSummary(ObjCInitRetE, DecRefMsg); addNSObjectMethSummary(GetNullarySelector("init", Ctx), InitSumm); // awakeAfterUsingCoder: behaves basically like an 'init' method. It // claims the receiver and returns a retained object. addNSObjectMethSummary(GetUnarySelector("awakeAfterUsingCoder", Ctx), InitSumm); // The next methods are allocators. const RetainSummary *AllocSumm = getPersistentSummary(ObjCAllocRetE); const RetainSummary *CFAllocSumm = getPersistentSummary(RetEffect::MakeOwned(RetEffect::CF, true)); // Create the "retain" selector. RetEffect NoRet = RetEffect::MakeNoRet(); const RetainSummary *Summ = getPersistentSummary(NoRet, IncRefMsg); addNSObjectMethSummary(GetNullarySelector("retain", Ctx), Summ); // Create the "release" selector. Summ = getPersistentSummary(NoRet, DecRefMsg); addNSObjectMethSummary(GetNullarySelector("release", Ctx), Summ); // Create the -dealloc summary. Summ = getPersistentSummary(NoRet, Dealloc); addNSObjectMethSummary(GetNullarySelector("dealloc", Ctx), Summ); // Create the "autorelease" selector. Summ = getPersistentSummary(NoRet, Autorelease); addNSObjectMethSummary(GetNullarySelector("autorelease", Ctx), Summ); // For NSWindow, allocated objects are (initially) self-owned. // FIXME: For now we opt for false negatives with NSWindow, as these objects // self-own themselves. However, they only do this once they are displayed. // Thus, we need to track an NSWindow's display status. // This is tracked in <rdar://problem/6062711>. // See also http://llvm.org/bugs/show_bug.cgi?id=3714. const RetainSummary *NoTrackYet = getPersistentSummary(RetEffect::MakeNoRet(), StopTracking, StopTracking); addClassMethSummary("NSWindow", "alloc", NoTrackYet); // For NSPanel (which subclasses NSWindow), allocated objects are not // self-owned. // FIXME: For now we don't track NSPanels. object for the same reason // as for NSWindow objects. addClassMethSummary("NSPanel", "alloc", NoTrackYet); // For NSNull, objects returned by +null are singletons that ignore // retain/release semantics. Just don't track them. // <rdar://problem/12858915> addClassMethSummary("NSNull", "null", NoTrackYet); // Don't track allocated autorelease pools, as it is okay to prematurely // exit a method. addClassMethSummary("NSAutoreleasePool", "alloc", NoTrackYet); addClassMethSummary("NSAutoreleasePool", "allocWithZone", NoTrackYet, false); addClassMethSummary("NSAutoreleasePool", "new", NoTrackYet); // Create summaries QCRenderer/QCView -createSnapShotImageOfType: addInstMethSummary("QCRenderer", AllocSumm, "createSnapshotImageOfType", nullptr); addInstMethSummary("QCView", AllocSumm, "createSnapshotImageOfType", nullptr); // Create summaries for CIContext, 'createCGImage' and // 'createCGLayerWithSize'. These objects are CF objects, and are not // automatically garbage collected. addInstMethSummary("CIContext", CFAllocSumm, "createCGImage", "fromRect", nullptr); addInstMethSummary("CIContext", CFAllocSumm, "createCGImage", "fromRect", "format", "colorSpace", nullptr); addInstMethSummary("CIContext", CFAllocSumm, "createCGLayerWithSize", "info", nullptr); } //===----------------------------------------------------------------------===// // Error reporting. //===----------------------------------------------------------------------===// namespace { typedef llvm::DenseMap<const ExplodedNode *, const RetainSummary *> SummaryLogTy; //===-------------===// // Bug Descriptions. // //===-------------===// class CFRefBug : public BugType { protected: CFRefBug(const CheckerBase *checker, StringRef name) : BugType(checker, name, categories::MemoryCoreFoundationObjectiveC) {} public: // FIXME: Eventually remove. virtual const char *getDescription() const = 0; virtual bool isLeak() const { return false; } }; class UseAfterRelease : public CFRefBug { public: UseAfterRelease(const CheckerBase *checker) : CFRefBug(checker, "Use-after-release") {} const char *getDescription() const override { return "Reference-counted object is used after it is released"; } }; class BadRelease : public CFRefBug { public: BadRelease(const CheckerBase *checker) : CFRefBug(checker, "Bad release") {} const char *getDescription() const override { return "Incorrect decrement of the reference count of an object that is " "not owned at this point by the caller"; } }; class DeallocGC : public CFRefBug { public: DeallocGC(const CheckerBase *checker) : CFRefBug(checker, "-dealloc called while using garbage collection") {} const char *getDescription() const override { return "-dealloc called while using garbage collection"; } }; class DeallocNotOwned : public CFRefBug { public: DeallocNotOwned(const CheckerBase *checker) : CFRefBug(checker, "-dealloc sent to non-exclusively owned object") {} const char *getDescription() const override { return "-dealloc sent to object that may be referenced elsewhere"; } }; class OverAutorelease : public CFRefBug { public: OverAutorelease(const CheckerBase *checker) : CFRefBug(checker, "Object autoreleased too many times") {} const char *getDescription() const override { return "Object autoreleased too many times"; } }; class ReturnedNotOwnedForOwned : public CFRefBug { public: ReturnedNotOwnedForOwned(const CheckerBase *checker) : CFRefBug(checker, "Method should return an owned object") {} const char *getDescription() const override { return "Object with a +0 retain count returned to caller where a +1 " "(owning) retain count is expected"; } }; class Leak : public CFRefBug { public: Leak(const CheckerBase *checker, StringRef name) : CFRefBug(checker, name) { // Leaks should not be reported if they are post-dominated by a sink. setSuppressOnSink(true); } const char *getDescription() const override { return ""; } bool isLeak() const override { return true; } }; //===---------===// // Bug Reports. // //===---------===// class CFRefReportVisitor : public BugReporterVisitorImpl<CFRefReportVisitor> { protected: SymbolRef Sym; const SummaryLogTy &SummaryLog; bool GCEnabled; public: CFRefReportVisitor(SymbolRef sym, bool gcEnabled, const SummaryLogTy &log) : Sym(sym), SummaryLog(log), GCEnabled(gcEnabled) {} void Profile(llvm::FoldingSetNodeID &ID) const override { static int x = 0; ID.AddPointer(&x); ID.AddPointer(Sym); } PathDiagnosticPiece *VisitNode(const ExplodedNode *N, const ExplodedNode *PrevN, BugReporterContext &BRC, BugReport &BR) override; std::unique_ptr<PathDiagnosticPiece> getEndPath(BugReporterContext &BRC, const ExplodedNode *N, BugReport &BR) override; }; class CFRefLeakReportVisitor : public CFRefReportVisitor { public: CFRefLeakReportVisitor(SymbolRef sym, bool GCEnabled, const SummaryLogTy &log) : CFRefReportVisitor(sym, GCEnabled, log) {} std::unique_ptr<PathDiagnosticPiece> getEndPath(BugReporterContext &BRC, const ExplodedNode *N, BugReport &BR) override; std::unique_ptr<BugReporterVisitor> clone() const override { // The curiously-recurring template pattern only works for one level of // subclassing. Rather than make a new template base for // CFRefReportVisitor, we simply override clone() to do the right thing. // This could be trouble someday if BugReporterVisitorImpl is ever // used for something else besides a convenient implementation of clone(). return llvm::make_unique<CFRefLeakReportVisitor>(*this); } }; class CFRefReport : public BugReport { void addGCModeDescription(const LangOptions &LOpts, bool GCEnabled); public: CFRefReport(CFRefBug &D, const LangOptions &LOpts, bool GCEnabled, const SummaryLogTy &Log, ExplodedNode *n, SymbolRef sym, bool registerVisitor = true) : BugReport(D, D.getDescription(), n) { if (registerVisitor) addVisitor(llvm::make_unique<CFRefReportVisitor>(sym, GCEnabled, Log)); addGCModeDescription(LOpts, GCEnabled); } CFRefReport(CFRefBug &D, const LangOptions &LOpts, bool GCEnabled, const SummaryLogTy &Log, ExplodedNode *n, SymbolRef sym, StringRef endText) : BugReport(D, D.getDescription(), endText, n) { addVisitor(llvm::make_unique<CFRefReportVisitor>(sym, GCEnabled, Log)); addGCModeDescription(LOpts, GCEnabled); } llvm::iterator_range<ranges_iterator> getRanges() override { const CFRefBug& BugTy = static_cast<CFRefBug&>(getBugType()); if (!BugTy.isLeak()) return BugReport::getRanges(); return llvm::make_range(ranges_iterator(), ranges_iterator()); } }; class CFRefLeakReport : public CFRefReport { const MemRegion* AllocBinding; public: CFRefLeakReport(CFRefBug &D, const LangOptions &LOpts, bool GCEnabled, const SummaryLogTy &Log, ExplodedNode *n, SymbolRef sym, CheckerContext &Ctx, bool IncludeAllocationLine); PathDiagnosticLocation getLocation(const SourceManager &SM) const override { assert(Location.isValid()); return Location; } }; } // end anonymous namespace void CFRefReport::addGCModeDescription(const LangOptions &LOpts, bool GCEnabled) { const char *GCModeDescription = nullptr; switch (LOpts.getGC()) { case LangOptions::GCOnly: assert(GCEnabled); GCModeDescription = "Code is compiled to only use garbage collection"; break; case LangOptions::NonGC: assert(!GCEnabled); GCModeDescription = "Code is compiled to use reference counts"; break; case LangOptions::HybridGC: if (GCEnabled) { GCModeDescription = "Code is compiled to use either garbage collection " "(GC) or