//===--- CGException.cpp - Emit LLVM Code for C++ exceptions --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code dealing with C++ exception related code generation. // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "CGCXXABI.h" #include "CGCleanup.h" #include "CGObjCRuntime.h" #include "TargetInfo.h" #include "clang/AST/Mangle.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/StmtObjC.h" #include "clang/AST/StmtVisitor.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/Support/SaveAndRestore.h" using namespace clang; using namespace CodeGen; static llvm::Constant *getFreeExceptionFn(CodeGenModule &CGM) { // void __cxa_free_exception(void *thrown_exception); llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); return CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception"); } static llvm::Constant *getUnexpectedFn(CodeGenModule &CGM) { // void __cxa_call_unexpected(void *thrown_exception); llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); return CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected"); } llvm::Constant *CodeGenModule::getTerminateFn() { // void __terminate(); llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, /*IsVarArgs=*/false); StringRef name; // In C++, use std::terminate(). if (getLangOpts().CPlusPlus && getTarget().getCXXABI().isItaniumFamily()) { name = "_ZSt9terminatev"; } else if (getLangOpts().CPlusPlus && getTarget().getCXXABI().isMicrosoft()) { name = "\01?terminate@@YAXXZ"; } else if (getLangOpts().ObjC1 && getLangOpts().ObjCRuntime.hasTerminate()) name = "objc_terminate"; else name = "abort"; return CreateRuntimeFunction(FTy, name); } static llvm::Constant *getCatchallRethrowFn(CodeGenModule &CGM, StringRef Name) { llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); return CGM.CreateRuntimeFunction(FTy, Name); } namespace { /// The exceptions personality for a function. struct EHPersonality { const char *PersonalityFn; // If this is non-null, this personality requires a non-standard // function for rethrowing an exception after a catchall cleanup. // This function must have prototype void(void*). const char *CatchallRethrowFn; static const EHPersonality &get(CodeGenModule &CGM, const FunctionDecl *FD); static const EHPersonality &get(CodeGenFunction &CGF) { return get(CGF.CGM, dyn_cast_or_null<FunctionDecl>(CGF.CurCodeDecl)); } static const EHPersonality GNU_C; static const EHPersonality GNU_C_SJLJ; static const EHPersonality GNU_C_SEH; static const EHPersonality GNU_ObjC; static const EHPersonality GNUstep_ObjC; static const EHPersonality GNU_ObjCXX; static const EHPersonality NeXT_ObjC; static const EHPersonality GNU_CPlusPlus; static const EHPersonality GNU_CPlusPlus_SJLJ; static const EHPersonality GNU_CPlusPlus_SEH; static const EHPersonality MSVC_except_handler; static const EHPersonality MSVC_C_specific_handler; static const EHPersonality MSVC_CxxFrameHandler3; }; } const EHPersonality EHPersonality::GNU_C = { "__gcc_personality_v0", nullptr }; const EHPersonality EHPersonality::GNU_C_SJLJ = { "__gcc_personality_sj0", nullptr }; const EHPersonality EHPersonality::GNU_C_SEH = { "__gcc_personality_seh0", nullptr }; const EHPersonality EHPersonality::NeXT_ObjC = { "__objc_personality_v0", nullptr }; const EHPersonality EHPersonality::GNU_CPlusPlus = { "__gxx_personality_v0", nullptr }; const EHPersonality EHPersonality::GNU_CPlusPlus_SJLJ = { "__gxx_personality_sj0", nullptr }; const EHPersonality EHPersonality::GNU_CPlusPlus_SEH = { "__gxx_personality_seh0", nullptr }; const EHPersonality EHPersonality::GNU_ObjC = {"__gnu_objc_personality_v0", "objc_exception_throw"}; const EHPersonality EHPersonality::GNU_ObjCXX = { "__gnustep_objcxx_personality_v0", nullptr }; const EHPersonality EHPersonality::GNUstep_ObjC = { "__gnustep_objc_personality_v0", nullptr }; const EHPersonality EHPersonality::MSVC_except_handler = { "_except_handler3", nullptr }; const EHPersonality EHPersonality::MSVC_C_specific_handler = { "__C_specific_handler", nullptr }; const EHPersonality EHPersonality::MSVC_CxxFrameHandler3 = { "__CxxFrameHandler3", nullptr }; /// On Win64, use libgcc's SEH personality function. We fall back to dwarf on /// other platforms, unless the user asked for SjLj exceptions. static bool useLibGCCSEHPersonality(const llvm::Triple &T) { return T.isOSWindows() && T.getArch() == llvm::Triple::x86_64; } static const EHPersonality &getCPersonality(const llvm::Triple &T, const LangOptions &L) { if (L.SjLjExceptions) return EHPersonality::GNU_C_SJLJ; else if (useLibGCCSEHPersonality(T)) return EHPersonality::GNU_C_SEH; return EHPersonality::GNU_C; } static const EHPersonality &getObjCPersonality(const llvm::Triple &T, const LangOptions &L) { switch (L.ObjCRuntime.getKind()) { case ObjCRuntime::FragileMacOSX: return getCPersonality(T, L); case ObjCRuntime::MacOSX: case ObjCRuntime::iOS: return EHPersonality::NeXT_ObjC; case ObjCRuntime::GNUstep: if (L.ObjCRuntime.getVersion() >= VersionTuple(1, 7)) return EHPersonality::GNUstep_ObjC; // fallthrough case ObjCRuntime::GCC: case ObjCRuntime::ObjFW: return EHPersonality::GNU_ObjC; } llvm_unreachable("bad runtime kind"); } static const EHPersonality &getCXXPersonality(const llvm::Triple &T, const LangOptions &L) { if (L.SjLjExceptions) return EHPersonality::GNU_CPlusPlus_SJLJ; else if (useLibGCCSEHPersonality(T)) return EHPersonality::GNU_CPlusPlus_SEH; return EHPersonality::GNU_CPlusPlus; } /// Determines the personality function to use when both C++ /// and Objective-C exceptions are being caught. static const EHPersonality &getObjCXXPersonality(const llvm::Triple &T, const LangOptions &L) { switch (L.ObjCRuntime.getKind()) { // The ObjC personality defers to the C++ personality for non-ObjC // handlers. Unlike the C++ case, we use the same personality // function on targets using (backend-driven) SJLJ EH. case ObjCRuntime::MacOSX: case ObjCRuntime::iOS: return EHPersonality::NeXT_ObjC; // In the fragile ABI, just use C++ exception handling and hope // they're not doing crazy exception mixing. case ObjCRuntime::FragileMacOSX: return getCXXPersonality(T, L); // The GCC runtime's personality function inherently doesn't support // mixed EH. Use the C++ personality just to avoid returning null. case ObjCRuntime::GCC: case ObjCRuntime::ObjFW: // XXX: this will change soon return EHPersonality::GNU_ObjC; case ObjCRuntime::GNUstep: return EHPersonality::GNU_ObjCXX; } llvm_unreachable("bad runtime kind"); } static const EHPersonality &getSEHPersonalityMSVC(const llvm::Triple &T) { if (T.getArch() == llvm::Triple::x86) return EHPersonality::MSVC_except_handler; return EHPersonality::MSVC_C_specific_handler; } const EHPersonality &EHPersonality::get(CodeGenModule &CGM, const FunctionDecl *FD) { const llvm::Triple &T = CGM.getTarget().getTriple(); const LangOptions &L = CGM.getLangOpts(); // Try to pick a personality function that is compatible with MSVC if we're // not