//===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the C++ related Decl classes. // //===----------------------------------------------------------------------===// #include "clang/AST/DeclCXX.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTLambda.h" #include "clang/AST/ASTMutationListener.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/TypeLoc.h" #include "clang/Basic/IdentifierTable.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" using namespace clang; //===----------------------------------------------------------------------===// // Decl Allocation/Deallocation Method Implementations //===----------------------------------------------------------------------===// void AccessSpecDecl::anchor() { } AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) AccessSpecDecl(EmptyShell()); } void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const { ExternalASTSource *Source = C.getExternalSource(); assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set"); assert(Source && "getFromExternalSource with no external source"); for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I) I.setDecl(cast<NamedDecl>(Source->GetExternalDecl( reinterpret_cast<uintptr_t>(I.getDecl()) >> 2))); Impl.Decls.setLazy(false); } CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D) : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0), Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false), Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true), HasPrivateFields(false), HasProtectedFields(false), HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false), HasOnlyCMembers(true), HasInClassInitializer(false), HasUninitializedReferenceMember(false), NeedOverloadResolutionForMoveConstructor(false), NeedOverloadResolutionForMoveAssignment(false), NeedOverloadResolutionForDestructor(false), DefaultedMoveConstructorIsDeleted(false), DefaultedMoveAssignmentIsDeleted(false), DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All), DeclaredNonTrivialSpecialMembers(0), HasIrrelevantDestructor(true), HasConstexprNonCopyMoveConstructor(false), DefaultedDefaultConstructorIsConstexpr(true), HasConstexprDefaultConstructor(false), HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false), UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0), ImplicitCopyConstructorHasConstParam(true), ImplicitCopyAssignmentHasConstParam(true), HasDeclaredCopyConstructorWithConstParam(false), HasDeclaredCopyAssignmentWithConstParam(false), IsLambda(false), IsParsingBaseSpecifiers(false), NumBases(0), NumVBases(0), Bases(), VBases(), Definition(D), FirstFriend() { } CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const { return Bases.get(Definition->getASTContext().getExternalSource()); } CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const { return VBases.get(Definition->getASTContext().getExternalSource()); } CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, CXXRecordDecl *PrevDecl) : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl), DefinitionData(PrevDecl ? PrevDecl->DefinitionData : DefinitionDataPtr(this)), TemplateOrInstantiation() {} CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, CXXRecordDecl* PrevDecl, bool DelayTypeCreation) { CXXRecordDecl *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl); R->MayHaveOutOfDateDef = C.getLangOpts().Modules; // FIXME: DelayTypeCreation seems like such a hack if (!DelayTypeCreation) C.getTypeDeclType(R, PrevDecl); return R; } CXXRecordDecl * CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC, TypeSourceInfo *Info, SourceLocation Loc, bool Dependent, bool IsGeneric, LambdaCaptureDefault CaptureDefault) { CXXRecordDecl *R = new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc, nullptr, nullptr); R->IsBeingDefined = true; R->DefinitionData = new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric, CaptureDefault); R->MayHaveOutOfDateDef = false; R->setImplicit(true); C.getTypeDeclType(R, /*PrevDecl=*/nullptr); return R; } CXXRecordDecl * CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { CXXRecordDecl *R = new (C, ID) CXXRecordDecl( CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(), nullptr, nullptr); R->MayHaveOutOfDateDef = false; return R; } void CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases) { ASTContext &C = getASTContext(); if (!data().Bases.isOffset() && data().NumBases > 0) C.Deallocate(data().getBases()); if (NumBases) { // C++ [dcl.init.aggr]p1: // An aggregate is [...] a class with [...] no base classes [...]. data().Aggregate = false; // C++ [class]p4: // A POD-struct is an aggregate class... data().PlainOldData = false; } // The set of seen virtual base types. llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes; // The virtual bases of this class. SmallVector<const CXXBaseSpecifier *, 8> VBases; data().Bases = new(C) CXXBaseSpecifier [NumBases]; data().NumBases = NumBases; for (unsigned i = 0; i < NumBases; ++i) { data().getBases()[i] = *Bases[i]; // Keep track of inherited vbases for this base class. const CXXBaseSpecifier *Base = Bases[i]; QualType BaseType = Base->getType(); // Skip dependent types; we can't do any checking on them now. if (BaseType->isDependentType()) continue; CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); // A class with a non-empty base class is not empty. // FIXME: Standard ref? if (!BaseClassDecl->isEmpty()) { if (!data().Empty) { // C++0x [class]p7: // A standard-layout class is a class that: // [...] // -- either has no non-static data members in the most derived // class and at most one base class with non-static data members, // or has no base classes with non-static data members, and // If this is the second non-empty base, then neither of these two // clauses can be true. data().IsStandardLayout = false; } data().Empty = false; data().HasNoNonEmptyBases = false; } // C++ [class.virtual]p1: // A class that declares or