reference counts (non-GC). The bug occurs " "with GC enabled"; break; } else { GCModeDescription = "Code is compiled to use either garbage collection " "(GC) or reference counts (non-GC). The bug occurs " "in non-GC mode"; break; } } assert(GCModeDescription && "invalid/unknown GC mode"); addExtraText(GCModeDescription); } static bool isNumericLiteralExpression(const Expr *E) { // FIXME: This set of cases was copied from SemaExprObjC. return isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) || isa<FloatingLiteral>(E) || isa<ObjCBoolLiteralExpr>(E) || isa<CXXBoolLiteralExpr>(E); } /// Returns true if this stack frame is for an Objective-C method that is a /// property getter or setter whose body has been synthesized by the analyzer. static bool isSynthesizedAccessor(const StackFrameContext *SFC) { auto Method = dyn_cast_or_null<ObjCMethodDecl>(SFC->getDecl()); if (!Method || !Method->isPropertyAccessor()) return false; return SFC->getAnalysisDeclContext()->isBodyAutosynthesized(); } PathDiagnosticPiece *CFRefReportVisitor::VisitNode(const ExplodedNode *N, const ExplodedNode *PrevN, BugReporterContext &BRC, BugReport &BR) { // FIXME: We will eventually need to handle non-statement-based events // (__attribute__((cleanup))). if (!N->getLocation().getAs<StmtPoint>()) return nullptr; // Check if the type state has changed. ProgramStateRef PrevSt = PrevN->getState(); ProgramStateRef CurrSt = N->getState(); const LocationContext *LCtx = N->getLocationContext(); const RefVal* CurrT = getRefBinding(CurrSt, Sym); if (!CurrT) return nullptr; const RefVal &CurrV = *CurrT; const RefVal *PrevT = getRefBinding(PrevSt, Sym); // Create a string buffer to constain all the useful things we want // to tell the user. std::string sbuf; llvm::raw_string_ostream os(sbuf); // This is the allocation site since the previous node had no bindings // for this symbol. if (!PrevT) { const Stmt *S = N->getLocation().castAs<StmtPoint>().getStmt(); if (isa<ObjCIvarRefExpr>(S) && isSynthesizedAccessor(LCtx->getCurrentStackFrame())) { S = LCtx->getCurrentStackFrame()->getCallSite(); } if (isa<ObjCArrayLiteral>(S)) { os << "NSArray literal is an object with a +0 retain count"; } else if (isa<ObjCDictionaryLiteral>(S)) { os << "NSDictionary literal is an object with a +0 retain count"; } else if (const ObjCBoxedExpr *BL = dyn_cast<ObjCBoxedExpr>(S)) { if (isNumericLiteralExpression(BL->getSubExpr())) os << "NSNumber literal is an object with a +0 retain count"; else { const ObjCInterfaceDecl *BoxClass = nullptr; if (const ObjCMethodDecl *Method = BL->getBoxingMethod()) BoxClass = Method->getClassInterface(); // We should always be able to find the boxing class interface, // but consider this future-proofing. if (BoxClass) os << *BoxClass << " b"; else os << "B"; os << "oxed expression produces an object with a +0 retain count"; } } else if (isa<ObjCIvarRefExpr>(S)) { os << "Object loaded from instance variable"; } else { if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { // Get the name of the callee (if it is available). SVal X = CurrSt->getSValAsScalarOrLoc(CE->getCallee(), LCtx); if (const FunctionDecl *FD = X.getAsFunctionDecl()) os << "Call to function '" << *FD << '\''; else os << "function call"; } else { assert(isa<ObjCMessageExpr>(S)); CallEventManager &Mgr = CurrSt->getStateManager().getCallEventManager(); CallEventRef<ObjCMethodCall> Call = Mgr.getObjCMethodCall(cast<ObjCMessageExpr>(S), CurrSt, LCtx); switch (Call->getMessageKind()) { case OCM_Message: os << "Method"; break; case OCM_PropertyAccess: os << "Property"; break; case OCM_Subscript: os << "Subscript"; break; } } if (CurrV.getObjKind() == RetEffect::CF) { os << " returns a Core Foundation object with a "; } else { assert (CurrV.getObjKind() == RetEffect::ObjC); os << " returns an Objective-C object with a "; } if (CurrV.isOwned()) { os << "+1 retain count"; if (GCEnabled) { assert(CurrV.getObjKind() == RetEffect::CF); os << ". " "Core Foundation objects are not automatically garbage collected."; } } else { assert (CurrV.isNotOwned()); os << "+0 retain count"; } } PathDiagnosticLocation Pos(S, BRC.getSourceManager(), N->getLocationContext()); return new PathDiagnosticEventPiece(Pos, os.str()); } // Gather up the effects that were performed on the object at this // program point SmallVector<ArgEffect, 2> AEffects; const ExplodedNode *OrigNode = BRC.getNodeResolver().getOriginalNode(N); if (const RetainSummary *Summ = SummaryLog.lookup(OrigNode)) { // We only have summaries attached to nodes after evaluating CallExpr and // ObjCMessageExprs. const Stmt *S = N->getLocation().castAs<StmtPoint>().getStmt(); if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { // Iterate through the parameter expressions and see if the symbol // was ever passed as an argument. unsigned i = 0; for (CallExpr::const_arg_iterator AI=CE->arg_begin(), AE=CE->arg_end(); AI!=AE; ++AI, ++i) { // Retrieve the value of the argument. Is it the symbol // we are interested in? if (CurrSt->getSValAsScalarOrLoc(*AI, LCtx).getAsLocSymbol() != Sym) continue; // We have an argument. Get the effect! AEffects.push_back(Summ->getArg(i)); } } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(S)) { if (const Expr *receiver = ME->getInstanceReceiver()) if (CurrSt->getSValAsScalarOrLoc(receiver, LCtx) .getAsLocSymbol() == Sym) { // The symbol we are tracking is the receiver. AEffects.push_back(Summ->getReceiverEffect()); } } } do { // Get the previous type state. RefVal PrevV = *PrevT; // Specially handle -dealloc. if (!GCEnabled && std::find(AEffects.begin(), AEffects.end(), Dealloc) != AEffects.end()) { // Determine if the object's reference count was pushed to zero. assert(!PrevV.hasSameState(CurrV) && "The state should have changed."); // We may not have transitioned to 'release' if we hit an error. // This case is handled elsewhere. if (CurrV.getKind() == RefVal::Released) { assert(CurrV.getCombinedCounts() == 0); os << "Object released by directly sending the '-dealloc' message"; break; } } // Specially handle CFMakeCollectable and friends. if (std::find(AEffects.begin(), AEffects.end(), MakeCollectable) != AEffects.end()) { // Get the name of the function. const Stmt *S = N->getLocation().castAs<StmtPoint>().getStmt(); SVal X = CurrSt->getSValAsScalarOrLoc(cast<CallExpr>(S)->getCallee(), LCtx); const FunctionDecl *FD = X.getAsFunctionDecl(); if (GCEnabled) { // Determine if the object's reference count was pushed to zero. assert(!PrevV.hasSameState(CurrV) && "The state should have changed."); os << "In GC mode a call to '" << *FD << "' decrements an object's retain count and registers the " "object with the garbage collector. "; if (CurrV.getKind() == RefVal::Released) { assert(CurrV.getCount() == 0); os << "Since it now has a 0 retain count the object can be " "automatically collected by the garbage collector."; } else os << "An object must have a 0 retain count to be garbage collected. " "After this call its retain count is +" << CurrV.getCount() << '.'; } else os << "When GC is not enabled a call to '" << *FD << "' has no effect on its argument."; // Nothing more to say. break; } // Determine if the typestate has changed. if (!PrevV.hasSameState(CurrV)) switch (CurrV.getKind()) { case RefVal::Owned: case RefVal::NotOwned: if (PrevV.getCount() == CurrV.getCount()) { // Did an autorelease message get sent? if (PrevV.getAutoreleaseCount() == CurrV.getAutoreleaseCount()) return nullptr; assert(PrevV.getAutoreleaseCount() < CurrV.getAutoreleaseCount()); os << "Object autoreleased"; break; } if (PrevV.getCount() > CurrV.getCount()) os << "Reference count decremented."; else os << "Reference count incremented."; if (unsigned Count = CurrV.getCount()) os << " The object now has a +" << Count << " retain count."; if (PrevV.getKind() == RefVal::Released) { assert(GCEnabled && CurrV.getCount() > 0); os << " The object is not eligible for garbage collection until " "the retain count reaches 0 again."; } break; case RefVal::Released: if (CurrV.getIvarAccessHistory() == RefVal::IvarAccessHistory::ReleasedAfterDirectAccess && CurrV.getIvarAccessHistory() != PrevV.getIvarAccessHistory()) { os << "Strong instance variable relinquished. "; } os << "Object released."; break; case RefVal::ReturnedOwned: // Autoreleases can be applied after marking a node ReturnedOwned. if (CurrV.getAutoreleaseCount()) return nullptr; os << "Object returned to caller as an owning reference (single " "retain count transferred to caller)"; break; case RefVal::ReturnedNotOwned: os << "Object returned to caller with a +0 retain count"; break; default: return nullptr; } // Emit any remaining diagnostics for the argument effects (if any). for (SmallVectorImpl<ArgEffect>::iterator I=AEffects.begin(), E=AEffects.end(); I != E; ++I) { // A bunch of things have alternate behavior under GC. if (GCEnabled) switch (*I) { default: break; case Autorelease: os << "In GC mode an 'autorelease' has no effect."; continue; case IncRefMsg: os << "In GC mode the 'retain' message has no effect."; continue; case DecRefMsg: os << "In GC mode the 'release' message has no effect."; continue; } } } while (0); if (os.str().empty()) return nullptr; // We have nothing to say! const Stmt *S = N->getLocation().castAs<StmtPoint>().getStmt(); PathDiagnosticLocation Pos(S, BRC.getSourceManager(), N->getLocationContext()); PathDiagnosticPiece *P = new PathDiagnosticEventPiece(Pos, os.str()); // Add the range by scanning the children of the statement for any bindings // to Sym. for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end(); I!