compiling Obj-C. Obj-C users better have an Obj-C runtime that supports // the GCC-style personality function. if (T.isWindowsMSVCEnvironment() && !L.ObjC1) { if (L.SjLjExceptions) return EHPersonality::GNU_CPlusPlus_SJLJ; else if (FD && FD->usesSEHTry()) return getSEHPersonalityMSVC(T); else return EHPersonality::MSVC_CxxFrameHandler3; } if (L.CPlusPlus && L.ObjC1) return getObjCXXPersonality(T, L); else if (L.CPlusPlus) return getCXXPersonality(T, L); else if (L.ObjC1) return getObjCPersonality(T, L); else return getCPersonality(T, L); } static llvm::Constant *getPersonalityFn(CodeGenModule &CGM, const EHPersonality &Personality) { llvm::Constant *Fn = CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty, true), Personality.PersonalityFn); return Fn; } static llvm::Constant *getOpaquePersonalityFn(CodeGenModule &CGM, const EHPersonality &Personality) { llvm::Constant *Fn = getPersonalityFn(CGM, Personality); return llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy); } /// Check whether a personality function could reasonably be swapped /// for a C++ personality function. static bool PersonalityHasOnlyCXXUses(llvm::Constant *Fn) { for (llvm::User *U : Fn->users()) { // Conditionally white-list bitcasts. if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(U)) { if (CE->getOpcode() != llvm::Instruction::BitCast) return false; if (!PersonalityHasOnlyCXXUses(CE)) return false; continue; } // Otherwise, it has to be a landingpad instruction. llvm::LandingPadInst *LPI = dyn_cast<llvm::LandingPadInst>(U); if (!LPI) return false; for (unsigned I = 0, E = LPI->getNumClauses(); I != E; ++I) { // Look for something that would've been returned by the ObjC // runtime's GetEHType() method. llvm::Value *Val = LPI->getClause(I)->stripPointerCasts(); if (LPI->isCatch(I)) { // Check if the catch value has the ObjC prefix. if (llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Val)) // ObjC EH selector entries are always global variables with // names starting like this. if (GV->getName().startswith("OBJC_EHTYPE")) return false; } else { // Check if any of the filter values have the ObjC prefix. llvm::Constant *CVal = cast<llvm::Constant>(Val); for (llvm::User::op_iterator II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) { if (llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>((*II)->stripPointerCasts())) // ObjC EH selector entries are always global variables with // names starting like this. if (GV->getName().startswith("OBJC_EHTYPE")) return false; } } } } return true; } /// Try to use the C++ personality function in ObjC++. Not doing this /// can cause some incompatibilities with gcc, which is more /// aggressive about only using the ObjC++ personality in a function /// when it really needs it. void CodeGenModule::SimplifyPersonality() { // If we're not in ObjC++ -fexceptions, there's nothing to do. if (!LangOpts.CPlusPlus || !LangOpts.ObjC1 || !LangOpts.Exceptions) return; // Both the problem this endeavors to fix and the way the logic // above works is specific to the NeXT runtime. if (!LangOpts.ObjCRuntime.isNeXTFamily()) return; const EHPersonality &ObjCXX = EHPersonality::get(*this, /*FD=*/nullptr); const EHPersonality &CXX = getCXXPersonality(getTarget().getTriple(), LangOpts); if (&ObjCXX == &CXX) return; assert(std::strcmp(ObjCXX.PersonalityFn, CXX.PersonalityFn) != 0 && "Different EHPersonalities using the same personality function."); llvm::Function *Fn = getModule().getFunction(ObjCXX.PersonalityFn); // Nothing to do if it's unused. if (!Fn || Fn->use_empty()) return; // Can't do the optimization if it has non-C++ uses. if (!PersonalityHasOnlyCXXUses(Fn)) return; // Create the C++ personality function and kill off the old // function. llvm::Constant *CXXFn = getPersonalityFn(*this, CXX); // This can happen if the user is screwing with us. if (Fn->getType() != CXXFn->getType()) return; Fn->replaceAllUsesWith(CXXFn); Fn->eraseFromParent(); } /// Returns the value to inject into a selector to indicate the /// presence of a catch-all. static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) { // Possibly we should use @llvm.eh.catch.all.value here. return llvm::ConstantPointerNull::get(CGF.Int8PtrTy); } namespace { /// A cleanup to free the exception object if its initialization /// throws. struct FreeException : EHScopeStack::Cleanup { llvm::Value *exn; FreeException(llvm::Value *exn) : exn(exn) {} void Emit(CodeGenFunction &CGF, Flags flags) override { CGF.EmitNounwindRuntimeCall(getFreeExceptionFn(CGF.CGM), exn); } }; } // Emits an exception expression into the given location. This // differs from EmitAnyExprToMem only in that, if a final copy-ctor // call is required, an exception within that copy ctor causes // std::terminate to be invoked. void CodeGenFunction::EmitAnyExprToExn(const Expr *e, llvm::Value *addr) { // Make sure the exception object is cleaned up if there's an // exception during initialization. pushFullExprCleanup<FreeException>(EHCleanup, addr); EHScopeStack::stable_iterator cleanup = EHStack.stable_begin(); // __cxa_allocate_exception returns a void*; we need to cast this // to the appropriate type for the object. llvm::Type *ty = ConvertTypeForMem(e->getType())->getPointerTo(); llvm::Value *typedAddr = Builder.CreateBitCast(addr, ty); // FIXME: this isn't quite right! If there's a final unelided call // to a copy constructor, then according to [except.terminate]p1 we // must call std::terminate() if that constructor throws, because // technically that copy occurs after the exception expression is // evaluated but before the exception is caught. But the best way // to handle that is to teach EmitAggExpr to do the final copy // differently if it can't be elided. EmitAnyExprToMem(e, typedAddr, e->getType().getQualifiers(), /*IsInit*/ true); // Deactivate the cleanup block. DeactivateCleanupBlock(cleanup, cast<llvm::Instruction>(typedAddr)); } llvm::Value *CodeGenFunction::getExceptionSlot() { if (!ExceptionSlot) ExceptionSlot = CreateTempAlloca(Int8PtrTy, "exn.slot"); return ExceptionSlot; } llvm::Value *CodeGenFunction::getEHSelectorSlot() { if (!EHSelectorSlot) EHSelectorSlot = CreateTempAlloca(Int32Ty, "ehselector.slot"); return EHSelectorSlot; } llvm::Value *CodeGenFunction::getExceptionFromSlot() { return Builder.CreateLoad(getExceptionSlot(), "exn"); } llvm::Value *CodeGenFunction::getSelectorFromSlot() { return Builder.CreateLoad(getEHSelectorSlot(), "sel"); } void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint) { if (const Expr *SubExpr = E->getSubExpr()) { QualType ThrowType = SubExpr->getType(); if (ThrowType->isObjCObjectPointerType()) { const Stmt *ThrowStmt = E->getSubExpr(); const ObjCAtThrowStmt S(E->getExprLoc(), const_cast<Stmt *>(ThrowStmt)); CGM.getObjCRuntime().EmitThrowStmt(*this, S, false); } else { CGM.getCXXABI().emitThrow(*this, E); } } else { CGM.getCXXABI().emitRethrow(*this, /*isNoReturn=*/true); } // throw