inherits a virtual function is called a // polymorphic class. if (BaseClassDecl->isPolymorphic()) data().Polymorphic = true; // C++0x [class]p7: // A standard-layout class is a class that: [...] // -- has no non-standard-layout base classes if (!BaseClassDecl->isStandardLayout()) data().IsStandardLayout = false; // Record if this base is the first non-literal field or base. if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C)) data().HasNonLiteralTypeFieldsOrBases = true; // Now go through all virtual bases of this base and add them. for (const auto &VBase : BaseClassDecl->vbases()) { // Add this base if it's not already in the list. if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) { VBases.push_back(&VBase); // C++11 [class.copy]p8: // The implicitly-declared copy constructor for a class X will have // the form 'X::X(const X&)' if each [...] virtual base class B of X // has a copy constructor whose first parameter is of type // 'const B&' or 'const volatile B&' [...] if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl()) if (!VBaseDecl->hasCopyConstructorWithConstParam()) data().ImplicitCopyConstructorHasConstParam = false; } } if (Base->isVirtual()) { // Add this base if it's not already in the list. if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second) VBases.push_back(Base); // C++0x [meta.unary.prop] is_empty: // T is a class type, but not a union type, with ... no virtual base // classes data().Empty = false; // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: // A [default constructor, copy/move constructor, or copy/move assignment // operator for a class X] is trivial [...] if: // -- class X has [...] no virtual base classes data().HasTrivialSpecialMembers &= SMF_Destructor; // C++0x [class]p7: // A standard-layout class is a class that: [...] // -- has [...] no virtual base classes data().IsStandardLayout = false; // C++11 [dcl.constexpr]p4: // In the definition of a constexpr constructor [...] // -- the class shall not have any virtual base classes data().DefaultedDefaultConstructorIsConstexpr = false; } else { // C++ [class.ctor]p5: // A default constructor is trivial [...] if: // -- all the direct base classes of its class have trivial default // constructors. if (!BaseClassDecl->hasTrivialDefaultConstructor()) data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; // C++0x [class.copy]p13: // A copy/move constructor for class X is trivial if [...] // [...] // -- the constructor selected to copy/move each direct base class // subobject is trivial, and if (!BaseClassDecl->hasTrivialCopyConstructor()) data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; // If the base class doesn't have a simple move constructor, we'll eagerly // declare it and perform overload resolution to determine which function // it actually calls. If it does have a simple move constructor, this // check is correct. if (!BaseClassDecl->hasTrivialMoveConstructor()) data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; // C++0x [class.copy]p27: // A copy/move assignment operator for class X is trivial if [...] // [...] // -- the assignment operator selected to copy/move each direct base // class subobject is trivial, and if (!BaseClassDecl->hasTrivialCopyAssignment()) data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; // If the base class doesn't have a simple move assignment, we'll eagerly // declare it and perform overload resolution to determine which function // it actually calls. If it does have a simple move assignment, this // check is correct. if (!BaseClassDecl->hasTrivialMoveAssignment()) data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; // C++11 [class.ctor]p6: // If that user-written default constructor would satisfy the // requirements of a constexpr constructor, the implicitly-defined // default constructor is constexpr. if (!BaseClassDecl->hasConstexprDefaultConstructor()) data().DefaultedDefaultConstructorIsConstexpr = false; } // C++ [class.ctor]p3: // A destructor is trivial if all the direct base classes of its class // have trivial destructors. if (!BaseClassDecl->hasTrivialDestructor()) data().HasTrivialSpecialMembers &= ~SMF_Destructor; if (!BaseClassDecl->hasIrrelevantDestructor()) data().HasIrrelevantDestructor = false; // C++11 [class.copy]p18: // The implicitly-declared copy assignment oeprator for a class X will // have the form 'X& X::operator=(const X&)' if each direct base class B // of X has a copy assignment operator whose parameter is of type 'const // B&', 'const volatile B&', or 'B' [...] if (!BaseClassDecl->hasCopyAssignmentWithConstParam()) data().ImplicitCopyAssignmentHasConstParam = false; // C++11 [class.copy]p8: // The implicitly-declared copy constructor for a class X will have // the form 'X::X(const X&)' if each direct [...] base class B of X // has a copy constructor whose first parameter is of type // 'const B&' or 'const volatile B&' [...] if (!BaseClassDecl->hasCopyConstructorWithConstParam()) data().ImplicitCopyConstructorHasConstParam = false; // A class has an Objective-C object member if... or any of its bases // has an Objective-C object member. if (BaseClassDecl->hasObjectMember()) setHasObjectMember(true); if (BaseClassDecl->hasVolatileMember()) setHasVolatileMember(true); // Keep track of the presence of mutable fields. if (BaseClassDecl->hasMutableFields()) data().HasMutableFields = true; if (BaseClassDecl->hasUninitializedReferenceMember()) data().HasUninitializedReferenceMember = true; addedClassSubobject(BaseClassDecl); } if (VBases.empty()) { data().IsParsingBaseSpecifiers = false; return; } // Create base specifier for any direct or indirect virtual bases. data().VBases = new (C) CXXBaseSpecifier[VBases.size()]; data().NumVBases = VBases.size(); for (int I = 0, E = VBases.size(); I != E; ++I) { QualType Type = VBases[I]->getType(); if (!Type->isDependentType()) addedClassSubobject(Type->getAsCXXRecordDecl()); data().getVBases()[I] = *VBases[I]; } data().IsParsingBaseSpecifiers = false; } void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) { // C++11 [class.copy]p11: // A defaulted copy/move constructor for a class X is defined as // deleted if X has: // -- a direct or virtual base class B that cannot be copied/moved [...] // -- a non-static data member of class type M (or array thereof) // that cannot be copied or moved [...] if (!Subobj->hasSimpleMoveConstructor()) data().NeedOverloadResolutionForMoveConstructor = true; // C++11 [class.copy]p23: // A defaulted copy/move assignment operator for a class X is defined as // deleted if X has: // -- a direct or virtual base class B that cannot be copied/moved [...] // -- a non-static data member of class type M (or array thereof) // that cannot be copied or moved [...] if (!Subobj->hasSimpleMoveAssignment()) data().NeedOverloadResolutionForMoveAssignment = true; // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5: // A defaulted [ctor or dtor] for a class X is defined as // deleted if X has: // -- any direct or virtual base class [...] has a type with a destructor // that is deleted or inaccessible from the defaulted [ctor or dtor]. // -- any non-static data member has a type with a destructor // that is deleted or inaccessible from the defaulted [ctor or dtor]. if (!Subobj->hasSimpleDestructor()) { data().NeedOverloadResolutionForMoveConstructor = true; data().NeedOverloadResolutionForDestructor = true; } } /// Callback function for CXXRecordDecl::forallBases that acknowledges /// that it saw a base class. static bool SawBase(const CXXRecordDecl *, void *) { return true; } bool CXXRecordDecl::hasAnyDependentBases() const { if (!isDependentContext()) return false; return !forallBases(SawBase, nullptr); } bool CXXRecordDecl::isTriviallyCopyable() const { // C++0x [class]p5: // A trivially copyable class is a class that: // -- has no non-trivial copy constructors, if (hasNonTrivialCopyConstructor()) return false; // -- has no non-trivial move constructors, if (hasNonTrivialMoveConstructor()) return false; // -- has no non-trivial copy assignment operators, if (hasNonTrivialCopyAssignment()) return false; // -- has no non-trivial move assignment operators, and if (hasNonTrivialMoveAssignment()) return false; // -- has a trivial destructor. if (!hasTrivialDestructor()) return false; return true; } void CXXRecordDecl::markedVirtualFunctionPure() { // C++ [class.abstract]p2: // A class is abstract if it has at least one pure virtual function. data().Abstract = true; } void CXXRecordDecl::addedMember(Decl *D) { if (!D->isImplicit() && !isa<FieldDecl>(D) && !isa<IndirectFieldDecl>(D) && (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class || cast<TagDecl>(D)->getTagKind() == TTK_Interface)) data().HasOnlyCMembers = false; // Ignore friends and invalid declarations. if (D->getFriendObjectKind() || D->isInvalidDecl()) return; FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); if (FunTmpl) D = FunTmpl->getTemplatedDecl(); if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { if (Method->isVirtual()) { // C++ [dcl.init.aggr]p1: // An aggregate is an array or a class with [...] no virtual functions. data().Aggregate = false; // C++ [class]p4: // A POD-struct is an aggregate class... data().PlainOldData = false; // Virtual functions make the class non-empty. // FIXME: Standard ref? data().Empty = false; // C++ [class.virtual]p1: // A class that declares or inherits a virtual function is called a // polymorphic class. data().Polymorphic = true; // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: // A [default constructor, copy/move constructor, or copy/move // assignment operator for a class X] is trivial [...] if: // -- class X has no virtual functions [...] data().HasTrivialSpecialMembers &= SMF_Destructor; // C++0x [class]p7: // A standard-layout class is a class that: [...] // -- has no virtual functions data().IsStandardLayout = false; } } // Notify the listener if an implicit member was added after the definition // was completed. if (!isBeingDefined() && D->isImplicit()) if (ASTMutationListener *L = getASTMutationListener()) L->AddedCXXImplicitMember(data().Definition, D); // The kind of special member this declaration is, if any. unsigned SMKind = 0; // Handle constructors. if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { if (!Constructor->isImplicit()) { // Note that we have a user-declared constructor. data().UserDeclaredConstructor = true; // C++ [class]p4: // A POD-struct is an aggregate class [...] // Since the POD bit is meant to be C++03 POD-ness, clear it even if the // type is technically an aggregate in C++0x since it wouldn't be in 03. data().PlainOldData = false; } // Technically, "user-provided" is only defined for special member // functions, but the intent of the standard is clearly that it should apply // to all functions. bool UserProvided = Constructor->isUserProvided(); if (Constructor->isDefaultConstructor()) { SMKind |= SMF_DefaultConstructor; if (UserProvided) data().UserProvidedDefaultConstructor = true; if (Constructor->isConstexpr()) data().HasConstexprDefaultConstructor = true; } if (!FunTmpl) { unsigned Quals; if (Constructor->isCopyConstructor(Quals)) { SMKind |= SMF_CopyConstructor; if (Quals & Qualifiers::Const) data().HasDeclaredCopyConstructorWithConstParam = true; } else if (Constructor->isMoveConstructor()) SMKind |= SMF_MoveConstructor; } // Record if we see any constexpr constructors which are neither copy // nor move constructors. if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor()) data().HasConstexprNonCopyMoveConstructor = true; // C++ [dcl.init.aggr]p1: // An aggregate is an array or a class with no user-declared // constructors [...]. // C++11 [dcl.init.aggr]p1: // An aggregate is an array or a class with no user-provided // constructors [...]