=E; ++I) if (const Expr *Exp = dyn_cast_or_null<Expr>(*I)) if (CurrSt->getSValAsScalarOrLoc(Exp, LCtx).getAsLocSymbol() == Sym) { P->addRange(Exp->getSourceRange()); break; } return P; } // Find the first node in the current function context that referred to the // tracked symbol and the memory location that value was stored to. Note, the // value is only reported if the allocation occurred in the same function as // the leak. The function can also return a location context, which should be // treated as interesting. struct AllocationInfo { const ExplodedNode* N; const MemRegion *R; const LocationContext *InterestingMethodContext; AllocationInfo(const ExplodedNode *InN, const MemRegion *InR, const LocationContext *InInterestingMethodContext) : N(InN), R(InR), InterestingMethodContext(InInterestingMethodContext) {} }; static AllocationInfo GetAllocationSite(ProgramStateManager& StateMgr, const ExplodedNode *N, SymbolRef Sym) { const ExplodedNode *AllocationNode = N; const ExplodedNode *AllocationNodeInCurrentOrParentContext = N; const MemRegion *FirstBinding = nullptr; const LocationContext *LeakContext = N->getLocationContext(); // The location context of the init method called on the leaked object, if // available. const LocationContext *InitMethodContext = nullptr; while (N) { ProgramStateRef St = N->getState(); const LocationContext *NContext = N->getLocationContext(); if (!getRefBinding(St, Sym)) break; StoreManager::FindUniqueBinding FB(Sym); StateMgr.iterBindings(St, FB); if (FB) { const MemRegion *R = FB.getRegion(); const VarRegion *VR = R->getBaseRegion()->getAs<VarRegion>(); // Do not show local variables belonging to a function other than // where the error is reported. if (!VR || VR->getStackFrame() == LeakContext->getCurrentStackFrame()) FirstBinding = R; } // AllocationNode is the last node in which the symbol was tracked. AllocationNode = N; // AllocationNodeInCurrentContext, is the last node in the current or // parent context in which the symbol was tracked. // // Note that the allocation site might be in the parent conext. For example, // the case where an allocation happens in a block that captures a reference // to it and that reference is overwritten/dropped by another call to // the block. if (NContext == LeakContext || NContext->isParentOf(LeakContext)) AllocationNodeInCurrentOrParentContext = N; // Find the last init that was called on the given symbol and store the // init method's location context. if (!InitMethodContext) if (Optional<CallEnter> CEP = N->getLocation().getAs<CallEnter>()) { const Stmt *CE = CEP->getCallExpr(); if (const ObjCMessageExpr *ME = dyn_cast_or_null<ObjCMessageExpr>(CE)) { const Stmt *RecExpr = ME->getInstanceReceiver(); if (RecExpr) { SVal RecV = St->getSVal(RecExpr, NContext); if (ME->getMethodFamily() == OMF_init && RecV.getAsSymbol() == Sym) InitMethodContext = CEP->getCalleeContext(); } } } N = N->pred_empty() ? nullptr : *(N->pred_begin()); } // If we are reporting a leak of the object that was allocated with alloc, // mark its init method as interesting. const LocationContext *InterestingMethodContext = nullptr; if (InitMethodContext) { const ProgramPoint AllocPP = AllocationNode->getLocation(); if (Optional<StmtPoint> SP = AllocPP.getAs<StmtPoint>()) if (const ObjCMessageExpr *ME = SP->getStmtAs<ObjCMessageExpr>()) if (ME->getMethodFamily() == OMF_alloc) InterestingMethodContext = InitMethodContext; } // If allocation happened in a function different from the leak node context, // do not report the binding. assert(N && "Could not find allocation node"); if (N->getLocationContext() != LeakContext) { FirstBinding = nullptr; } return AllocationInfo(AllocationNodeInCurrentOrParentContext, FirstBinding, InterestingMethodContext); } std::unique_ptr<PathDiagnosticPiece> CFRefReportVisitor::getEndPath(BugReporterContext &BRC, const ExplodedNode *EndN, BugReport &BR) { BR.markInteresting(Sym); return BugReporterVisitor::getDefaultEndPath(BRC, EndN, BR); } std::unique_ptr<PathDiagnosticPiece> CFRefLeakReportVisitor::getEndPath(BugReporterContext &BRC, const ExplodedNode *EndN, BugReport &BR) { // Tell the BugReporterContext to report cases when the tracked symbol is // assigned to different variables, etc. BR.markInteresting(Sym); // We are reporting a leak. Walk up the graph to get to the first node where // the symbol appeared, and also get the first VarDecl that tracked object // is stored to. AllocationInfo AllocI = GetAllocationSite(BRC.getStateManager(), EndN, Sym); const MemRegion* FirstBinding = AllocI.R; BR.markInteresting(AllocI.InterestingMethodContext); SourceManager& SM = BRC.getSourceManager(); // Compute an actual location for the leak. Sometimes a leak doesn't // occur at an actual statement (e.g., transition between blocks; end // of function) so we need to walk the graph and compute a real location. const ExplodedNode *LeakN = EndN; PathDiagnosticLocation L = PathDiagnosticLocation::createEndOfPath(LeakN, SM); std::string sbuf; llvm::raw_string_ostream os(sbuf); os << "Object leaked: "; if (FirstBinding) { os << "object allocated and stored into '" << FirstBinding->getString() << '\''; } else os << "allocated object"; // Get the retain count. const RefVal* RV = getRefBinding(EndN->getState(), Sym); assert(RV); if (RV->getKind() == RefVal::ErrorLeakReturned) { // FIXME: Per comments in rdar://6320065, "create" only applies to CF // objects. Only "copy", "alloc", "retain" and "new" transfer ownership // to the caller for NS objects. const Decl *D = &EndN->getCodeDecl(); os << (isa<ObjCMethodDecl>(D) ? " is returned from a method " : " is returned from a function "); if (D->hasAttr<CFReturnsNotRetainedAttr>()) os << "that is annotated as CF_RETURNS_NOT_RETAINED"; else if (D->hasAttr<NSReturnsNotRetainedAttr>()) os << "that is annotated as NS_RETURNS_NOT_RETAINED"; else { if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { os << "whose name ('" << MD->getSelector().getAsString() << "') does not start with 'copy', 'mutableCopy', 'alloc' or 'new'." " This violates the naming convention rules" " given in the Memory Management Guide for Cocoa"; } else { const FunctionDecl *FD = cast<FunctionDecl>(D); os << "whose name ('" << *FD << "') does not contain 'Copy' or 'Create'. This violates the naming" " convention rules given in the Memory Management Guide for Core" " Foundation"; } } } else if (RV->getKind() == RefVal::ErrorGCLeakReturned) { const ObjCMethodDecl &MD = cast<ObjCMethodDecl>(EndN->getCodeDecl()); os << " and returned from method '" << MD.getSelector().getAsString() << "' is potentially leaked when using garbage collection. Callers " "of this method do not expect a returned object with a +1 retain " "count since they expect the object to be managed by the garbage " "collector"; } else os << " is not referenced later in this execution path and has a retain " "count of +" << RV->getCount(); return llvm::make_unique<PathDiagnosticEventPiece>(L, os.str()); } CFRefLeakReport::CFRefLeakReport(CFRefBug &D, const LangOptions &LOpts, bool GCEnabled, const SummaryLogTy &Log, ExplodedNode *n, SymbolRef sym, CheckerContext &Ctx, bool IncludeAllocationLine) : CFRefReport(D, LOpts, GCEnabled, Log, n, sym, false) { // Most bug reports are cached at the location where they occurred. // With leaks, we want to unique them by the location where they were // allocated, and only report a single path. To do this, we need to find // the allocation site of a piece of tracked memory, which we do via a // call to GetAllocationSite. This will walk the ExplodedGraph backwards. // Note that this is *not* the trimmed graph; we are guaranteed, however, // that all ancestor nodes that represent the allocation site have the // same SourceLocation. const ExplodedNode *AllocNode = nullptr; const SourceManager& SMgr = Ctx.getSourceManager(); AllocationInfo AllocI = GetAllocationSite(Ctx.getStateManager(), getErrorNode(), sym); AllocNode = AllocI.N; AllocBinding = AllocI.R; markInteresting(AllocI.InterestingMethodContext); // Get the SourceLocation for the allocation site. // FIXME: This will crash the analyzer if an allocation comes from an // implicit call (ex: a destructor call). // (Currently there are no such allocations in Cocoa, though.) const Stmt *AllocStmt = 0; ProgramPoint P = AllocNode->getLocation(); if (Optional<CallExitEnd> Exit = P.getAs<CallExitEnd>()) AllocStmt = Exit->getCalleeContext()->getCallSite(); else AllocStmt = P.castAs<PostStmt>().getStmt(); assert(AllocStmt && "Cannot find allocation statement"); PathDiagnosticLocation AllocLocation = PathDiagnosticLocation::createBegin(AllocStmt, SMgr, AllocNode->getLocationContext()); Location = AllocLocation; // Set uniqieing info, which will be used for unique the bug reports. The // leaks should be uniqued on the allocation