is an expression, and the expression emitters expect us // to leave ourselves at a valid insertion point. if (KeepInsertionPoint) EmitBlock(createBasicBlock("throw.cont")); } void CodeGenFunction::EmitStartEHSpec(const Decl *D) { if (!CGM.getLangOpts().CXXExceptions) return; const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); if (!FD) { // Check if CapturedDecl is nothrow and create terminate scope for it. if (const CapturedDecl* CD = dyn_cast_or_null<CapturedDecl>(D)) { if (CD->isNothrow()) EHStack.pushTerminate(); } return; } const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); if (!Proto) return; ExceptionSpecificationType EST = Proto->getExceptionSpecType(); if (isNoexceptExceptionSpec(EST)) { if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { // noexcept functions are simple terminate scopes. EHStack.pushTerminate(); } } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { // TODO: Revisit exception specifications for the MS ABI. There is a way to // encode these in an object file but MSVC doesn't do anything with it. if (getTarget().getCXXABI().isMicrosoft()) return; unsigned NumExceptions = Proto->getNumExceptions(); EHFilterScope *Filter = EHStack.pushFilter(NumExceptions); for (unsigned I = 0; I != NumExceptions; ++I) { QualType Ty = Proto->getExceptionType(I); QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType(); llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType, /*ForEH=*/true); Filter->setFilter(I, EHType); } } } /// Emit the dispatch block for a filter scope if necessary. static void emitFilterDispatchBlock(CodeGenFunction &CGF, EHFilterScope &filterScope) { llvm::BasicBlock *dispatchBlock = filterScope.getCachedEHDispatchBlock(); if (!dispatchBlock) return; if (dispatchBlock->use_empty()) { delete dispatchBlock; return; } CGF.EmitBlockAfterUses(dispatchBlock); // If this isn't a catch-all filter, we need to check whether we got // here because the filter triggered. if (filterScope.getNumFilters()) { // Load the selector value. llvm::Value *selector = CGF.getSelectorFromSlot(); llvm::BasicBlock *unexpectedBB = CGF.createBasicBlock("ehspec.unexpected"); llvm::Value *zero = CGF.Builder.getInt32(0); llvm::Value *failsFilter = CGF.Builder.CreateICmpSLT(selector, zero, "ehspec.fails"); CGF.Builder.CreateCondBr(failsFilter, unexpectedBB, CGF.getEHResumeBlock(false)); CGF.EmitBlock(unexpectedBB); } // Call __cxa_call_unexpected. This doesn't need to be an invoke // because __cxa_call_unexpected magically filters exceptions // according to the last landing pad the exception was thrown // into. Seriously. llvm::Value *exn = CGF.getExceptionFromSlot(); CGF.EmitRuntimeCall(getUnexpectedFn(CGF.CGM), exn) ->setDoesNotReturn(); CGF.Builder.CreateUnreachable(); } void CodeGenFunction::EmitEndEHSpec(const Decl *D) { if (!CGM.getLangOpts().CXXExceptions) return; const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); if (!FD) { // Check if CapturedDecl is nothrow and pop terminate scope for it. if (const CapturedDecl* CD = dyn_cast_or_null<CapturedDecl>(D)) { if (CD->isNothrow()) EHStack.popTerminate(); } return; } const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); if (!Proto) return; ExceptionSpecificationType EST = Proto->getExceptionSpecType(); if (isNoexceptExceptionSpec(EST)) { if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { EHStack.popTerminate(); } } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { // TODO: Revisit exception specifications for the MS ABI. There is a way to // encode these in an object file but MSVC doesn't do anything with it. if (getTarget().getCXXABI().isMicrosoft()) return; EHFilterScope &filterScope = cast<EHFilterScope>(*EHStack.begin()); emitFilterDispatchBlock(*this, filterScope); EHStack.popFilter(); } } void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) { EnterCXXTryStmt(S); EmitStmt(S.getTryBlock()); ExitCXXTryStmt(S); } void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { unsigned NumHandlers = S.getNumHandlers(); EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers); for (unsigned I = 0; I != NumHandlers; ++I) { const CXXCatchStmt *C = S.getHandler(I); llvm::BasicBlock *Handler = createBasicBlock("catch"); if (C->getExceptionDecl()) { // FIXME: Dropping the reference type on the type into makes it // impossible to correctly implement catch-by-reference // semantics for pointers. Unfortunately, this is what all // existing compilers do, and it's not clear that the standard // personality routine is capable of doing this right. See C++ DR 388: // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388 Qualifiers CaughtTypeQuals; QualType CaughtType = CGM.getContext().getUnqualifiedArrayType( C->getCaughtType().getNonReferenceType(), CaughtTypeQuals); llvm::Constant *TypeInfo = nullptr; if (CaughtType->isObjCObjectPointerType()) TypeInfo = CGM.getObjCRuntime().GetEHType(CaughtType); else TypeInfo = CGM.getAddrOfCXXCatchHandlerType(CaughtType, C->getCaughtType()); CatchScope->setHandler(I, TypeInfo, Handler); } else { // No exception decl indicates '...', a catch-all. CatchScope->setCatchAllHandler(I, Handler); } } } llvm::BasicBlock * CodeGenFunction::getEHDispatchBlock(EHScopeStack::stable_iterator si) { // The dispatch block for the end of the scope chain is a block that // just resumes unwinding. if (si == EHStack.stable_end()) return getEHResumeBlock(true); // Otherwise, we should look at the actual scope. EHScope &scope = *EHStack.find(si); llvm::BasicBlock *dispatchBlock = scope.getCachedEHDispatchBlock(); if (!dispatchBlock) { switch (scope.getKind()) { case EHScope::Catch: { // Apply a special case to a single catch-all. EHCatchScope &catchScope = cast<EHCatchScope>(scope); if (catchScope.getNumHandlers() == 1 && catchScope.getHandler(0).isCatchAll()) { dispatchBlock = catchScope.getHandler(0).Block; // Otherwise, make a dispatch block. } else { dispatchBlock = createBasicBlock("catch.dispatch"); } break; } case EHScope::Cleanup: dispatchBlock = createBasicBlock("ehcleanup"); break; case EHScope::Filter: dispatchBlock = createBasicBlock("filter.dispatch"); break; case EHScope::Terminate: dispatchBlock = getTerminateHandler(); break; } scope.setCachedEHDispatchBlock(dispatchBlock); } return dispatchBlock; } /// Check whether this is a non-EH scope, i.e. a scope which doesn't /// affect exception handling. Currently, the only non-EH scopes are /// normal-only cleanup scopes. static bool isNonEHScope(const EHScope &S) { switch (S.getKind()) { case EHScope::Cleanup: return !cast<EHCleanupScope>(S).isEHCleanup(); case EHScope::Filter: case EHScope::Catch: case EHScope::Terminate: return false; } llvm_unreachable("Invalid EHScope Kind!"); } llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() { assert(EHStack.requiresLandingPad()); assert(!EHStack.empty()); // If exceptions are disabled, there are usually no landingpads. However, when // SEH is enabled, functions