. if (getASTContext().getLangOpts().CPlusPlus11 ? UserProvided : !Constructor->isImplicit()) data().Aggregate = false; } // Handle destructors. if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) { SMKind |= SMF_Destructor; if (DD->isUserProvided()) data().HasIrrelevantDestructor = false; // If the destructor is explicitly defaulted and not trivial or not public // or if the destructor is deleted, we clear HasIrrelevantDestructor in // finishedDefaultedOrDeletedMember. // C++11 [class.dtor]p5: // A destructor is trivial if [...] the destructor is not virtual. if (DD->isVirtual()) data().HasTrivialSpecialMembers &= ~SMF_Destructor; } // Handle member functions. if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { if (Method->isCopyAssignmentOperator()) { SMKind |= SMF_CopyAssignment; const ReferenceType *ParamTy = Method->getParamDecl(0)->getType()->getAs<ReferenceType>(); if (!ParamTy || ParamTy->getPointeeType().isConstQualified()) data().HasDeclaredCopyAssignmentWithConstParam = true; } if (Method->isMoveAssignmentOperator()) SMKind |= SMF_MoveAssignment; // Keep the list of conversion functions up-to-date. if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) { // FIXME: We use the 'unsafe' accessor for the access specifier here, // because Sema may not have set it yet. That's really just a misdesign // in Sema. However, LLDB *will* have set the access specifier correctly, // and adds declarations after the class is technically completed, // so completeDefinition()'s overriding of the access specifiers doesn't // work. AccessSpecifier AS = Conversion->getAccessUnsafe(); if (Conversion->getPrimaryTemplate()) { // We don't record specializations. } else { ASTContext &Ctx = getASTContext(); ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx); NamedDecl *Primary = FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion); if (Primary->getPreviousDecl()) Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()), Primary, AS); else Conversions.addDecl(Ctx, Primary, AS); } } if (SMKind) { // If this is the first declaration of a special member, we no longer have // an implicit trivial special member. data().HasTrivialSpecialMembers &= data().DeclaredSpecialMembers | ~SMKind; if (!Method->isImplicit() && !Method->isUserProvided()) { // This method is user-declared but not user-provided. We can't work out // whether it's trivial yet (not until we get to the end of the class). // We'll handle this method in finishedDefaultedOrDeletedMember. } else if (Method->isTrivial()) data().HasTrivialSpecialMembers |= SMKind; else data().DeclaredNonTrivialSpecialMembers |= SMKind; // Note when we have declared a declared special member, and suppress the // implicit declaration of this special member. data().DeclaredSpecialMembers |= SMKind; if (!Method->isImplicit()) { data().UserDeclaredSpecialMembers |= SMKind; // C++03 [class]p4: // A POD-struct is an aggregate class that has [...] no user-defined // copy assignment operator and no user-defined destructor. // // Since the POD bit is meant to be C++03 POD-ness, and in C++03, // aggregates could not have any constructors, clear it even for an // explicitly defaulted or deleted constructor. // type is technically an aggregate in C++0x since it wouldn't be in 03. // // Also, a user-declared move assignment operator makes a class non-POD. // This is an extension in C++03. data().PlainOldData = false; } } return; } // Handle non-static data members. if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) { // C++ [class.bit]p2: // A declaration for a bit-field that omits the identifier declares an // unnamed bit-field. Unnamed bit-fields are not members and cannot be // initialized. if (Field->isUnnamedBitfield()) return; // C++ [dcl.init.aggr]p1: // An aggregate is an array or a class (clause 9) with [...] no // private or protected non-static data members (clause 11). // // A POD must be an aggregate. if (D->getAccess() == AS_private || D->getAccess() == AS_protected) { data().Aggregate = false; data().PlainOldData = false; } // C++0x [class]p7: // A standard-layout class is a class that: // [...] // -- has the same access control for all non-static data members, switch (D->getAccess()) { case AS_private: data().HasPrivateFields = true; break; case AS_protected: data().HasProtectedFields = true; break; case AS_public: data().HasPublicFields = true; break; case AS_none: llvm_unreachable("Invalid access specifier"); }; if ((data().HasPrivateFields + data().HasProtectedFields + data().HasPublicFields) > 1) data().IsStandardLayout = false; // Keep track of the presence of mutable fields. if (Field->isMutable()) data().HasMutableFields = true; // C++11 [class.union]p8, DR1460: // If X is a union, a non-static data member of X that is not an anonymous // union is a variant member of X. if (isUnion() && !Field->isAnonymousStructOrUnion()) data().HasVariantMembers = true; // C++0x [class]p9: // A POD struct is a class that is both a trivial class and a // standard-layout class, and has no non-static data members of type // non-POD struct, non-POD union (or array of such types). // // Automatic Reference Counting: the presence of a member of Objective-C pointer type // that does not explicitly have no lifetime makes the class a non-POD. ASTContext &Context = getASTContext(); QualType T = Context.getBaseElementType(Field->getType()); if (T->isObjCRetainableType() || T.isObjCGCStrong()) { if (!Context.getLangOpts().ObjCAutoRefCount) { setHasObjectMember(true); } else if (T.