//== ArrayBoundCheckerV2.cpp ------------------------------------*- C++ -*--==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines ArrayBoundCheckerV2, which is a path-sensitive check // which looks for an out-of-bound array element access. // //===----------------------------------------------------------------------===// #include "ClangSACheckers.h" #include "clang/AST/CharUnits.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" #include "clang/StaticAnalyzer/Core/Checker.h" #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" #include "llvm/ADT/SmallString.h" #include "llvm/Support/raw_ostream.h" using namespace clang; using namespace ento; namespace { class ArrayBoundCheckerV2 : public Checker<check::Location> { mutable std::unique_ptr<BuiltinBug> BT; enum OOB_Kind { OOB_Precedes, OOB_Excedes, OOB_Tainted }; void reportOOB(CheckerContext &C, ProgramStateRef errorState, OOB_Kind kind) const; public: void checkLocation(SVal l, bool isLoad, const Stmt*S, CheckerContext &C) const; }; // FIXME: Eventually replace RegionRawOffset with this class. class RegionRawOffsetV2 { private: const SubRegion *baseRegion; SVal byteOffset; RegionRawOffsetV2() : baseRegion(nullptr), byteOffset(UnknownVal()) {} public: RegionRawOffsetV2(const SubRegion* base, SVal offset) : baseRegion(base), byteOffset(offset) {} NonLoc getByteOffset() const { return byteOffset.castAs<NonLoc>(); } const SubRegion *getRegion() const { return baseRegion; } static RegionRawOffsetV2 computeOffset(ProgramStateRef state, SValBuilder &svalBuilder, SVal location); void dump() const; void dumpToStream(raw_ostream &os) const; }; } static SVal computeExtentBegin(SValBuilder &svalBuilder, const MemRegion *region) { while (true) switch (region->getKind()) { default: return svalBuilder.makeZeroArrayIndex(); case MemRegion::SymbolicRegionKind: // FIXME: improve this later by tracking symbolic lower bounds // for symbolic regions. return UnknownVal(); case MemRegion::ElementRegionKind: region = cast<SubRegion>(region)->getSuperRegion(); continue; } } void ArrayBoundCheckerV2::checkLocation(SVal location, bool isLoad, const Stmt* LoadS, CheckerContext &checkerContext) const { // NOTE: Instead of using ProgramState::assumeInBound(), we are prototyping // some new logic here that reasons directly about memory region extents. // Once that logic is more mature, we can bring it back to assumeInBound() // for all clients to use. // // The algorithm we are using here for bounds checking is to see if the // memory access is within the extent of the base region. Since we // have some flexibility in defining the base region, we can achieve // various levels of conservatism in our buffer overflow checking. ProgramStateRef state = checkerContext.getState(); ProgramStateRef originalState = state; SValBuilder &svalBuilder = checkerContext.getSValBuilder(); const RegionRawOffsetV2 &rawOffset = RegionRawOffsetV2::computeOffset(state, svalBuilder, location); if (!rawOffset.getRegion()) return; // CHECK LOWER BOUND: Is byteOffset < extent begin? // If so, we are doing a load/store // before the first valid offset in the memory region. SVal extentBegin = computeExtentBegin(svalBuilder, rawOffset.getRegion()); if (Optional<NonLoc> NV = extentBegin.getAs<NonLoc>()) { SVal lowerBound = svalBuilder.evalBinOpNN(state, BO_LT, rawOffset.getByteOffset(), *NV, svalBuilder.getConditionType()); Optional<NonLoc> lowerBoundToCheck = lowerBound.getAs<NonLoc>(); if (!lowerBoundToCheck) return; ProgramStateRef state_precedesLowerBound, state_withinLowerBound; std::tie(state_precedesLowerBound, state_withinLowerBound) = state->assume(*lowerBoundToCheck); // Are we constrained enough to definitely precede the lower bound? if (state_precedesLowerBound && !state_withinLowerBound) { reportOOB(checkerContext, state_precedesLowerBound, OOB_Precedes); return; } // Otherwise, assume the constraint of the lower bound. assert(state_withinLowerBound); state = state_withinLowerBound; } do { // CHECK UPPER BOUND: Is byteOffset >= extent(baseRegion)? If so, // we are doing a load/store after the last valid offset. DefinedOrUnknownSVal extentVal = rawOffset.getRegion()->getExtent(svalBuilder); if (!extentVal.getAs<NonLoc>()) break; SVal upperbound = svalBuilder.evalBinOpNN(state, BO_GE, rawOffset.getByteOffset(), extentVal.castAs<NonLoc>(), svalBuilder.getConditionType()); Optional<NonLoc> upperboundToCheck = upperbound.getAs<NonLoc>(); if (!upperboundToCheck) break; ProgramStateRef state_exceedsUpperBound, state_withinUpperBound; std::tie(state_exceedsUpperBound, state_withinUpperBound) = state->assume(*upperboundToCheck); // If we are under constrained and the index variables are tainted, report. if (state_exceedsUpperBound && state_withinUpperBound) { if (state->isTainted(rawOffset.getByteOffset())) reportOOB(checkerContext, state_exceedsUpperBound, OOB_Tainted); return; } // If we are constrained enough to definitely exceed the upper bound, report. if (state_exceedsUpperBound) { assert(!state_withinUpperBound); reportOOB(checkerContext, state_exceedsUpperBound, OOB_Excedes); return; } assert(state_withinUpperBound); state = state_withinUpperBound; } while (false); if (state != originalState) checkerContext.addTransition(state); } void ArrayBoundCheckerV2::reportOOB(CheckerContext &checkerContext, ProgramStateRef errorState, OOB_Kind kind) const { ExplodedNode *errorNode = checkerContext.generateSink(errorState); if (!errorNode) return; if (!BT) BT.reset(new BuiltinBug(this, "Out-of-bound access")); // FIXME: This diagnostics are preliminary. We should get far better // diagnostics for explaining buffer overruns. SmallString<256> buf; llvm::raw_svector_ostream os(buf); os << "Out of bound memory access "; switch (kind) { case OOB_Precedes: os << "(accessed memory precedes memory block)"; break; case OOB_Excedes: os << "(access exceeds upper limit of memory block)"; break; case OOB_Tainted: os << "(index is tainted)"; break; } checkerContext.emitReport(new BugReport(*BT, os.str(), errorNode)); } void RegionRawOffsetV2::dump() const { dumpToStream(llvm::errs()); } void RegionRawOffsetV2::dumpToStream(raw_ostream &os) const { os << "raw_offset_v2{" << getRegion() << ',' << getByteOffset() << '}'; } // Lazily computes a value to be used by 'computeOffset'. If 'val' // is unknown or undefined, we lazily substitute '0'. Otherwise, // return 'val'. static inline SVal getValue(SVal val, SValBuilder &svalBuilder) { return val.getAs<UndefinedVal>() ? svalBuilder.makeArrayIndex(0) : val; } // Scale a base value by a scaling factor, and return the scaled // value as an SVal. Used by 'computeOffset'. static inline SVal scaleValue(ProgramStateRef state, NonLoc baseVal, CharUnits scaling, SValBuilder &sb) { return sb.evalBinOpNN(state, BO_Mul, baseVal, sb.makeArrayIndex(scaling.getQuantity()), sb.getArrayIndexType()); } // Add an SVal to another, treating unknown and undefined values as // summing to UnknownVal. Used by 'computeOffset'. static SVal addValue(ProgramStateRef state, SVal x, SVal y, SValBuilder &svalBuilder) { // We treat UnknownVals and UndefinedVals the same here because we // only care about computing offsets. if (x.isUnknownOrUndef() || y.isUnknownOrUndef()) return UnknownVal(); return svalBuilder.evalBinOpNN(state, BO_Add, x.castAs<NonLoc>(), y.castAs<NonLoc>(), svalBuilder.getArrayIndexType()); } /// Compute a raw byte offset from a base region. Used for array bounds /// checking. RegionRawOffsetV2 RegionRawOffsetV2::computeOffset(ProgramStateRef state, SValBuilder &svalBuilder, SVal location) { const MemRegion *region = location.getAsRegion(); SVal offset = UndefinedVal(); while (region) { switch (region->getKind()) { default: { if (const SubRegion *subReg = dyn_cast<SubRegion>(region)) { offset = getValue(offset, svalBuilder); if (!offset.isUnknownOrUndef()) return RegionRawOffsetV2(subReg, offset); } return RegionRawOffsetV2(); } case MemRegion::ElementRegionKind: { const ElementRegion *elemReg = cast<ElementRegion>(region); SVal index = elemReg->getIndex(); if (!index.getAs<NonLoc>()) return RegionRawOffsetV2(); QualType elemType = elemReg->getElementType(); // If the element is an incomplete type, go no further. ASTContext &astContext = svalBuilder.getContext(); if (elemType->isIncompleteType()) return RegionRawOffsetV2(); // Update the offset. offset = addValue(state, getValue(offset, svalBuilder), scaleValue(state, index.castAs<NonLoc>(), astContext.getTypeSizeInChars(elemType), svalBuilder), svalBuilder); if (offset.isUnknownOrUndef()) return RegionRawOffsetV2(); region = elemReg->getSuperRegion(); continue; } } } return RegionRawOffsetV2(); } void ento::registerArrayBoundCheckerV2(CheckerManager &mgr) { mgr.registerChecker<ArrayBoundCheckerV2>(); }