using SEH still get landingpads. const LangOptions &LO = CGM.getLangOpts(); if (!LO.Exceptions) { if (!LO.Borland && !LO.MicrosoftExt) return nullptr; if (!currentFunctionUsesSEHTry()) return nullptr; } // Check the innermost scope for a cached landing pad. If this is // a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad. llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad(); if (LP) return LP; // Build the landing pad for this scope. LP = EmitLandingPad(); assert(LP); // Cache the landing pad on the innermost scope. If this is a // non-EH scope, cache the landing pad on the enclosing scope, too. for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) { ir->setCachedLandingPad(LP); if (!isNonEHScope(*ir)) break; } return LP; } llvm::BasicBlock *CodeGenFunction::EmitLandingPad() { assert(EHStack.requiresLandingPad()); EHScope &innermostEHScope = *EHStack.find(EHStack.getInnermostEHScope()); switch (innermostEHScope.getKind()) { case EHScope::Terminate: return getTerminateLandingPad(); case EHScope::Catch: case EHScope::Cleanup: case EHScope::Filter: if (llvm::BasicBlock *lpad = innermostEHScope.getCachedLandingPad()) return lpad; } // Save the current IR generation state. CGBuilderTy::InsertPoint savedIP = Builder.saveAndClearIP(); auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, CurEHLocation); const EHPersonality &personality = EHPersonality::get(*this); // Create and configure the landing pad. llvm::BasicBlock *lpad = createBasicBlock("lpad"); EmitBlock(lpad); llvm::LandingPadInst *LPadInst = Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, nullptr), getOpaquePersonalityFn(CGM, personality), 0); llvm::Value *LPadExn = Builder.CreateExtractValue(LPadInst, 0); Builder.CreateStore(LPadExn, getExceptionSlot()); llvm::Value *LPadSel = Builder.CreateExtractValue(LPadInst, 1); Builder.CreateStore(LPadSel, getEHSelectorSlot()); // Save the exception pointer. It's safe to use a single exception // pointer per function because EH cleanups can never have nested // try/catches. // Build the landingpad instruction. // Accumulate all the handlers in scope. bool hasCatchAll = false; bool hasCleanup = false; bool hasFilter = false; SmallVector<llvm::Value*, 4> filterTypes; llvm::SmallPtrSet<llvm::Value*, 4> catchTypes; for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end(); I != E; ++I) { switch (I->getKind()) { case EHScope::Cleanup: // If we have a cleanup, remember that. hasCleanup = (hasCleanup || cast<EHCleanupScope>(*I).isEHCleanup()); continue; case EHScope::Filter: { assert(I.next() == EHStack.end() && "EH filter is not end of EH stack"); assert(!hasCatchAll && "EH filter reached after catch-all"); // Filter scopes get added to the landingpad in weird ways. EHFilterScope &filter = cast<EHFilterScope>(*I); hasFilter = true; // Add all the filter values. for (unsigned i = 0, e = filter.getNumFilters(); i != e; ++i) filterTypes.push_back(filter.getFilter(i)); goto done; } case EHScope::Terminate: // Terminate scopes are basically catch-alls. assert(!hasCatchAll); hasCatchAll = true; goto done; case EHScope::Catch: break; } EHCatchScope &catchScope = cast<EHCatchScope>(*I); for (unsigned hi = 0, he = catchScope.getNumHandlers(); hi != he; ++hi) { EHCatchScope::Handler handler = catchScope.getHandler(hi); // If this is a catch-all, register that and abort. if (!handler.Type) { assert(!hasCatchAll); hasCatchAll = true; goto done; } // Check whether we already have a handler for this type. if (catchTypes.insert(handler.Type).second) // If not, add it directly to the landingpad. LPadInst->addClause(handler.Type); } } done: // If we have a catch-all, add null to the landingpad. assert(!(hasCatchAll && hasFilter)); if (hasCatchAll) { LPadInst->addClause(getCatchAllValue(*this)); // If we have an EH filter, we need to add those handlers in the // right place in the landingpad, which is to say, at the end. } else if (hasFilter) { // Create a filter expression: a constant array indicating which filter // types there are. The personality routine only lands here if the filter // doesn't match. SmallVector<llvm::Constant*, 8> Filters; llvm::ArrayType *AType = llvm::ArrayType::get(!filterTypes.empty() ? filterTypes[0]->getType() : Int8PtrTy, filterTypes.size()); for (unsigned i = 0, e = filterTypes.size(); i != e; ++i) Filters.push_back(cast<llvm::Constant>(filterTypes[i])); llvm::Constant *FilterArray = llvm::ConstantArray::get(AType, Filters); LPadInst->addClause(FilterArray); // Also check whether we need a cleanup. if (hasCleanup) LPadInst->setCleanup(true); // Otherwise, signal that we at least have cleanups. } else if (hasCleanup) { LPadInst->setCleanup(true); } assert((LPadInst->getNumClauses() > 0 || LPadInst->isCleanup()) && "landingpad instruction has no clauses!"); // Tell the backend how to generate the landing pad. Builder.CreateBr(getEHDispatchBlock(EHStack.getInnermostEHScope())); // Restore the old IR generation state. Builder.restoreIP(savedIP); return lpad; } /// Emit the structure of the dispatch block for the given catch scope. /// It is an invariant that the dispatch block already exists. static void emitCatchDispatchBlock(CodeGenFunction &CGF, EHCatchScope &catchScope) { llvm::BasicBlock *dispatchBlock = catchScope.getCachedEHDispatchBlock(); assert(dispatchBlock); // If there's only a single catch-all, getEHDispatchBlock returned // that catch-all as the dispatch block. if (catchScope.getNumHandlers() == 1 && catchScope.getHandler(0).isCatchAll()) { assert(dispatchBlock == catchScope.getHandler(0).Block); return; } CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveIP(); CGF.EmitBlockAfterUses(dispatchBlock); // Select the right handler. llvm::Value *llvm_eh_typeid_for = CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for); // Load the selector value. llvm::Value *selector = CGF.getSelectorFromSlot(); // Test against each of the exception types we claim to catch. for (unsigned i = 0, e = catchScope.getNumHandlers(); ; ++i) { assert(i < e && "ran off end of handlers!"); const EHCatchScope::Handler &handler = catchScope.getHandler(i); llvm::Value *typeValue = handler.Type; assert(typeValue && "fell into catch-all case!"); typeValue = CGF.Builder.CreateBitCast(typeValue, CGF.Int8PtrTy); // Figure out the next block. bool nextIsEnd; llvm::BasicBlock *nextBlock; // If this is the last handler, we're at the end, and the next // block is the block for the enclosing EH scope. if (i + 1 == e) { nextBlock = CGF.getEHDispatchBlock(catchScope.getEnclosingEHScope()); nextIsEnd = true; // If the next handler is a catch-all, we're at the end, and the // next block is that handler. } else if (catchScope.getHandler(i+1).isCatchAll()) { nextBlock = catchScope.getHandler(i+1).Block; nextIsEnd = true; // Otherwise, we're not at the end and we need a new block. } else { nextBlock = CGF.createBasicBlock("catch.fallthrough"); nextIsEnd = false; } // Figure out the