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) { // Objective-C Automatic Reference Counting: // If a class has a non-static data member of Objective-C pointer // type (or array thereof), it is a non-POD type and its // default constructor (if any), copy constructor, move constructor, // copy assignment operator, move assignment operator, and destructor are // non-trivial. setHasObjectMember(true); struct DefinitionData &Data = data(); Data.PlainOldData = false; Data.HasTrivialSpecialMembers = 0; Data.HasIrrelevantDestructor = false; } } else if (!T.isCXX98PODType(Context)) data().PlainOldData = false; if (T->isReferenceType()) { if (!Field->hasInClassInitializer()) data().HasUninitializedReferenceMember = true; // C++0x [class]p7: // A standard-layout class is a class that: // -- has no non-static data members of type [...] reference, data().IsStandardLayout = false; } // Record if this field is the first non-literal or volatile field or base. if (!T->isLiteralType(Context) || T.isVolatileQualified()) data().HasNonLiteralTypeFieldsOrBases = true; if (Field->hasInClassInitializer() || (Field->isAnonymousStructOrUnion() && Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) { data().HasInClassInitializer = true; // C++11 [class]p5: // A default constructor is trivial if [...] no non-static data member // of its class has a brace-or-equal-initializer. data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; // C++11 [dcl.init.aggr]p1: // An aggregate is a [...] class with [...] no // brace-or-equal-initializers for non-static data members. // // This rule was removed in C++1y. if (!getASTContext().getLangOpts().CPlusPlus14) data().Aggregate = false; // C++11 [class]p10: // A POD struct is [...] a trivial class. data().PlainOldData = false; } // C++11 [class.copy]p23: // A defaulted copy/move assignment operator for a class X is defined // as deleted if X has: // -- a non-static data member of reference type if (T->isReferenceType()) data().DefaultedMoveAssignmentIsDeleted = true; if (const RecordType *RecordTy = T->getAs<RecordType>()) { CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl()); if (FieldRec->getDefinition()) { addedClassSubobject(FieldRec); // We may need to perform overload resolution to determine whether a // field can be moved if it's const or volatile qualified. if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) { data().NeedOverloadResolutionForMoveConstructor = true; data().NeedOverloadResolutionForMoveAssignment = true; } // C++11 [class.ctor]p5, C++11 [class.copy]p11: // A defaulted [special member] for a class X is defined as // deleted if: // -- X is a union-like class that has a variant member with a // non-trivial [corresponding special member] if (isUnion()) { if (FieldRec->hasNonTrivialMoveConstructor()) data().DefaultedMoveConstructorIsDeleted = true; if (FieldRec->hasNonTrivialMoveAssignment()) data().DefaultedMoveAssignmentIsDeleted = true; if (FieldRec->hasNonTrivialDestructor()) data().DefaultedDestructorIsDeleted = true; } // C++0x [class.ctor]p5: // A default constructor is trivial [...] if: // -- for all the non-static data members of its class that are of // class type (or array thereof), each such class has a trivial // default constructor. if (!FieldRec->hasTrivialDefaultConstructor()) data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; // C++0x [class.copy]p13: // A copy/move constructor for class X is trivial if [...] // [...] // -- for each non-static data member of X that is of class type (or // an array thereof), the constructor selected to copy/move that // member is trivial; if (!FieldRec->hasTrivialCopyConstructor()) data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; // If the field doesn't have a simple move constructor, we'll eagerly // declare the move constructor for this class and we'll decide whether // it's trivial then. if (!FieldRec->hasTrivialMoveConstructor()) data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; // C++0x [class.copy]p27: // A copy/move assignment operator for class X is trivial if [...] // [...] // -- for each non-static data member of X that is of class type (or // an array thereof), the assignment operator selected to // copy/move that member is trivial; if (!FieldRec->hasTrivialCopyAssignment()) data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; // If the field doesn't have a simple move assignment, we'll eagerly // declare the move assignment for this class and we'll decide whether // it's trivial then. if (!FieldRec->hasTrivialMoveAssignment()) data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; if (!FieldRec->hasTrivialDestructor()) data().HasTrivialSpecialMembers &= ~SMF_Destructor; if (!FieldRec->hasIrrelevantDestructor()) data().HasIrrelevantDestructor = false; if (FieldRec->hasObjectMember()) setHasObjectMember(true); if (FieldRec->hasVolatileMember()) setHasVolatileMember(true); // C++0x [class]p7: // A standard-layout class is a class that: // -- has no non-static data members of type non-standard-layout // class (or array of such types) [...] if (!FieldRec->isStandardLayout()) data().IsStandardLayout = false; // C++0x [class]p7: // A standard-layout class is a class that: // [...] // -- has no base classes of the same type as the first non-static // data member. // We don't want to expend bits in the state of the record decl // tracking whether this is the first non-static data member so we // cheat a bit and use some of the existing state: the empty bit. // Virtual bases and virtual methods make a class non-empty, but they // also make it non-standard-layout so we needn't check here. // A non-empty base class may leave the class standard-layout, but not // if we have arrived here, and have at least one non-static data // member. If IsStandardLayout remains true, then the first non-static // data member must come through here with Empty still true, and Empty // will subsequently be set to false below. if (data().IsStandardLayout && data().Empty) { for (const auto &BI : bases()) { if (Context.hasSameUnqualifiedType(BI.getType(), T)) { data().IsStandardLayout = false; break; } } } // Keep track of the presence of mutable fields. if (FieldRec->hasMutableFields()) data().HasMutableFields = true; // C++11 [class.copy]p13: // If the implicitly-defined