site. UniqueingLocation = AllocLocation; UniqueingDecl = AllocNode->getLocationContext()->getDecl(); // Fill in the description of the bug. Description.clear(); llvm::raw_string_ostream os(Description); os << "Potential leak "; if (GCEnabled) os << "(when using garbage collection) "; os << "of an object"; if (AllocBinding) { os << " stored into '" << AllocBinding->getString() << '\''; if (IncludeAllocationLine) { FullSourceLoc SL(AllocStmt->getLocStart(), Ctx.getSourceManager()); os << " (allocated on line " << SL.getSpellingLineNumber() << ")"; } } addVisitor(llvm::make_unique<CFRefLeakReportVisitor>(sym, GCEnabled, Log)); } //===----------------------------------------------------------------------===// // Main checker logic. //===----------------------------------------------------------------------===// namespace { class RetainCountChecker : public Checker< check::Bind, check::DeadSymbols, check::EndAnalysis, check::EndFunction, check::PostStmt<BlockExpr>, check::PostStmt<CastExpr>, check::PostStmt<ObjCArrayLiteral>, check::PostStmt<ObjCDictionaryLiteral>, check::PostStmt<ObjCBoxedExpr>, check::PostStmt<ObjCIvarRefExpr>, check::PostCall, check::PreStmt<ReturnStmt>, check::RegionChanges, eval::Assume, eval::Call > { mutable std::unique_ptr<CFRefBug> useAfterRelease, releaseNotOwned; mutable std::unique_ptr<CFRefBug> deallocGC, deallocNotOwned; mutable std::unique_ptr<CFRefBug> overAutorelease, returnNotOwnedForOwned; mutable std::unique_ptr<CFRefBug> leakWithinFunction, leakAtReturn; mutable std::unique_ptr<CFRefBug> leakWithinFunctionGC, leakAtReturnGC; typedef llvm::DenseMap<SymbolRef, const CheckerProgramPointTag *> SymbolTagMap; // This map is only used to ensure proper deletion of any allocated tags. mutable SymbolTagMap DeadSymbolTags; mutable std::unique_ptr<RetainSummaryManager> Summaries; mutable std::unique_ptr<RetainSummaryManager> SummariesGC; mutable SummaryLogTy SummaryLog; mutable bool ShouldResetSummaryLog; /// Optional setting to indicate if leak reports should include /// the allocation line. mutable bool IncludeAllocationLine; public: RetainCountChecker(AnalyzerOptions &AO) : ShouldResetSummaryLog(false), IncludeAllocationLine(shouldIncludeAllocationSiteInLeakDiagnostics(AO)) {} ~RetainCountChecker() override { DeleteContainerSeconds(DeadSymbolTags); } void checkEndAnalysis(ExplodedGraph &G, BugReporter &BR, ExprEngine &Eng) const { // FIXME: This is a hack to make sure the summary log gets cleared between // analyses of different code bodies. // // Why is this necessary? Because a checker's lifetime is tied to a // translation unit, but an ExplodedGraph's lifetime is just a code body. // Once in a blue moon, a new ExplodedNode will have the same address as an // old one with an associated summary, and the bug report visitor gets very // confused. (To make things worse, the summary lifetime is currently also // tied to a code body, so we get a crash instead of incorrect results.) // // Why is this a bad solution? Because if the lifetime of the ExplodedGraph // changes, things will start going wrong again. Really the lifetime of this // log needs to be tied to either the specific nodes in it or the entire // ExplodedGraph, not to a specific part of the code being analyzed. // // (Also, having stateful local data means that the same checker can't be // used from multiple threads, but a lot of checkers have incorrect // assumptions about that anyway. So that wasn't a priority at the time of // this fix.) // // This happens at the end of analysis, but bug reports are emitted /after/ // this point. So we can't just clear the summary log now. Instead, we mark // that the next time we access the summary log, it should be cleared. // If we never reset the summary log during /this/ code body analysis, // there were no new summaries. There might still have been summaries from // the /last/ analysis, so clear them out to make sure the bug report // visitors don't get confused. if (ShouldResetSummaryLog) SummaryLog.clear(); ShouldResetSummaryLog = !SummaryLog.empty(); } CFRefBug *getLeakWithinFunctionBug(const LangOptions &LOpts, bool GCEnabled) const { if (GCEnabled) { if (!leakWithinFunctionGC) leakWithinFunctionGC.reset(new Leak(this, "Leak of object when using " "garbage collection")); return leakWithinFunctionGC.get(); } else { if (!leakWithinFunction) { if (LOpts.getGC() == LangOptions::HybridGC) { leakWithinFunction.reset(new Leak(this, "Leak of object when not using " "garbage collection (GC) in " "dual GC/non-GC code")); } else { leakWithinFunction.reset(new Leak(this, "Leak")); } } return leakWithinFunction.get(); } } CFRefBug *getLeakAtReturnBug(const LangOptions &LOpts, bool GCEnabled) const { if (GCEnabled) { if (!leakAtReturnGC) leakAtReturnGC.reset(new Leak(this, "Leak of returned object when using " "garbage collection")); return leakAtReturnGC.get(); } else { if (!leakAtReturn) { if (LOpts.getGC() == LangOptions::HybridGC) { leakAtReturn.reset(new Leak(this, "Leak of returned object when not using " "garbage collection (GC) in dual " "GC/non-GC code")); } else { leakAtReturn.reset(new Leak(this, "Leak of returned object")); } } return leakAtReturn.get(); } } RetainSummaryManager &getSummaryManager(ASTContext &Ctx, bool GCEnabled) const { // FIXME: We don't support ARC being turned on and off during one analysis. // (nor, for that matter, do we support changing ASTContexts) bool ARCEnabled = (bool)Ctx.getLangOpts().ObjCAutoRefCount; if (GCEnabled) { if (!SummariesGC) SummariesGC.reset(new RetainSummaryManager(Ctx, true, ARCEnabled)); else assert(SummariesGC->isARCEnabled() == ARCEnabled); return *SummariesGC; } else { if (!Summaries) Summaries.reset(new RetainSummaryManager(Ctx, false, ARCEnabled)); else assert(Summaries->isARCEnabled() == ARCEnabled); return *Summaries; } } RetainSummaryManager &getSummaryManager(CheckerContext &C) const { return getSummaryManager(C.getASTContext(), C.isObjCGCEnabled()); } void printState(raw_ostream &Out, ProgramStateRef State, const char *NL, const char *Sep) const override; void checkBind(SVal loc, SVal val, const Stmt *S, CheckerContext &C) const; void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; void checkPostStmt(const CastExpr *CE, CheckerContext &C) const; void checkPostStmt(const ObjCArrayLiteral *AL, CheckerContext &C) const; void checkPostStmt(const ObjCDictionaryLiteral *DL, CheckerContext &C) const; void checkPostStmt(const ObjCBoxedExpr *BE, CheckerContext &C) const; void checkPostStmt(const ObjCIvarRefExpr *IRE, CheckerContext &C) const; void checkPostCall(const CallEvent &Call, CheckerContext &C) const; void checkSummary(const RetainSummary &Summ, const CallEvent &Call, CheckerContext &C) const; void processSummaryOfInlined(const RetainSummary &Summ, const CallEvent &Call, CheckerContext &C) const; bool evalCall(const CallExpr *CE, CheckerContext &C) const; ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, bool Assumption) const; ProgramStateRef checkRegionChanges(ProgramStateRef state, const InvalidatedSymbols *invalidated, ArrayRef<const MemRegion *> ExplicitRegions, ArrayRef<const MemRegion *> Regions, const CallEvent *Call) const; bool wantsRegionChangeUpdate(ProgramStateRef state) const { return true; } void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; void checkReturnWithRetEffect(const ReturnStmt *S, CheckerContext &C, ExplodedNode *Pred, RetEffect RE, RefVal X, SymbolRef Sym, ProgramStateRef state) const; void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; void checkEndFunction(CheckerContext &C) const; ProgramStateRef updateSymbol(ProgramStateRef state, SymbolRef sym, RefVal V, ArgEffect E, RefVal::Kind &hasErr, CheckerContext &C) const; void processNonLeakError(ProgramStateRef St, SourceRange ErrorRange, RefVal::Kind ErrorKind, SymbolRef Sym, CheckerContext &C) const; void processObjCLiterals(CheckerContext &C, const Expr *Ex) const; const ProgramPointTag *getDeadSymbolTag(SymbolRef sym) const; ProgramStateRef handleSymbolDeath(ProgramStateRef state, SymbolRef sid, RefVal V, SmallVectorImpl<SymbolRef> &Leaked) const; ProgramStateRef handleAutoreleaseCounts(ProgramStateRef state, ExplodedNode *Pred, const ProgramPointTag *Tag, CheckerContext &Ctx, SymbolRef Sym, RefVal V) const; ExplodedNode *processLeaks(ProgramStateRef state, SmallVectorImpl<SymbolRef> &Leaked, CheckerContext &Ctx, ExplodedNode *Pred = nullptr) const; }; } // end anonymous namespace namespace { class StopTrackingCallback : public SymbolVisitor { ProgramStateRef state; public: StopTrackingCallback(ProgramStateRef st) : state(st) {} ProgramStateRef getState() const { return state; } bool VisitSymbol(SymbolRef sym) override { state = state->remove<RefBindings>(sym); return true; } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Handle statements that may have an effect on refcounts. //===----------------------------------------------------------------------===// void RetainCountChecker::checkPostStmt(const BlockExpr *BE, CheckerContext &C) const { // Scan the BlockDecRefExprs for any object the retain count checker // may be tracking. if (!BE->getBlockDecl()->hasCaptures()) return; ProgramStateRef state = C.getState(); const