catch type's index in the LSDA's type table. llvm::CallInst *typeIndex = CGF.Builder.CreateCall(llvm_eh_typeid_for, typeValue); typeIndex->setDoesNotThrow(); llvm::Value *matchesTypeIndex = CGF.Builder.CreateICmpEQ(selector, typeIndex, "matches"); CGF.Builder.CreateCondBr(matchesTypeIndex, handler.Block, nextBlock); // If the next handler is a catch-all, we're completely done. if (nextIsEnd) { CGF.Builder.restoreIP(savedIP); return; } // Otherwise we need to emit and continue at that block. CGF.EmitBlock(nextBlock); } } void CodeGenFunction::popCatchScope() { EHCatchScope &catchScope = cast<EHCatchScope>(*EHStack.begin()); if (catchScope.hasEHBranches()) emitCatchDispatchBlock(*this, catchScope); EHStack.popCatch(); } void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { unsigned NumHandlers = S.getNumHandlers(); EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin()); assert(CatchScope.getNumHandlers() == NumHandlers); // If the catch was not required, bail out now. if (!CatchScope.hasEHBranches()) { CatchScope.clearHandlerBlocks(); EHStack.popCatch(); return; } // Emit the structure of the EH dispatch for this catch. emitCatchDispatchBlock(*this, CatchScope); // Copy the handler blocks off before we pop the EH stack. Emitting // the handlers might scribble on this memory. SmallVector<EHCatchScope::Handler, 8> Handlers(NumHandlers); memcpy(Handlers.data(), CatchScope.begin(), NumHandlers * sizeof(EHCatchScope::Handler)); EHStack.popCatch(); // The fall-through block. llvm::BasicBlock *ContBB = createBasicBlock("try.cont"); // We just emitted the body of the try; jump to the continue block. if (HaveInsertPoint()) Builder.CreateBr(ContBB); // Determine if we need an implicit rethrow for all these catch handlers; // see the comment below. bool doImplicitRethrow = false; if (IsFnTryBlock) doImplicitRethrow = isa<CXXDestructorDecl>(CurCodeDecl) || isa<CXXConstructorDecl>(CurCodeDecl); // Perversely, we emit the handlers backwards precisely because we // want them to appear in source order. In all of these cases, the // catch block will have exactly one predecessor, which will be a // particular block in the catch dispatch. However, in the case of // a catch-all, one of the dispatch blocks will branch to two // different handlers, and EmitBlockAfterUses will cause the second // handler to be moved before the first. for (unsigned I = NumHandlers; I != 0; --I) { llvm::BasicBlock *CatchBlock = Handlers[I-1].Block; EmitBlockAfterUses(CatchBlock); // Catch the exception if this isn't a catch-all. const CXXCatchStmt *C = S.getHandler(I-1); // Enter a cleanup scope, including the catch variable and the // end-catch. RunCleanupsScope CatchScope(*this); // Initialize the catch variable and set up the cleanups. CGM.getCXXABI().emitBeginCatch(*this, C); // Emit the PGO counter increment. RegionCounter CatchCnt = getPGORegionCounter(C); CatchCnt.beginRegion(Builder); // Perform the body of the catch. EmitStmt(C->getHandlerBlock()); // [except.handle]p11: // The currently handled exception is rethrown if control // reaches the end of a handler of the function-try-block of a // constructor or destructor. // It is important that we only do this on fallthrough and not on // return. Note that it's illegal to put a return in a // constructor function-try-block's catch handler (p14), so this // really only applies to destructors. if (doImplicitRethrow && HaveInsertPoint()) { CGM.getCXXABI().emitRethrow(*this, /*isNoReturn*/false); Builder.CreateUnreachable(); Builder.ClearInsertionPoint(); } // Fall out through the catch cleanups. CatchScope.ForceCleanup(); // Branch out of the try. if (HaveInsertPoint()) Builder.CreateBr(ContBB); } RegionCounter ContCnt = getPGORegionCounter(&S); EmitBlock(ContBB); ContCnt.beginRegion(Builder); } namespace { struct CallEndCatchForFinally : EHScopeStack::Cleanup { llvm::Value *ForEHVar; llvm::Value *EndCatchFn; CallEndCatchForFinally(llvm::Value *ForEHVar, llvm::Value *EndCatchFn) : ForEHVar(ForEHVar), EndCatchFn(EndCatchFn) {} void Emit(CodeGenFunction &CGF, Flags flags) override { llvm::BasicBlock *EndCatchBB = CGF.createBasicBlock("finally.endcatch"); llvm::BasicBlock *CleanupContBB = CGF.createBasicBlock("finally.cleanup.cont"); llvm::Value *ShouldEndCatch = CGF.Builder.CreateLoad(ForEHVar, "finally.endcatch"); CGF.Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB); CGF.EmitBlock(EndCatchBB); CGF.EmitRuntimeCallOrInvoke(EndCatchFn); // catch-all, so might throw CGF.EmitBlock(CleanupContBB); } }; struct PerformFinally : EHScopeStack::Cleanup { const Stmt *Body; llvm::Value *ForEHVar; llvm::Value *EndCatchFn; llvm::Value *RethrowFn; llvm::Value *SavedExnVar; PerformFinally(const Stmt *Body, llvm::Value *ForEHVar, llvm::Value *EndCatchFn, llvm::Value *RethrowFn, llvm::Value *SavedExnVar) : Body(Body), ForEHVar(ForEHVar), EndCatchFn(EndCatchFn), RethrowFn(RethrowFn), SavedExnVar(SavedExnVar) {} void Emit(CodeGenFunction &CGF, Flags flags) override { // Enter a cleanup to call the end-catch function if one was provided. if (EndCatchFn) CGF.EHStack.pushCleanup<CallEndCatchForFinally>(NormalAndEHCleanup, ForEHVar, EndCatchFn); // Save the current cleanup destination in case there are // cleanups in the finally block. llvm::Value *SavedCleanupDest = CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot(), "cleanup.dest.saved"); // Emit the finally block. CGF.EmitStmt(Body); // If the end of the finally is reachable, check whether this was // for EH. If so, rethrow. if (CGF.HaveInsertPoint()) { llvm::BasicBlock *RethrowBB = CGF.createBasicBlock("finally.rethrow"); llvm::BasicBlock *ContBB = CGF.createBasicBlock("finally.cont"); llvm::Value *ShouldRethrow = CGF.Builder.CreateLoad(ForEHVar, "finally.shouldthrow"); CGF.Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB); CGF.EmitBlock(RethrowBB); if (SavedExnVar) { CGF.EmitRuntimeCallOrInvoke(RethrowFn, CGF.Builder.CreateLoad(SavedExnVar)); } else { CGF.EmitRuntimeCallOrInvoke(RethrowFn); } CGF.Builder.CreateUnreachable(); CGF.EmitBlock(ContBB); // Restore the cleanup destination. CGF.Builder.CreateStore(SavedCleanupDest, CGF.getNormalCleanupDestSlot()); } // Leave the end-catch cleanup. As an optimization, pretend that // the fallthrough path was inaccessible; we've dynamically proven // that we're not in the EH case along that path. if (EndCatchFn) { CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); CGF.PopCleanupBlock(); CGF.Builder.restoreIP(SavedIP); } // Now make sure we actually have an insertion point or the // cleanup gods will hate us. CGF.EnsureInsertPoint(); } }; } /// Enters a finally block for an implementation using zero-cost /// exceptions. This is mostly general, but hard-codes some /// language/ABI-specific behavior in the catch-all sections. void CodeGenFunction::FinallyInfo::enter(CodeGenFunction &CGF, const Stmt *body, llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, llvm::Constant *rethrowFn) { assert((beginCatchFn != nullptr) == (endCatchFn != nullptr) && "begin/end catch functions not paired"); assert(rethrowFn && "rethrow function is required"); BeginCatchFn = beginCatchFn; // The rethrow function has one of the following two types: // void (*)() // void (*)(void*) // In the latter case we need to pass it the exception object. // But we can't use the exception slot because the @finally might // have a landing pad (which would overwrite the exception slot). llvm::FunctionType *rethrowFnTy = cast<llvm::FunctionType>( cast<llvm::PointerType>(rethrowFn->getType())->getElementType()); SavedExnVar = nullptr; if (rethrowFnTy->getNumParams()) SavedExnVar = CGF.CreateTempAlloca(CGF.Int8PtrTy, "finally.exn"); // A finally block is a statement which must be executed on any edge // out of a given scope. Unlike a cleanup, the finally block may // contain arbitrary control flow leading out of itself. In // addition, finally blocks should always be executed, even if there // are no catch handlers higher on the stack. Therefore, we // surround the protected scope with a combination of a normal // cleanup (to catch attempts to break out of the block via normal // control flow) and an EH catch-all (semantically "outside" any try // statement to which the finally block might have been attached). // The finally block itself is generated in the context of a cleanup // which conditionally leaves the catch-all. // Jump destination for performing the finally block on an exception // edge. We'll never actually reach this block, so unreachable is // fine. RethrowDest = CGF.getJumpDestInCurrentScope(CGF.getUnreachableBlock()); // Whether the finally block is being executed for EH purposes. ForEHVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "finally.for-eh"); CGF.Builder.CreateStore(CGF.Builder.getFalse(), ForEHVar); // Enter a normal cleanup which will perform the @finally block. CGF.EHStack.pushCleanup<PerformFinally>(NormalCleanup, body, ForEHVar, endCatchFn, rethrowFn, SavedExnVar); // Enter a catch-all scope. llvm::BasicBlock *catchBB = CGF.createBasicBlock("finally.catchall"); EHCatchScope *catchScope = CGF.EHStack.pushCatch(1); catchScope->setCatchAllHandler(0, catchBB); } void CodeGenFunction::FinallyInfo::exit(CodeGenFunction &CGF) { // Leave the finally catch-all. EHCatchScope &catchScope = cast<EHCatchScope>(*CGF.EHStack.begin()); llvm::BasicBlock *catchBB = catchScope.getHandler(0).Block; CGF.popCatchScope(); // If there are any references to the catch-all block, emit it. if (catchBB->use_empty()) { delete catchBB; } else { CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveAndClearIP(); CGF.EmitBlock(catchBB); llvm::Value *exn = nullptr; // If there's a begin-catch function, call it. if (BeginCatchFn) { exn = CGF.getExceptionFromSlot(); CGF.EmitNounwindRuntimeCall(BeginCatchFn, exn); } // If we need to remember the exception pointer to rethrow later, do so. if (SavedExnVar) { if (!exn) exn = CGF.getExceptionFromSlot(); CGF.Builder.CreateStore(exn, SavedExnVar); } // Tell the cleanups in the finally block that we're do this for EH. CGF.Builder.CreateStore(CGF.Builder.getTrue(), ForEHVar); // Thread a jump through the finally cleanup. CGF.EmitBranchThroughCleanup(RethrowDest); CGF.Builder.restoreIP(savedIP); } // Finally, leave the @finally cleanup. CGF.PopCleanupBlock(); } llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() { if (TerminateLandingPad) return TerminateLandingPad; CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); // This will get inserted at the end of the function. TerminateLandingPad = createBasicBlock("terminate.lpad"); Builder.SetInsertPoint(TerminateLandingPad); // Tell the backend that this is a landing pad. const EHPersonality &Personality = EHPersonality::get(*this); llvm::LandingPadInst *LPadInst = Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, nullptr), getOpaquePersonalityFn(CGM, Personality), 0); LPadInst->addClause(getCatchAllValue(*this)); llvm::Value *Exn = 0; if (getLangOpts().CPlusPlus) Exn = Builder.CreateExtractValue(LPadInst, 0); llvm::CallInst *terminateCall = CGM.getCXXABI().emitTerminateForUnexpectedException(*this, Exn); terminateCall->setDoesNotReturn(); Builder.CreateUnreachable(); // Restore the saved insertion state. Builder.restoreIP(SavedIP); return TerminateLandingPad; } llvm::BasicBlock *CodeGenFunction::getTerminateHandler() { if (TerminateHandler) return TerminateHandler; CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); // Set up the terminate handler. This block is inserted at the very // end of the function by FinishFunction. TerminateHandler = createBasicBlock("terminate.handler"); Builder.SetInsertPoint(TerminateHandler); llvm::Value *Exn = 0; if (getLangOpts().CPlusPlus) Exn = getExceptionFromSlot(); llvm::CallInst *terminateCall = CGM.getCXXABI().emitTerminateForUnexpectedException(*this, Exn); terminateCall->setDoesNotReturn(); Builder.CreateUnreachable(); // Restore the saved insertion state. Builder.restoreIP(SavedIP); return TerminateHandler; } llvm::BasicBlock *CodeGenFunction::getEHResumeBlock(bool isCleanup) { if (EHResumeBlock) return EHResumeBlock; CGBuilderTy::InsertPoint SavedIP = Builder.saveIP(); // We emit a jump to a notional label at the outermost unwind state. EHResumeBlock = createBasicBlock("eh.resume"); Builder.SetInsertPoint(EHResumeBlock); const EHPersonality &Personality = EHPersonality::get(*this); // This can always be a call because we necessarily didn't find // anything on the EH stack which needs our help. const char *RethrowName = Personality.CatchallRethrowFn; if (RethrowName != nullptr && !isCleanup) { EmitRuntimeCall(getCatchallRethrowFn(CGM, RethrowName), getExceptionFromSlot())->setDoesNotReturn(); Builder.CreateUnreachable(); Builder.restoreIP(SavedIP); return EHResumeBlock; } // Recreate the landingpad's return value for the 'resume' instruction. llvm::Value *Exn = getExceptionFromSlot(); llvm::Value *Sel = getSelectorFromSlot(); llvm::Type *LPadType = llvm::StructType::get(Exn->getType(), Sel->getType(), nullptr); llvm::Value *LPadVal = llvm::UndefValue::get(LPadType); LPadVal = Builder.CreateInsertValue(LPadVal, Exn, 0, "lpad.val"); LPadVal = Builder.CreateInsertValue(LPadVal, Sel, 1, "lpad.val"); Builder.CreateResume(LPadVal); Builder.restoreIP(SavedIP); return EHResumeBlock; } void CodeGenFunction::EmitSEHTryStmt(const SEHTryStmt &S) { // FIXME: Implement SEH on other architectures. const llvm::Triple &T = CGM.getTarget().getTriple(); if (T.getArch() != llvm::Triple::x86_64 || !T.isKnownWindowsMSVCEnvironment()) { ErrorUnsupported(&S, "__try statement"); return; } EnterSEHTryStmt(S); { JumpDest TryExit = getJumpDestInCurrentScope("__try.__leave"); SEHTryEpilogueStack.push_back(&TryExit); EmitStmt(S.getTryBlock()); SEHTryEpilogueStack.pop_back(); if (!TryExit.getBlock()->use_empty()) EmitBlock(TryExit.getBlock(), /*IsFinished=*/true); else delete TryExit.getBlock(); } ExitSEHTryStmt(S); } namespace { struct PerformSEHFinally : EHScopeStack::Cleanup { llvm::Function *OutlinedFinally; PerformSEHFinally(llvm::Function *OutlinedFinally) : OutlinedFinally(OutlinedFinally) {} void Emit(CodeGenFunction &CGF, Flags F) override { ASTContext &Context = CGF.getContext(); QualType ArgTys[2] = {Context.BoolTy, Context.VoidPtrTy}; FunctionProtoType::ExtProtoInfo EPI; const auto *FTP = cast<FunctionType>( Context.getFunctionType(Context.VoidTy, ArgTys, EPI)); CallArgList Args; llvm::Value *IsForEH = llvm::ConstantInt::get(CGF.ConvertType(ArgTys[0]), F.isForEHCleanup()); Args.add(RValue::get(IsForEH), ArgTys[0]); CodeGenModule &CGM = CGF.CGM; llvm::Value *Zero = llvm::ConstantInt::get(CGM.Int32Ty, 0); llvm::Value *FrameAddr = CGM.getIntrinsic(llvm::Intrinsic::frameaddress); llvm::Value *FP = CGF.Builder.CreateCall(FrameAddr, Zero); Args.add(RValue::get(FP), ArgTys[1]); const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(Args, FTP, /*chainCall=*/false); CGF.EmitCall(FnInfo, OutlinedFinally, ReturnValueSlot(), Args); } }; } namespace { /// Find all local variable captures in the statement. struct CaptureFinder : ConstStmtVisitor<CaptureFinder> { CodeGenFunction &ParentCGF; const VarDecl *ParentThis; SmallVector<const VarDecl *, 4> Captures; CaptureFinder(CodeGenFunction &ParentCGF, const VarDecl *ParentThis) : ParentCGF(ParentCGF), ParentThis(ParentThis) {} void Visit(const Stmt *S) { // See if this is a capture, then recurse. ConstStmtVisitor<CaptureFinder>::Visit(S); for (const Stmt *Child : S->children()) if (Child) Visit(Child); } void VisitDeclRefExpr(const DeclRefExpr *E) { // If this is already a capture, just make sure we capture 'this'. if (E->refersToEnclosingVariableOrCapture()) { Captures.push_back(ParentThis); return; } const auto *D = dyn_cast<VarDecl>(E->getDecl()); if (D && D->isLocalVarDeclOrParm() && D->hasLocalStorage()) Captures.push_back(D); } void VisitCXXThisExpr(const CXXThisExpr *E) { Captures.push_back(ParentThis); } }; } void CodeGenFunction::EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, llvm::Value *ParentFP) { // Find all captures in the Stmt. CaptureFinder Finder(ParentCGF, ParentCGF.CXXABIThisDecl); Finder.Visit(OutlinedStmt); // Typically there are no captures and we can exit early. if (Finder.Captures.empty()) return; // Prepare the first two arguments to llvm.framerecover. llvm::Function *FrameRecoverFn = llvm::Intrinsic::getDeclaration( &CGM.getModule(), llvm::Intrinsic::framerecover); llvm::Constant *ParentI8Fn = llvm::ConstantExpr::getBitCast(ParentCGF.CurFn, Int8PtrTy); // Create llvm.framerecover calls for all captures. for (const VarDecl *VD : Finder.Captures) { if (isa<ImplicitParamDecl>(VD)) { CGM.ErrorUnsupported(VD, "'this' captured by SEH"); CXXThisValue = llvm::UndefValue::get(ConvertTypeForMem(VD->getType())); continue; } if (VD->getType()->isVariablyModifiedType()) { CGM.ErrorUnsupported(VD, "VLA captured by SEH"); continue; } assert((isa<ImplicitParamDecl>(VD) || VD->isLocalVarDeclOrParm()) && "captured non-local variable"); // If this decl hasn't been declared yet, it will be declared in the // OutlinedStmt. auto I = ParentCGF.LocalDeclMap.find(VD); if (I == ParentCGF.LocalDeclMap.end()) continue; llvm::Value *ParentVar = I->second; llvm::CallInst *RecoverCall = nullptr; CGBuilderTy Builder(AllocaInsertPt); if (auto *ParentAlloca = dyn_cast<llvm::AllocaInst>(ParentVar)) { // Mark the variable escaped if nobody else referenced it and compute the // frameescape index. auto InsertPair = ParentCGF.EscapedLocals.insert(std::make_pair(ParentAlloca, -1)); if (InsertPair.second) InsertPair.first->second = ParentCGF.EscapedLocals.size() - 1; int FrameEscapeIdx = InsertPair.first->second; // call i8* @llvm.framerecover(i8* bitcast(Fn), i8* %fp, i32 N) RecoverCall = Builder.CreateCall3(FrameRecoverFn, ParentI8Fn, ParentFP, llvm::ConstantInt::get(Int32Ty, FrameEscapeIdx)); } else { // If the parent didn't have an alloca, we're doing some nested outlining. // Just clone the existing framerecover call, but tweak the FP argument to // use our FP value. All other arguments are constants. auto *ParentRecover = cast<llvm::IntrinsicInst>(ParentVar->stripPointerCasts()); assert(ParentRecover->getIntrinsicID() == llvm::Intrinsic::framerecover && "expected alloca or framerecover in parent LocalDeclMap"); RecoverCall = cast<llvm::CallInst>(ParentRecover->clone()); RecoverCall->setArgOperand(1, ParentFP); RecoverCall->insertBefore(AllocaInsertPt); } // Bitcast the variable, rename it, and insert it in the local decl map. llvm::Value *ChildVar = Builder.CreateBitCast(RecoverCall, ParentVar->getType()); ChildVar->setName(ParentVar->getName()); LocalDeclMap[VD] = ChildVar; } } /// Arrange a function prototype that can be called by Windows exception /// handling personalities. On Win64, the prototype looks like: /// RetTy func(void *EHPtrs, void *ParentFP); void CodeGenFunction::startOutlinedSEHHelper(CodeGenFunction &ParentCGF, StringRef Name, QualType RetTy, FunctionArgList &Args, const Stmt *OutlinedStmt) { llvm::Function *ParentFn = ParentCGF.CurFn; const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionDeclaration( RetTy, Args, FunctionType::ExtInfo(), /*isVariadic=*/false); llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo); llvm::Function *Fn = llvm::Function::Create( FnTy, llvm::GlobalValue::InternalLinkage, Name.str(), &CGM.getModule()); // The filter is either in the same comdat as the function, or it's internal. if (llvm::Comdat *C = ParentFn->getComdat()) { Fn->setComdat(C); } else if (ParentFn->hasWeakLinkage() || ParentFn->hasLinkOnceLinkage()) { llvm::Comdat *C = CGM.getModule().getOrInsertComdat(ParentFn->getName()); ParentFn->setComdat(C); Fn->setComdat(C); } else { Fn->setLinkage(llvm::GlobalValue::InternalLinkage); } IsOutlinedSEHHelper = true; StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, OutlinedStmt->getLocStart(), OutlinedStmt->getLocStart()); CGM.SetLLVMFunctionAttributes(nullptr, FnInfo, CurFn); auto AI = Fn->arg_begin(); ++AI; EmitCapturedLocals(ParentCGF, OutlinedStmt, &*AI); } /// Create a stub filter function that will ultimately hold the code of the /// filter expression. The EH preparation passes in LLVM will outline the code /// from the main function body into this stub. llvm::Function * CodeGenFunction::GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, const SEHExceptStmt &Except) { const Expr *FilterExpr = Except.getFilterExpr(); SourceLocation StartLoc = FilterExpr->getLocStart(); SEHPointersDecl = ImplicitParamDecl::Create( getContext(), nullptr, StartLoc, &getContext().Idents.get("exception_pointers"), getContext().VoidPtrTy); FunctionArgList Args; Args.push_back(SEHPointersDecl); Args.push_back(ImplicitParamDecl::Create( getContext(), nullptr, StartLoc, &getContext().Idents.get("frame_pointer"), getContext().VoidPtrTy)); // Get the mangled