BlockDataRegion *R = cast<BlockDataRegion>(state->getSVal(BE, C.getLocationContext()).getAsRegion()); BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), E = R->referenced_vars_end(); if (I == E) return; // FIXME: For now we invalidate the tracking of all symbols passed to blocks // via captured variables, even though captured variables result in a copy // and in implicit increment/decrement of a retain count. SmallVector<const MemRegion*, 10> Regions; const LocationContext *LC = C.getLocationContext(); MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); for ( ; I != E; ++I) { const VarRegion *VR = I.getCapturedRegion(); if (VR->getSuperRegion() == R) { VR = MemMgr.getVarRegion(VR->getDecl(), LC); } Regions.push_back(VR); } state = state->scanReachableSymbols<StopTrackingCallback>(Regions.data(), Regions.data() + Regions.size()).getState(); C.addTransition(state); } void RetainCountChecker::checkPostStmt(const CastExpr *CE, CheckerContext &C) const { const ObjCBridgedCastExpr *BE = dyn_cast<ObjCBridgedCastExpr>(CE); if (!BE) return; ArgEffect AE = IncRef; switch (BE->getBridgeKind()) { case clang::OBC_Bridge: // Do nothing. return; case clang::OBC_BridgeRetained: AE = IncRef; break; case clang::OBC_BridgeTransfer: AE = DecRefBridgedTransferred; break; } ProgramStateRef state = C.getState(); SymbolRef Sym = state->getSVal(CE, C.getLocationContext()).getAsLocSymbol(); if (!Sym) return; const RefVal* T = getRefBinding(state, Sym); if (!T) return; RefVal::Kind hasErr = (RefVal::Kind) 0; state = updateSymbol(state, Sym, *T, AE, hasErr, C); if (hasErr) { // FIXME: If we get an error during a bridge cast, should we report it? // Should we assert that there is no error? return; } C.addTransition(state); } void RetainCountChecker::processObjCLiterals(CheckerContext &C, const Expr *Ex) const { ProgramStateRef state = C.getState(); const ExplodedNode *pred = C.getPredecessor(); for (Stmt::const_child_iterator it = Ex->child_begin(), et = Ex->child_end() ; it != et ; ++it) { const Stmt *child = *it; SVal V = state->getSVal(child, pred->getLocationContext()); if (SymbolRef sym = V.getAsSymbol()) if (const RefVal* T = getRefBinding(state, sym)) { RefVal::Kind hasErr = (RefVal::Kind) 0; state = updateSymbol(state, sym, *T, MayEscape, hasErr, C); if (hasErr) { processNonLeakError(state, child->getSourceRange(), hasErr, sym, C); return; } } } // Return the object as autoreleased. // RetEffect RE = RetEffect::MakeNotOwned(RetEffect::ObjC); if (SymbolRef sym = state->getSVal(Ex, pred->getLocationContext()).getAsSymbol()) { QualType ResultTy = Ex->getType(); state = setRefBinding(state, sym, RefVal::makeNotOwned(RetEffect::ObjC, ResultTy)); } C.addTransition(state); } void RetainCountChecker::checkPostStmt(const ObjCArrayLiteral *AL, CheckerContext &C) const { // Apply the 'MayEscape' to all values. processObjCLiterals(C, AL); } void RetainCountChecker::checkPostStmt(const ObjCDictionaryLiteral *DL, CheckerContext &C) const { // Apply the 'MayEscape' to all keys and values. processObjCLiterals(C, DL); } void RetainCountChecker::checkPostStmt(const ObjCBoxedExpr *Ex, CheckerContext &C) const { const ExplodedNode *Pred = C.getPredecessor(); const LocationContext *LCtx = Pred->getLocationContext(); ProgramStateRef State = Pred->getState(); if (SymbolRef Sym = State->getSVal(Ex, LCtx).getAsSymbol()) { QualType ResultTy = Ex->getType(); State = setRefBinding(State, Sym, RefVal::makeNotOwned(RetEffect::ObjC, ResultTy)); } C.addTransition(State); } static bool wasLoadedFromIvar(SymbolRef Sym) { if (auto DerivedVal = dyn_cast<SymbolDerived>(Sym)) return isa<ObjCIvarRegion>(DerivedVal->getRegion()); if (auto RegionVal = dyn_cast<SymbolRegionValue>(Sym)) return isa<ObjCIvarRegion>(RegionVal->getRegion()); return false; } void RetainCountChecker::checkPostStmt(const ObjCIvarRefExpr *IRE, CheckerContext &C) const { Optional<Loc> IVarLoc = C.getSVal(IRE).getAs<Loc>(); if (!IVarLoc) return; ProgramStateRef State = C.getState(); SymbolRef Sym = State->getSVal(*IVarLoc).getAsSymbol(); if (!Sym || !wasLoadedFromIvar(Sym)) return; // Accessing an ivar directly is unusual. If we've done that, be more // forgiving about what the surrounding code is allowed to do. QualType Ty = Sym->getType(); RetEffect::ObjKind Kind; if (Ty->isObjCRetainableType()) Kind = RetEffect::ObjC; else if (coreFoundation::isCFObjectRef(Ty)) Kind = RetEffect::CF; else return; // If the value is already known to be nil, don't bother tracking it. ConstraintManager &CMgr = State->getConstraintManager(); if (CMgr.isNull(State, Sym).isConstrainedTrue()) return; if (const RefVal *RV = getRefBinding(State, Sym)) { // If we've seen this symbol before, or we're only seeing it now because // of something the analyzer has synthesized, don't do anything. if (RV->getIvarAccessHistory() != RefVal::IvarAccessHistory::None || isSynthesizedAccessor(C.getStackFrame())) { return; } // Note that this value has been loaded from an ivar. C.addTransition(setRefBinding(State, Sym, RV->withIvarAccess())); return; } RefVal PlusZero = RefVal::makeNotOwned(Kind, Ty); // In a synthesized accessor, the effective retain count is +0. if (isSynthesizedAccessor(C.getStackFrame())) { C.addTransition(setRefBinding(State, Sym, PlusZero)); return; } State = setRefBinding(State, Sym, PlusZero.withIvarAccess()); C.addTransition(State); } void RetainCountChecker::checkPostCall(const CallEvent &Call, CheckerContext &C) const { RetainSummaryManager &Summaries = getSummaryManager(C); const RetainSummary *Summ = Summaries.getSummary(Call, C.getState()); if (C.wasInlined) { processSummaryOfInlined(*Summ, Call, C); return; } checkSummary(*Summ, Call, C); } /// GetReturnType - Used to get the return type of a message expression or /// function call with the intention of affixing that type to a tracked symbol. /// While the return type can be queried directly from RetEx, when /// invoking class methods we augment to the return type to be that of /// a pointer to the class (as opposed it just being id). // FIXME: We may be able to do this with related result types instead. // This function is probably overestimating. static QualType GetReturnType(const Expr *RetE, ASTContext &Ctx) { QualType RetTy = RetE->getType(); // If RetE is not a message expression just return its type. // If RetE is a message expression, return its types if it is something /// more specific than id. if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(RetE)) if (const ObjCObjectPointerType *PT = RetTy->getAs<ObjCObjectPointerType>()) if (PT->isObjCQualifiedIdType() || PT->isObjCIdType() || PT->isObjCClassType()) { // At this point we know the return type of the message expression is // id, id<...>, or Class. If we have an ObjCInterfaceDecl, we know this // is a call to a class method whose type we can resolve. In such // cases, promote the return type to XXX* (where XXX is the class). const ObjCInterfaceDecl *D = ME->getReceiverInterface(); return !D ? RetTy : Ctx.getObjCObjectPointerType(Ctx.getObjCInterfaceType(D)); } return RetTy; } // We don't always get the exact modeling of the function with regards to the // retain count checker even when the function is inlined. For example, we need // to stop tracking the symbols which were marked with StopTrackingHard. void RetainCountChecker::processSummaryOfInlined(const RetainSummary &Summ, const CallEvent &CallOrMsg, CheckerContext &C) const { ProgramStateRef state = C.getState(); // Evaluate the effect of the arguments. for (unsigned idx = 0, e = CallOrMsg.getNumArgs(); idx != e; ++idx) { if (Summ.getArg(idx) == StopTrackingHard) { SVal V = CallOrMsg.getArgSVal(idx); if (SymbolRef Sym = V.getAsLocSymbol()) { state = removeRefBinding(state, Sym); } } } // Evaluate the effect on the message receiver. const ObjCMethodCall *MsgInvocation = dyn_cast<ObjCMethodCall>(&CallOrMsg); if (MsgInvocation) { if (SymbolRef Sym = MsgInvocation->getReceiverSVal().getAsLocSymbol()) { if (Summ.getReceiverEffect() == StopTrackingHard) { state = removeRefBinding(state, Sym); } } } // Consult the summary for the return value. RetEffect RE = Summ.getRetEffect(); if (RE.getKind() == RetEffect::NoRetHard) { SymbolRef Sym = CallOrMsg.getReturnValue().getAsSymbol(); if (Sym) state = removeRefBinding(state, Sym); } C.addTransition(state); } void RetainCountChecker::checkSummary(const RetainSummary &Summ, const CallEvent &CallOrMsg, CheckerContext &C) const { ProgramStateRef state = C.getState(); // Evaluate the effect of the arguments. RefVal::Kind hasErr = (RefVal::Kind) 0; SourceRange ErrorRange; SymbolRef ErrorSym = nullptr; for (unsigned idx = 0, e = CallOrMsg.getNumArgs(); idx != e; ++idx) { SVal V = CallOrMsg.getArgSVal(idx); if (SymbolRef Sym = V.getAsLocSymbol()) { if (const RefVal *T = getRefBinding(state, Sym)) { state = updateSymbol(state, Sym, *T, Summ.getArg(idx), hasErr, C); if (hasErr) { ErrorRange = CallOrMsg.getArgSourceRange(idx); ErrorSym = Sym; break; } } } } // Evaluate the effect on the message receiver. bool ReceiverIsTracked = false; if (!hasErr) { const ObjCMethodCall *MsgInvocation = dyn_cast<ObjCMethodCall>(&CallOrMsg); if (MsgInvocation) { if (SymbolRef Sym = MsgInvocation->getReceiverSVal().getAsLocSymbol()) { if (const RefVal *T = getRefBinding(state, Sym)) { ReceiverIsTracked = true; state = updateSymbol(state, Sym, *T, Summ.getReceiverEffect(), hasErr, C); if (hasErr) { ErrorRange = MsgInvocation->getOriginExpr()->getReceiverRange(); ErrorSym = Sym; } } } } } // Process any errors. if (hasErr) { processNonLeakError(state, ErrorRange, hasErr, ErrorSym, C); return; } // Consult the summary for the return value. RetEffect RE = Summ.getRetEffect(); if (RE.getKind() == RetEffect::OwnedWhenTrackedReceiver) { if (ReceiverIsTracked) RE = getSummaryManager(C).getObjAllocRetEffect(); else RE = RetEffect::MakeNoRet(); } switch (RE.getKind()) { default: llvm_unreachable("Unhandled RetEffect."); case RetEffect::NoRet: case RetEffect::NoRetHard: // No work necessary. break; case RetEffect::OwnedAllocatedSymbol: case RetEffect::OwnedSymbol: { SymbolRef Sym = CallOrMsg.getReturnValue().getAsSymbol(); if (!Sym) break; // Use the result type from the CallEvent as it automatically adjusts // for methods/functions that return references. QualType ResultTy = CallOrMsg.getResultType(); state = setRefBinding(state, Sym, RefVal::makeOwned(RE.getObjKind(), ResultTy)); // FIXME: Add a flag to the checker where allocations are assumed to // *not* fail. break; } case RetEffect::GCNotOwnedSymbol: case RetEffect::NotOwnedSymbol: { const Expr *Ex = CallOrMsg.getOriginExpr(); SymbolRef Sym = CallOrMsg.getReturnValue().getAsSymbol(); if (!Sym) break; assert(Ex); // Use GetReturnType in order to give [NSFoo alloc] the type NSFoo *. QualType ResultTy = GetReturnType(Ex, C.getASTContext()); state = setRefBinding(state, Sym, RefVal::makeNotOwned(RE.getObjKind(), ResultTy)); break; } } // This check is actually necessary; otherwise the statement builder thinks // we've hit a previously-found path. // Normally addTransition takes care of this, but we want the node pointer. ExplodedNode *NewNode; if (state == C.getState()) { NewNode = C.getPredecessor(); } else { NewNode = C.addTransition(state); } // Annotate the node with summary we used. if (NewNode) { // FIXME: This is ugly. See checkEndAnalysis for why it's necessary. if (ShouldResetSummaryLog) { SummaryLog.clear(); ShouldResetSummaryLog = false; } SummaryLog[NewNode] = &Summ; } } ProgramStateRef RetainCountChecker::updateSymbol(ProgramStateRef state, SymbolRef sym, RefVal V, ArgEffect E, RefVal::Kind &hasErr, CheckerContext &C) const { // In GC mode [... release] and [... retain] do nothing. // In ARC mode they shouldn't exist at all, but we just ignore them. bool IgnoreRetainMsg = C.isObjCGCEnabled(); if (!IgnoreRetainMsg) IgnoreRetainMsg = (bool)C.getASTContext().getLangOpts().ObjCAutoRefCount; switch (E) { default: break; case IncRefMsg: E = IgnoreRetainMsg ? DoNothing : IncRef; break; case DecRefMsg: E = IgnoreRetainMsg ? DoNothing : DecRef; break; case DecRefMsgAndStopTrackingHard: E = IgnoreRetainMsg ? StopTracking : DecRefAndStopTrackingHard; break; case MakeCollectable: E = C.isObjCGCEnabled() ? DecRef : DoNothing; break; } // Handle all use-after-releases. if (!C.isObjCGCEnabled() && V.getKind() == RefVal::Released) { V = V ^ RefVal::ErrorUseAfterRelease; hasErr = V.getKind(); return setRefBinding(state, sym, V); } switch (E) { case DecRefMsg: case IncRefMsg: case MakeCollectable: case DecRefMsgAndStopTrackingHard: llvm_unreachable("DecRefMsg/IncRefMsg/MakeCollectable already converted"); case Dealloc: // Any use of -dealloc in GC is *bad*. if (C.isObjCGCEnabled()) { V = V ^ RefVal::ErrorDeallocGC; hasErr = V.getKind(); break; } switch (V.getKind()) { default: llvm_unreachable("Invalid RefVal state for an explicit dealloc."); case RefVal::Owned: // The object immediately transitions to the released state. V = V ^ RefVal::Released; V.clearCounts(); return setRefBinding(state, sym, V); case RefVal::NotOwned: V = V ^ RefVal::ErrorDeallocNotOwned; hasErr = V.getKind(); break; } break; case MayEscape: if (V.getKind() == RefVal::Owned) { V = V ^ RefVal::NotOwned; break; } // Fall-through. case DoNothing: return state; case Autorelease: if (C.isObjCGCEnabled()) return state; // Update the autorelease counts. V = V.autorelease(); break; case StopTracking: case StopTrackingHard: return removeRefBinding(state, sym); case IncRef: switch (V.getKind()) { default: llvm_unreachable("Invalid RefVal state for a retain."); case RefVal::Owned: case RefVal::NotOwned: V = V + 1; break; case RefVal::Released: // Non-GC cases are handled above. assert(C.isObjCGCEnabled()); V = (V ^ RefVal::Owned) + 1; break; } break; case DecRef: case DecRefBridgedTransferred: case DecRefAndStopTrackingHard: switch (V.getKind()) { default: // case 'RefVal::Released' handled above. llvm_unreachable("Invalid RefVal state for a release."); case RefVal::Owned: assert(V.getCount() > 0); if (V.getCount() == 1) { if (E == DecRefBridgedTransferred || V.getIvarAccessHistory() == RefVal::IvarAccessHistory::AccessedDirectly) V = V ^ RefVal::NotOwned; else V = V ^ RefVal::Released; } else if (E == DecRefAndStopTrackingHard) { return removeRefBinding(state, sym); } V = V - 1; break; case RefVal::NotOwned: if (V.getCount() > 0) { if (E == DecRefAndStopTrackingHard) return removeRefBinding(state, sym); V = V - 1; } else if (V.getIvarAccessHistory() == RefVal::IvarAccessHistory::AccessedDirectly) { // Assume that the instance variable was holding on the object at // +1, and we just didn't know. if (E == DecRefAndStopTrackingHard) return removeRefBinding(state, sym); V = V.releaseViaIvar() ^ RefVal::Released; } else { V = V ^ RefVal::ErrorReleaseNotOwned; hasErr = V.getKind(); } break; case RefVal::Released: // Non-GC cases are handled above. assert(C.isObjCGCEnabled()); V = V ^ RefVal::ErrorUseAfterRelease; hasErr = V.getKind(); break; } break; } return setRefBinding(state, sym, V); } void RetainCountChecker::processNonLeakError(ProgramStateRef St, SourceRange ErrorRange, RefVal::Kind ErrorKind, SymbolRef Sym, CheckerContext &C) const { // HACK: Ignore retain-count issues on values accessed through ivars, // because of cases like this: // [_contentView retain]; // [_contentView removeFromSuperview]; // [self addSubview:_contentView]; // invalidates 'self' // [_contentView release]; if (const RefVal *RV = getRefBinding(St, Sym)) if (RV->getIvarAccessHistory() != RefVal::IvarAccessHistory::None) return; ExplodedNode *N = C.generateSink(St); if (!N) return; CFRefBug *BT; switch (ErrorKind) { default: llvm_unreachable("Unhandled error."); case RefVal::ErrorUseAfterRelease: if (!useAfterRelease) useAfterRelease.reset(new UseAfterRelease(this)); BT = &*useAfterRelease; break; case RefVal::ErrorReleaseNotOwned: if (!releaseNotOwned) releaseNotOwned.reset(new BadRelease(this)); BT = &*releaseNotOwned; break; case RefVal::ErrorDeallocGC: if (!deallocGC) deallocGC.reset(new DeallocGC(this)); BT = &*deallocGC; break; case RefVal::ErrorDeallocNotOwned: if (!deallocNotOwned) deallocNotOwned.reset(new DeallocNotOwned(this)); BT = &*deallocNotOwned; break; } assert(BT); CFRefReport *report = new CFRefReport(*BT, C.getASTContext().getLangOpts(), C.isObjCGCEnabled(), SummaryLog, N, Sym); report->addRange(ErrorRange); C.emitReport(report); } //===----------------------------------------------------------------------===// // Handle the return values of retain-count-related functions. //===----------------------------------------------------------------------===// bool RetainCountChecker::evalCall(const CallExpr *CE, CheckerContext &C) const { // Get the callee. We're only interested in simple C functions. ProgramStateRef state = C.getState(); const FunctionDecl *FD = C.getCalleeDecl(CE); if (!FD) return false; IdentifierInfo *II = FD->getIdentifier(); if (!II) return false; // For now, we're only handling the functions that return aliases of their // arguments: CFRetain and CFMakeCollectable (and their families). // Eventually we should add other functions we can model entirely, // such as CFRelease, which don't invalidate their arguments or globals. if (CE->getNumArgs() != 1) return false; // Get the name of the function. StringRef FName = II->getName(); FName = FName.substr(FName.find_first_not_of('_')); // See if it's one of the specific functions we know how to eval. bool canEval = false; QualType ResultTy = CE->getCallReturnType(C.getASTContext()); if (ResultTy->isObjCIdType()) { // Handle: id NSMakeCollectable(CFTypeRef) canEval = II->isStr("NSMakeCollectable"); } else if (ResultTy->isPointerType()) { // Handle: (CF|CG)Retain // CFAutorelease // CFMakeCollectable // It's okay to be a little sloppy here (CGMakeCollectable doesn't exist). if (cocoa::isRefType(ResultTy, "CF", FName) || cocoa::isRefType(ResultTy, "CG", FName)) { canEval = isRetain(FD, FName) || isAutorelease(FD, FName) || isMakeCollectable(FD, FName); } } if (!canEval) return false; // Bind the return value. const LocationContext *LCtx = C.getLocationContext(); SVal RetVal = state->getSVal(CE->getArg(0), LCtx); if (RetVal.isUnknown()) { // If the receiver is unknown, conjure a return value. SValBuilder &SVB = C.getSValBuilder(); RetVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, ResultTy, C.blockCount()); } state = state->BindExpr(CE, LCtx, RetVal, false); // FIXME: This should not be necessary, but otherwise the argument seems to be // considered alive during the next statement. if (const MemRegion *ArgRegion = RetVal.getAsRegion()) { // Save the refcount status of the argument. SymbolRef Sym = RetVal.getAsLocSymbol(); const RefVal *Binding = nullptr; if (Sym) Binding = getRefBinding(state, Sym); // Invalidate the argument region. state = state->invalidateRegions(ArgRegion, CE, C.blockCount(), LCtx, /*CausesPointerEscape*/ false); // Restore the refcount status of the argument. if (Binding) state = setRefBinding(state, Sym, *Binding); } C.addTransition(state); return true; } //===----------------------------------------------------------------------===// // Handle return statements. //===----------------------------------------------------------------------===// void RetainCountChecker::checkPreStmt(const ReturnStmt *S, CheckerContext &C) const { // Only adjust the reference count if this is the top-level call frame, // and not the result of inlining. In the future, we should do // better checking even for inlined calls, and see if they match // with their expected semantics (e.g., the method should return a retained // object, etc.). if (!C.inTopFrame()) return; const Expr *RetE = S->getRetValue(); if (!RetE) return; ProgramStateRef state = C.getState(); SymbolRef Sym = state->getSValAsScalarOrLoc(RetE, C.getLocationContext()).getAsLocSymbol(); if (!Sym) return; // Get the reference count binding (if any). const RefVal *T = getRefBinding(state, Sym); if (!T) return; // Change the reference count. RefVal X = *T; switch (X.getKind()) { case RefVal::Owned: { unsigned cnt = X.getCount(); assert(cnt > 0); X.setCount(cnt - 1); X = X ^ RefVal::ReturnedOwned; break; } case RefVal::NotOwned: { unsigned cnt = X.getCount(); if (cnt) { X.setCount(cnt - 1); X = X ^ RefVal::ReturnedOwned; } else { X = X ^ RefVal::ReturnedNotOwned; } break; } default: return; } // Update the binding. state = setRefBinding(state, Sym, X); ExplodedNode *Pred = C.addTransition(state); // At this point we have updated the state properly. // Everything after this is merely checking to see if the return value has // been over- or under-retained. // Did we cache out? if (!Pred) return; // Update the autorelease counts. static CheckerProgramPointTag AutoreleaseTag(this, "Autorelease"); state = handleAutoreleaseCounts(state, Pred, &AutoreleaseTag, C, Sym, X); // Did we cache out? if (!state) return; // Get the updated binding. T = getRefBinding(state, Sym); assert(T); X = *T; // Consult the summary of the enclosing method. RetainSummaryManager &Summaries = getSummaryManager(C); const Decl *CD = &Pred->getCodeDecl(); RetEffect RE = RetEffect::MakeNoRet(); // FIXME: What is the convention for blocks? Is there one? if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CD)) { const RetainSummary *Summ = Summaries.getMethodSummary(MD); RE = Summ->getRetEffect(); } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CD)) { if (!isa<CXXMethodDecl>(FD)) { const RetainSummary *Summ = Summaries.getFunctionSummary(FD); RE = Summ->getRetEffect(); } } checkReturnWithRetEffect(S, C, Pred, RE, X, Sym, state); } void RetainCountChecker::checkReturnWithRetEffect(const ReturnStmt *S, CheckerContext &C, ExplodedNode *Pred, RetEffect RE, RefVal X, SymbolRef Sym, ProgramStateRef state) const { // HACK: Ignore retain-count issues on values accessed through ivars, // because of cases like this: // [_contentView retain]; // [_contentView removeFromSuperview]; // [self addSubview:_contentView]; // invalidates 'self' // [_contentView release]; if (X.getIvarAccessHistory() != RefVal::IvarAccessHistory::None) return; // Any leaks or other errors? if (X.isReturnedOwned() && X.getCount() == 0) { if (RE.getKind() != RetEffect::NoRet) { bool hasError = false; if (C.isObjCGCEnabled() && RE.getObjKind() == RetEffect::ObjC) { // Things are more complicated with garbage collection. If the // returned object is suppose to be an Objective-C object, we have // a leak (as the caller expects a GC'ed object) because no // method should return ownership unless it returns a CF object. hasError = true; X = X ^ RefVal::ErrorGCLeakReturned; } else if (!RE.isOwned()) { // Either we are using GC and the returned object is a CF type // or we aren't using GC. In either case, we expect that the // enclosing method is expected to return ownership. hasError = true; X = X ^ RefVal::ErrorLeakReturned; } if (hasError) { // Generate an error node. state = setRefBinding(state, Sym, X); static CheckerProgramPointTag ReturnOwnLeakTag(this, "ReturnsOwnLeak"); ExplodedNode *N = C.addTransition(state, Pred, &ReturnOwnLeakTag); if (N) { const LangOptions &LOpts = C.getASTContext().getLangOpts(); bool GCEnabled = C.isObjCGCEnabled(); CFRefReport *report = new CFRefLeakReport(*getLeakAtReturnBug(LOpts, GCEnabled), LOpts, GCEnabled, SummaryLog, N, Sym, C, IncludeAllocationLine); C.emitReport(report); } } } } else if (X.isReturnedNotOwned()) { if (RE.isOwned()) { if (X.getIvarAccessHistory() == RefVal::IvarAccessHistory::AccessedDirectly) { // Assume the method was trying to transfer a +1 reference from a // strong ivar to the caller. state = setRefBinding(state, Sym, X.releaseViaIvar() ^ RefVal::ReturnedOwned); } else { // Trying to return a not owned object to a caller expecting an // owned object. state = setRefBinding(state, Sym, X ^ RefVal::ErrorReturnedNotOwned); static CheckerProgramPointTag ReturnNotOwnedTag(this, "ReturnNotOwnedForOwned"); ExplodedNode *N = C.addTransition(state, Pred, &ReturnNotOwnedTag); if (N) { if (!returnNotOwnedForOwned) returnNotOwnedForOwned.reset(new ReturnedNotOwnedForOwned(this)); CFRefReport *report = new CFRefReport(*returnNotOwnedForOwned, C.getASTContext().getLangOpts(), C.isObjCGCEnabled(), SummaryLog, N, Sym); C.emitReport(report); } } } } } //===----------------------------------------------------------------------===// // Check various ways a symbol can be invalidated. //===----------------------------------------------------------------------===// void RetainCountChecker::checkBind(SVal loc, SVal val, const Stmt *S, CheckerContext &C) const { // Are we storing to something that causes the value to "escape"? bool escapes = true; // A value escapes in three possible cases (this may change): // // (1) we are binding to something that is not a memory region. // (2) we are binding to a memregion that does not have stack storage // (3) we are binding to a memregion with stack storage that the store // does not understand. ProgramStateRef state = C.getState(); if (Optional<loc::MemRegionVal> regionLoc = loc.getAs<loc::MemRegionVal>()) { escapes = !regionLoc->getRegion()->hasStackStorage(); if (!escapes) { // To test (3), generate a new state with the binding added. If it is // the same state, then it escapes (since the store cannot represent // the binding). // Do this only if we know that the store is not supposed to generate the // same state. SVal StoredVal = state->getSVal(regionLoc->getRegion()); if (StoredVal != val) escapes = (state == (state->bindLoc(*regionLoc, val))); } if (!escapes) { // Case 4: We do not currently model what happens when a symbol is // assigned to a struct field, so be conservative here and let the symbol // go. TODO: This could definitely be improved upon. escapes = !isa<VarRegion>(regionLoc->getRegion()); } } // If we are storing the value into an auto function scope variable annotated // with (__attribute__((cleanup))), stop tracking the value to avoid leak // false positives. if (const VarRegion *LVR = dyn_cast_or_null<VarRegion>(loc.getAsRegion())) { const VarDecl *VD = LVR->getDecl(); if (VD->hasAttr<CleanupAttr>()) { escapes = true; } } // If our store can represent the binding and we aren't storing to something // that doesn't have local storage then just return and have the simulation // state continue as is. if (!escapes) return; // Otherwise, find all symbols referenced by 'val' that we are tracking // and stop tracking them. state = state->scanReachableSymbols<StopTrackingCallback>(val).getState(); C.addTransition(state); } ProgramStateRef RetainCountChecker::evalAssume(ProgramStateRef state, SVal Cond, bool Assumption) const { // FIXME: We may add to the interface of evalAssume the list of symbols // whose assumptions have changed. For now we just iterate through the // bindings and check if any of the tracked symbols are NULL. This isn't // too bad since the number of symbols we will track in practice are // probably small and evalAssume is only called at branches and a few // other places. RefBindingsTy B = state->get<RefBindings>(); if (B.isEmpty()) return state; bool changed = false; RefBindingsTy::Factory &RefBFactory = state->get_context<RefBindings>(); for (RefBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) { // Check if the symbol is null stop tracking the symbol. ConstraintManager &CMgr = state->getConstraintManager(); ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); if (AllocFailed.isConstrainedTrue()) { changed = true; B = RefBFactory.remove(B, I.getKey()); } } if (changed) state = state->set<RefBindings>(B); return state; } ProgramStateRef RetainCountChecker::checkRegionChanges(ProgramStateRef state, const InvalidatedSymbols *invalidated, ArrayRef<const MemRegion *> ExplicitRegions, ArrayRef<const MemRegion *> Regions, const CallEvent *Call) const { if (!invalidated) return state; llvm::SmallPtrSet<SymbolRef, 8> WhitelistedSymbols; for (ArrayRef<const MemRegion *>::iterator I = ExplicitRegions.begin(), E = ExplicitRegions.end(); I != E; ++I) { if (const SymbolicRegion *SR = (*I)->StripCasts()->getAs<SymbolicRegion>()) WhitelistedSymbols.insert(SR->getSymbol()); } for (InvalidatedSymbols::const_iterator I=invalidated->begin(), E = invalidated->end(); I!