function name. SmallString<128> Name; { llvm::raw_svector_ostream OS(Name); const Decl *ParentCodeDecl = ParentCGF.CurCodeDecl; const NamedDecl *Parent = dyn_cast_or_null<NamedDecl>(ParentCodeDecl); assert(Parent && "FIXME: handle unnamed decls (lambdas, blocks) with SEH"); CGM.getCXXABI().getMangleContext().mangleSEHFilterExpression(Parent, OS); } startOutlinedSEHHelper(ParentCGF, Name, getContext().IntTy, Args, FilterExpr); // Mark finally block calls as nounwind and noinline to make LLVM's job a // little easier. // FIXME: Remove these restrictions in the future. CurFn->addFnAttr(llvm::Attribute::NoUnwind); CurFn->addFnAttr(llvm::Attribute::NoInline); EmitSEHExceptionCodeSave(); // Emit the original filter expression, convert to i32, and return. llvm::Value *R = EmitScalarExpr(FilterExpr); R = Builder.CreateIntCast(R, CGM.IntTy, FilterExpr->getType()->isSignedIntegerType()); Builder.CreateStore(R, ReturnValue); FinishFunction(FilterExpr->getLocEnd()); return CurFn; } llvm::Function * CodeGenFunction::GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, const SEHFinallyStmt &Finally) { const Stmt *FinallyBlock = Finally.getBlock(); SourceLocation StartLoc = FinallyBlock->getLocStart(); FunctionArgList Args; Args.push_back(ImplicitParamDecl::Create( getContext(), nullptr, StartLoc, &getContext().Idents.get("abnormal_termination"), getContext().BoolTy)); Args.push_back(ImplicitParamDecl::Create( getContext(), nullptr, StartLoc, &getContext().Idents.get("frame_pointer"), getContext().VoidPtrTy)); // Get the mangled function name. SmallString<128> Name; { llvm::raw_svector_ostream OS(Name); const Decl *ParentCodeDecl = ParentCGF.CurCodeDecl; const NamedDecl *Parent = dyn_cast_or_null<NamedDecl>(ParentCodeDecl); assert(Parent && "FIXME: handle unnamed decls (lambdas, blocks) with SEH"); CGM.getCXXABI().getMangleContext().mangleSEHFinallyBlock(Parent, OS); } startOutlinedSEHHelper(ParentCGF, Name, getContext().VoidTy, Args, FinallyBlock); // Emit the original filter expression, convert to i32, and return. EmitStmt(FinallyBlock); FinishFunction(FinallyBlock->getLocEnd()); return CurFn; } void CodeGenFunction::EmitSEHExceptionCodeSave() { // Save the exception code in the exception slot to unify exception access in // the filter function and the landing pad. // struct EXCEPTION_POINTERS { // EXCEPTION_RECORD *ExceptionRecord; // CONTEXT *ContextRecord; // }; // void *exn.slot = // (void *)(uintptr_t)exception_pointers->ExceptionRecord->ExceptionCode; llvm::Value *Ptrs = Builder.CreateLoad(GetAddrOfLocalVar(SEHPointersDecl)); llvm::Type *RecordTy = CGM.Int32Ty->getPointerTo(); llvm::Type *PtrsTy = llvm::StructType::get(RecordTy, CGM.VoidPtrTy, nullptr); Ptrs = Builder.CreateBitCast(Ptrs, PtrsTy->getPointerTo()); llvm::Value *Rec = Builder.CreateStructGEP(PtrsTy, Ptrs, 0); Rec = Builder.CreateLoad(Rec); llvm::Value *Code = Builder.CreateLoad(Rec); Code = Builder.CreateZExt(Code, CGM.IntPtrTy); // FIXME: Change landing pads to produce {i32, i32} and make the exception // slot an i32. Code = Builder.CreateIntToPtr(Code, CGM.VoidPtrTy); Builder.CreateStore(Code, getExceptionSlot()); } llvm::Value *CodeGenFunction::EmitSEHExceptionInfo() { // Sema should diagnose calling this builtin outside of a filter context, but // don't crash if we screw up. if (!SEHPointersDecl) return llvm::UndefValue::get(Int8PtrTy); return Builder.CreateLoad(GetAddrOfLocalVar(SEHPointersDecl)); } llvm::Value *CodeGenFunction::EmitSEHExceptionCode() { // If we're in a landing pad or filter function, the exception slot contains // the code. assert(ExceptionSlot); llvm::Value *Code = Builder.CreatePtrToInt(getExceptionFromSlot(), CGM.IntPtrTy); return Builder.CreateTrunc(Code, CGM.Int32Ty); } llvm::Value *CodeGenFunction::EmitSEHAbnormalTermination() { // Abnormal termination is just the first parameter to the outlined finally // helper. auto AI = CurFn->arg_begin(); return Builder.CreateZExt(&*AI, Int32Ty); } void CodeGenFunction::EnterSEHTryStmt(const SEHTryStmt &S) { CodeGenFunction HelperCGF(CGM, /*suppressNewContext=*/true); if (const SEHFinallyStmt *Finally = S.getFinallyHandler()) { // Push a cleanup for __finally blocks. llvm::Function *FinallyFunc = HelperCGF.GenerateSEHFinallyFunction(*this, *Finally); EHStack.pushCleanup<PerformSEHFinally>(NormalAndEHCleanup, FinallyFunc); return; } // Otherwise, we must have an __except block. const SEHExceptStmt *Except = S.getExceptHandler(); assert(Except); EHCatchScope *CatchScope = EHStack.pushCatch(1); // If the filter is known to evaluate to 1, then we can use the clause "catch // i8* null". llvm::Constant *C = CGM.EmitConstantExpr(Except->getFilterExpr(), getContext().IntTy, this); if (C && C->isOneValue()) { CatchScope->setCatchAllHandler(0, createBasicBlock("__except")); return; } // In general, we have to emit an outlined filter function. Use the function // in place of the RTTI typeinfo global that C++ EH uses. llvm::Function *FilterFunc = HelperCGF.GenerateSEHFilterFunction(*this, *Except); llvm::Constant *OpaqueFunc = llvm::ConstantExpr::getBitCast(FilterFunc, Int8PtrTy); CatchScope->setHandler(0, OpaqueFunc, createBasicBlock("__except")); } void CodeGenFunction::ExitSEHTryStmt(const SEHTryStmt &S) { // Just pop the cleanup if it's a __finally block. if (S.getFinallyHandler()) { PopCleanupBlock(); return; } // Otherwise, we must have an __except block. const SEHExceptStmt *Except = S.getExceptHandler(); assert(Except && "__try must have __finally xor __except"); EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin()); // Don't emit the __except block if the __try block lacked invokes. // TODO: Model unwind edges from instructions, either with iload / istore or // a try body function. if (!CatchScope.hasEHBranches()) { CatchScope.clearHandlerBlocks(); EHStack.popCatch(); return; } // The fall-through block. llvm::BasicBlock *ContBB = createBasicBlock("__try.cont"); // We just emitted the body of the __try; jump to the continue block. if (HaveInsertPoint()) Builder.CreateBr(ContBB); // Check if our filter function returned true. emitCatchDispatchBlock(*this, CatchScope); // Grab the block before we pop the handler. llvm::BasicBlock *ExceptBB = CatchScope.getHandler(0).Block; EHStack.popCatch(); EmitBlockAfterUses(ExceptBB); // Emit the __except body. EmitStmt(Except->getBlock()); if (HaveInsertPoint()) Builder.CreateBr(ContBB); EmitBlock(ContBB); } void CodeGenFunction::EmitSEHLeaveStmt(const SEHLeaveStmt &S) { // If this code is reachable then emit a stop point (if generating // debug info). We have to do this ourselves because we are on the // "simple" statement path. if (HaveInsertPoint()) EmitStopPoint(&S); // This must be a __leave from a __finally block, which we warn on and is UB. // Just emit unreachable. if (!isSEHTryScope()) { Builder.CreateUnreachable(); Builder.ClearInsertionPoint(); return; } EmitBranchThroughCleanup(*SEHTryEpilogueStack.back()); }