=E; ++I) { SymbolRef sym = *I; if (WhitelistedSymbols.count(sym)) continue; // Remove any existing reference-count binding. state = removeRefBinding(state, sym); } return state; } //===----------------------------------------------------------------------===// // Handle dead symbols and end-of-path. //===----------------------------------------------------------------------===// ProgramStateRef RetainCountChecker::handleAutoreleaseCounts(ProgramStateRef state, ExplodedNode *Pred, const ProgramPointTag *Tag, CheckerContext &Ctx, SymbolRef Sym, RefVal V) const { unsigned ACnt = V.getAutoreleaseCount(); // No autorelease counts? Nothing to be done. if (!ACnt) return state; assert(!Ctx.isObjCGCEnabled() && "Autorelease counts in GC mode?"); unsigned Cnt = V.getCount(); // FIXME: Handle sending 'autorelease' to already released object. if (V.getKind() == RefVal::ReturnedOwned) ++Cnt; // If we would over-release here, but we know the value came from an ivar, // assume it was a strong ivar that's just been relinquished. if (ACnt > Cnt && V.getIvarAccessHistory() == RefVal::IvarAccessHistory::AccessedDirectly) { V = V.releaseViaIvar(); --ACnt; } if (ACnt <= Cnt) { if (ACnt == Cnt) { V.clearCounts(); if (V.getKind() == RefVal::ReturnedOwned) V = V ^ RefVal::ReturnedNotOwned; else V = V ^ RefVal::NotOwned; } else { V.setCount(V.getCount() - ACnt); V.setAutoreleaseCount(0); } return setRefBinding(state, Sym, V); } // HACK: Ignore retain-count issues on values accessed through ivars, // because of cases like this: // [_contentView retain]; // [_contentView removeFromSuperview]; // [self addSubview:_contentView]; // invalidates 'self' // [_contentView release]; if (V.getIvarAccessHistory() != RefVal::IvarAccessHistory::None) return state; // Woah! More autorelease counts then retain counts left. // Emit hard error. V = V ^ RefVal::ErrorOverAutorelease; state = setRefBinding(state, Sym, V); ExplodedNode *N = Ctx.generateSink(state, Pred, Tag); if (N) { SmallString<128> sbuf; llvm::raw_svector_ostream os(sbuf); os << "Object was autoreleased "; if (V.getAutoreleaseCount() > 1) os << V.getAutoreleaseCount() << " times but the object "; else os << "but "; os << "has a +" << V.getCount() << " retain count"; if (!overAutorelease) overAutorelease.reset(new OverAutorelease(this)); const LangOptions &LOpts = Ctx.getASTContext().getLangOpts(); CFRefReport *report = new CFRefReport(*overAutorelease, LOpts, /* GCEnabled = */ false, SummaryLog, N, Sym, os.str()); Ctx.emitReport(report); } return nullptr; } ProgramStateRef RetainCountChecker::handleSymbolDeath(ProgramStateRef state, SymbolRef sid, RefVal V, SmallVectorImpl<SymbolRef> &Leaked) const { bool hasLeak; // HACK: Ignore retain-count issues on values accessed through ivars, // because of cases like this: // [_contentView retain]; // [_contentView removeFromSuperview]; // [self addSubview:_contentView]; // invalidates 'self' // [_contentView release]; if (V.getIvarAccessHistory() != RefVal::IvarAccessHistory::None) hasLeak = false; else if (V.isOwned()) hasLeak = true; else if (V.isNotOwned() || V.isReturnedOwned()) hasLeak = (V.getCount() > 0); else hasLeak = false; if (!hasLeak) return removeRefBinding(state, sid); Leaked.push_back(sid); return setRefBinding(state, sid, V ^ RefVal::ErrorLeak); } ExplodedNode * RetainCountChecker::processLeaks(ProgramStateRef state, SmallVectorImpl<SymbolRef> &Leaked, CheckerContext &Ctx, ExplodedNode *Pred) const { // Generate an intermediate node representing the leak point. ExplodedNode *N = Ctx.addTransition(state, Pred); if (N) { for (SmallVectorImpl<SymbolRef>::iterator I = Leaked.begin(), E = Leaked.end(); I != E; ++I) { const LangOptions &LOpts = Ctx.getASTContext().getLangOpts(); bool GCEnabled = Ctx.isObjCGCEnabled(); CFRefBug *BT = Pred ? getLeakWithinFunctionBug(LOpts, GCEnabled) : getLeakAtReturnBug(LOpts, GCEnabled); assert(BT && "BugType not initialized."); CFRefLeakReport *report = new CFRefLeakReport(*BT, LOpts, GCEnabled, SummaryLog, N, *I, Ctx, IncludeAllocationLine); Ctx.emitReport(report); } } return N; } void RetainCountChecker::checkEndFunction(CheckerContext &Ctx) const { ProgramStateRef state = Ctx.getState(); RefBindingsTy B = state->get<RefBindings>(); ExplodedNode *Pred = Ctx.getPredecessor(); // Don't process anything within synthesized bodies. const LocationContext *LCtx = Pred->getLocationContext(); if (LCtx->getAnalysisDeclContext()->isBodyAutosynthesized()) { assert(LCtx->getParent()); return; } for (RefBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) { state = handleAutoreleaseCounts(state, Pred, /*Tag=*/nullptr, Ctx, I->first, I->second); if (!state) return; } // If the current LocationContext has a parent, don't check for leaks. // We will do that later. // FIXME: we should instead check for imbalances of the retain/releases, // and suggest annotations. if (LCtx->getParent()) return; B = state->get<RefBindings>(); SmallVector<SymbolRef, 10> Leaked; for (RefBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) state = handleSymbolDeath(state, I->first, I->second, Leaked); processLeaks(state, Leaked, Ctx, Pred); } const ProgramPointTag * RetainCountChecker::getDeadSymbolTag(SymbolRef sym) const { const CheckerProgramPointTag *&tag = DeadSymbolTags[sym]; if (!tag) { SmallString<64> buf; llvm::raw_svector_ostream out(buf); out << "Dead Symbol : "; sym->dumpToStream(out); tag = new CheckerProgramPointTag(this, out.str()); } return tag; } void RetainCountChecker::checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const { ExplodedNode *Pred = C.getPredecessor(); ProgramStateRef state = C.getState(); RefBindingsTy B = state->get<RefBindings>(); SmallVector<SymbolRef, 10> Leaked; // Update counts from autorelease pools for (SymbolReaper::dead_iterator I = SymReaper.dead_begin(), E = SymReaper.dead_end(); I != E; ++I) { SymbolRef Sym = *I; if (const RefVal *T = B.lookup(Sym)){ // Use the symbol as the tag. // FIXME: This might not be as unique as we would like. const ProgramPointTag *Tag = getDeadSymbolTag(Sym); state = handleAutoreleaseCounts(state, Pred, Tag, C, Sym, *T); if (!state) return; // Fetch the new reference count from the state, and use it to handle // this symbol. state = handleSymbolDeath(state, *I, *getRefBinding(state, Sym), Leaked); } } if (Leaked.empty()) { C.addTransition(state); return; } Pred = processLeaks(state, Leaked, C, Pred); // Did we cache out? if (!Pred) return; // Now generate a new node that nukes the old bindings. // The only bindings left at this point are the leaked symbols. RefBindingsTy::Factory &F = state->get_context<RefBindings>(); B = state->get<RefBindings>(); for (SmallVectorImpl<SymbolRef>::iterator I = Leaked.begin(), E = Leaked.end(); I != E; ++I) B = F.remove(B, *I); state = state->set<RefBindings>(B); C.addTransition(state, Pred); } void RetainCountChecker::printState(raw_ostream &Out, ProgramStateRef State, const char *NL, const char *Sep) const { RefBindingsTy B = State->get<RefBindings>(); if (B.isEmpty()) return; Out << Sep << NL; for (RefBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) { Out << I->first << " : "; I->second.print(Out); Out << NL; } } //===----------------------------------------------------------------------===// // Checker registration. //===----------------------------------------------------------------------===// void ento::registerRetainCountChecker(CheckerManager &Mgr) { Mgr.registerChecker<RetainCountChecker>(Mgr.getAnalyzerOptions()); } //===----------------------------------------------------------------------===// // Implementation of the CallEffects API. //===----------------------------------------------------------------------===// namespace clang { namespace ento { namespace objc_retain { // This is a bit gross, but it allows us to populate CallEffects without // creating a bunch of accessors. This kind is very localized, so the // damage of this macro is limited. #define createCallEffect(D, KIND)\ ASTContext &Ctx = D->getASTContext();\ LangOptions L = Ctx.getLangOpts();\ RetainSummaryManager M(Ctx, L.GCOnly, L.ObjCAutoRefCount);\ const RetainSummary *S = M.get ## KIND ## Summary(D);\ CallEffects CE(S->getRetEffect());\ CE.Receiver = S->getReceiverEffect();\ unsigned N = D->param_size();\ for (unsigned i = 0; i < N; ++i) {\ CE.Args.push_back(S->getArg(i));\ } CallEffects CallEffects::getEffect(const ObjCMethodDecl *MD) { createCallEffect(MD, Method); return CE; } CallEffects CallEffects::getEffect(const FunctionDecl *FD) { createCallEffect(FD, Function); return CE; } #undef createCallEffect }}}