constructor would satisfy the // requirements of a constexpr constructor, the implicitly-defined // constructor is constexpr. // C++11 [dcl.constexpr]p4: // -- every constructor involved in initializing non-static data // members [...] shall be a constexpr constructor if (!Field->hasInClassInitializer() && !FieldRec->hasConstexprDefaultConstructor() && !isUnion()) // The standard requires any in-class initializer to be a constant // expression. We consider this to be a defect. data().DefaultedDefaultConstructorIsConstexpr = false; // C++11 [class.copy]p8: // The implicitly-declared copy constructor for a class X will have // the form 'X::X(const X&)' if [...] for all the non-static data // members of X that are of a class type M (or array thereof), each // such class type has a copy constructor whose first parameter is // of type 'const M&' or 'const volatile M&'. if (!FieldRec->hasCopyConstructorWithConstParam()) data().ImplicitCopyConstructorHasConstParam = false; // C++11 [class.copy]p18: // The implicitly-declared copy assignment oeprator for a class X will // have the form 'X& X::operator=(const X&)' if [...] for all the // non-static data members of X that are of a class type M (or array // thereof), each such class type has a copy assignment operator whose // parameter is of type 'const M&', 'const volatile M&' or 'M'. if (!FieldRec->hasCopyAssignmentWithConstParam()) data().ImplicitCopyAssignmentHasConstParam = false; if (FieldRec->hasUninitializedReferenceMember() && !Field->hasInClassInitializer()) data().HasUninitializedReferenceMember = true; // C++11 [class.union]p8, DR1460: // a non-static data member of an anonymous union that is a member of // X is also a variant member of X. if (FieldRec->hasVariantMembers() && Field->isAnonymousStructOrUnion()) data().HasVariantMembers = true; } } else { // Base element type of field is a non-class type. if (!T->isLiteralType(Context) || (!Field->hasInClassInitializer() && !isUnion())) data().DefaultedDefaultConstructorIsConstexpr = false; // C++11 [class.copy]p23: // A defaulted copy/move assignment operator for a class X is defined // as deleted if X has: // -- a non-static data member of const non-class type (or array // thereof) if (T.isConstQualified()) data().DefaultedMoveAssignmentIsDeleted = true; } // C++0x [class]p7: // A standard-layout class is a class that: // [...] // -- either has no non-static data members in the most derived // class and at most one base class with non-static data members, // or has no base classes with non-static data members, and // At this point we know that we have a non-static data member, so the last // clause holds. if (!data().HasNoNonEmptyBases) data().IsStandardLayout = false; // If this is not a zero-length bit-field, then the class is not empty. if (data().Empty) { if (!Field->isBitField() || (!Field->getBitWidth()->isTypeDependent() && !Field->getBitWidth()->isValueDependent() && Field->getBitWidthValue(Context) != 0)) data().Empty = false; } } // Handle using declarations of conversion functions. if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D)) { if (Shadow->getDeclName().getNameKind() == DeclarationName::CXXConversionFunctionName) { ASTContext &Ctx = getASTContext(); data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess()); } } } void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) { assert(!D->isImplicit() && !D->isUserProvided()); // The kind of special member this declaration is, if any. unsigned SMKind = 0; if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { if (Constructor->isDefaultConstructor()) { SMKind |= SMF_DefaultConstructor; if (Constructor->isConstexpr()) data().HasConstexprDefaultConstructor = true; } if (Constructor->isCopyConstructor()) SMKind |= SMF_CopyConstructor; else if (Constructor->isMoveConstructor()) SMKind |= SMF_MoveConstructor; else if (Constructor->isConstexpr()) // We may now know that the constructor is constexpr. data().HasConstexprNonCopyMoveConstructor = true; } else if (isa<CXXDestructorDecl>(D)) { SMKind |= SMF_Destructor; if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted()) data().HasIrrelevantDestructor = false; } else if (D->isCopyAssignmentOperator()) SMKind |= SMF_CopyAssignment; else if (D->isMoveAssignmentOperator()) SMKind |= SMF_MoveAssignment; // Update which trivial / non-trivial special members we have. // addedMember will have skipped this step for this member. if (D->isTrivial()) data().HasTrivialSpecialMembers |= SMKind; else data().DeclaredNonTrivialSpecialMembers |= SMKind; } bool CXXRecordDecl::isCLike() const { if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface || !TemplateOrInstantiation.isNull()) return false; if (!hasDefinition()) return true; return isPOD() && data().HasOnlyCMembers; } bool CXXRecordDecl::isGenericLambda() const { if (!isLambda()) return false; return getLambdaData().IsGenericLambda; } CXXMethodDecl* CXXRecordDecl::getLambdaCallOperator() const { if (!isLambda()) return nullptr; DeclarationName Name = getASTContext().DeclarationNames.getCXXOperatorName(OO_Call); DeclContext::lookup_result Calls = lookup(Name); assert(!Calls.empty() && "Missing lambda call operator!"); assert(Calls.size() == 1 && "More than one lambda call operator!"); NamedDecl *CallOp = Calls.front(); if (FunctionTemplateDecl *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(CallOp)) return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl()); return cast<CXXMethodDecl>(CallOp); } CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const { if (!isLambda()) return nullptr; DeclarationName Name = &getASTContext().Idents.get(getLambdaStaticInvokerName()); DeclContext::lookup_result Invoker = lookup(Name); if (Invoker.empty()) return nullptr; assert(Invoker.size() == 1 && "More than one static invoker operator!"); NamedDecl *InvokerFun = Invoker.front(); if (FunctionTemplateDecl *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(InvokerFun)) return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl()); return cast<CXXMethodDecl>(InvokerFun); } void CXXRecordDecl::getCaptureFields( llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures, FieldDecl *&ThisCapture) const { Captures.clear(); ThisCapture = nullptr; LambdaDefinitionData &Lambda = getLambdaData(); RecordDecl::field_iterator Field = field_begin(); for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures; C != CEnd; ++C, ++Field) { if (C->capturesThis()) ThisCapture = *Field; else if (C->capturesVariable()) Captures[C->getCapturedVar()] = *Field; } assert(Field == field_end()); } TemplateParameterList * CXXRecordDecl::getGenericLambdaTemplateParameterList() const { if (!isLambda()) return nullptr; CXXMethodDecl *CallOp = getLambdaCallOperator(); if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate()) return Tmpl->getTemplateParameters(); return nullptr; } static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) { QualType T = cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction()) ->getConversionType(); return Context.getCanonicalType(T); } /// Collect the visible conversions of a base class. /// /// \param Record a base class of the class we're considering /// \param InVirtual whether this base class is a virtual base (or a base /// of a virtual base) /// \param Access the access along the inheritance path to this base /// \param ParentHiddenTypes the conversions provided by the inheritors /// of this base /// \param Output the set to which to add conversions from non-virtual bases /// \param VOutput the set to which to add conversions from virtual bases /// \param HiddenVBaseCs the set of conversions which were hidden in a /// virtual base along some inheritance path static void CollectVisibleConversions(ASTContext &Context, CXXRecordDecl *Record, bool InVirtual, AccessSpecifier Access, const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes, ASTUnresolvedSet &Output, UnresolvedSetImpl &VOutput, llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) { // The set of types which have conversions in this class or its // subclasses. As an optimization, we don't copy the derived set // unless it might change. const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes; llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer; // Collect the direct conversions and figure out which conversions // will be hidden in the subclasses. CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); if (ConvI != ConvE) { HiddenTypesBuffer = ParentHiddenTypes; HiddenTypes = &HiddenTypesBuffer; for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) { CanQualType ConvType(GetConversionType(Context, I.getDecl())); bool Hidden = ParentHiddenTypes.count(ConvType); if (!Hidden) HiddenTypesBuffer.insert(ConvType); // If this conversion is hidden and we're in a virtual base, // remember that it's hidden along some inheritance path. if (Hidden && InVirtual) HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())); // If this conversion isn't hidden, add it to the appropriate output. else if (!Hidden) { AccessSpecifier IAccess = CXXRecordDecl::MergeAccess(Access, I.getAccess()); if (InVirtual) VOutput.addDecl(I.getDecl(), IAccess); else Output.addDecl(Context, I.getDecl(), IAccess); } } } // Collect information recursively from any base classes. for (const auto &I : Record->bases()) { const RecordType *RT = I.getType()->getAs<RecordType>(); if (!RT) continue; AccessSpecifier BaseAccess = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier()); bool BaseInVirtual = InVirtual || I.isVirtual(); CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl()); CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess, *HiddenTypes, Output, VOutput, HiddenVBaseCs); } } /// Collect the visible conversions of a class. /// /// This would be extremely straightforward if it weren't for virtual /// bases. It might be worth special-casing that, really. static void CollectVisibleConversions(ASTContext &Context, CXXRecordDecl *Record, ASTUnresolvedSet &Output) { // The collection of all conversions in virtual bases that we've // found. These will be added to the output as long as they don't // appear in the hidden-conversions set. UnresolvedSet<8> VBaseCs; // The set of conversions in virtual bases that we've determined to // be hidden. llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs; // The set of types hidden by classes derived from this one. llvm::SmallPtrSet<CanQualType, 8> HiddenTypes; // Go ahead and collect the direct conversions and add them to the // hidden-types set. CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); Output.append(Context, ConvI, ConvE); for (; ConvI != ConvE; ++ConvI) HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl())); // Recursively collect conversions from base classes. for (const auto &I : Record->bases()) { const RecordType *RT = I.getType()->getAs<RecordType>(); if (!RT) continue; CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()), I.isVirtual(), I.getAccessSpecifier(), HiddenTypes, Output, VBaseCs, HiddenVBaseCs); } // Add any unhidden conversions provided by virtual bases. for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end(); I != E; ++I) { if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()))) Output.addDecl(Context, I.getDecl(), I.getAccess()); } } /// getVisibleConversionFunctions - get all conversion functions visible /// in current class; including conversion function templates. llvm::iterator_range<CXXRecordDecl::conversion_iterator> CXXRecordDecl::getVisibleConversionFunctions() { ASTContext &Ctx = getASTContext(); ASTUnresolvedSet *Set; if (bases_begin() == bases_end()) { // If root class, all conversions are visible. Set = &data().Conversions.get(Ctx); } else { Set = &data().VisibleConversions.get(Ctx); // If visible conversion list is not evaluated, evaluate it. if (!data().ComputedVisibleConversions) { CollectVisibleConversions(Ctx, this, *Set); data().ComputedVisibleConversions = true; } } return llvm::make_range(Set->begin(), Set->end()); } void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) { // This operation is O(N) but extremely rare. Sema only uses it to // remove UsingShadowDecls in a class that were followed by a direct // declaration, e.g.: // class A : B { // using B::operator int; // operator int(); // }; // This is uncommon by itself and even more uncommon in conjunction // with sufficiently large numbers of directly-declared conversions // that asymptotic behavior matters. ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext()); for (unsigned I = 0, E = Convs.size(); I != E; ++I) { if (Convs[I].getDecl() == ConvDecl) { Convs.erase(I); assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end() && "conversion was found multiple times in unresolved set"); return; } } llvm_unreachable("conversion not found in set!"); } CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const { if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom()); return nullptr; } void CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD, TemplateSpecializationKind TSK) { assert(TemplateOrInstantiation.isNull() && "Previous template or instantiation?"); assert(!isa<ClassTemplatePartialSpecializationDecl>(this)); TemplateOrInstantiation = new (getASTContext()) MemberSpecializationInfo(RD, TSK); } TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{ if (const ClassTemplateSpecializationDecl *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) return Spec->getSpecializationKind(); if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) return MSInfo->getTemplateSpecializationKind(); return TSK_Undeclared; } void CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) { if (ClassTemplateSpecializationDecl *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) { Spec->setSpecializationKind(TSK); return; } if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { MSInfo->setTemplateSpecializationKind(TSK); return; } llvm_unreachable("Not a class template or member class specialization"); } const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const { // If it's a class template specialization, find the template or partial // specialization from which it was instantiated. if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) { auto From = TD->getInstantiatedFrom(); if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) { while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) { if (NewCTD->isMemberSpecialization()) break; CTD = NewCTD; } return CTD->getTemplatedDecl(); } if (auto *CTPSD = From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) { if (NewCTPSD->isMemberSpecialization()) break; CTPSD = NewCTPSD; } return CTPSD; } } if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { const CXXRecordDecl *RD = this; while (auto *NewRD = RD->getInstantiatedFromMemberClass()) RD = NewRD; return RD; } } assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) && "couldn't find pattern for class template instantiation"); return nullptr; } CXXDestructorDecl *CXXRecordDecl::getDestructor() const { ASTContext &Context = getASTContext(); QualType ClassType = Context.getTypeDeclType(this); DeclarationName Name = Context.DeclarationNames.getCXXDestructorName( Context.getCanonicalType(ClassType)); DeclContext::lookup_result R = lookup(Name); if (R.empty()) return nullptr; CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(R.front()); return Dtor; } void CXXRecordDecl::completeDefinition() { completeDefinition(nullptr); } void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) { RecordDecl::completeDefinition(); // If the class may be abstract (but hasn't been marked as such), check for // any pure final overriders. if (mayBeAbstract()) { CXXFinalOverriderMap MyFinalOverriders; if (!FinalOverriders) { getFinalOverriders(MyFinalOverriders); FinalOverriders = &MyFinalOverriders; } bool Done = false; for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(), MEnd = FinalOverriders->end(); M != MEnd && !Done; ++M) { for (OverridingMethods::iterator SO = M->second.begin(), SOEnd = M->second.end(); SO != SOEnd && !Done; ++SO) { assert(SO->second.size() > 0 && "All virtual functions have overridding virtual functions"); // C++ [class.abstract]p4: // A class is abstract if it contains or inherits at least one // pure virtual function for which the final overrider is pure // virtual. if (SO->second.front().Method->isPure()) { data().Abstract = true; Done = true; break; } } } } // Set access bits correctly on the directly-declared conversions. for (conversion_iterator I = conversion_begin(), E = conversion_end(); I != E; ++I) I.setAccess((*I)->getAccess()); } bool CXXRecordDecl::mayBeAbstract() const { if (data().Abstract || isInvalidDecl() || !data().Polymorphic || isDependentContext()) return false; for (const auto &B : bases()) { CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(B.getType()->getAs<RecordType>()->getDecl()); if (BaseDecl->isAbstract()) return true; } return false; } void CXXMethodDecl::anchor() { } bool CXXMethodDecl::isStatic() const { const CXXMethodDecl *MD = getCanonicalDecl(); if (MD->getStorageClass() == SC_Static) return true; OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator(); return isStaticOverloadedOperator(OOK); } static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD, const CXXMethodDecl *BaseMD) { for (CXXMethodDecl::method_iterator I = DerivedMD->begin_overridden_methods(), E = DerivedMD->end_overridden_methods(); I != E; ++I) { const CXXMethodDecl *MD = *I; if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl()) return true; if (recursivelyOverrides(MD, BaseMD)) return true; } return false; } CXXMethodDecl * CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD, bool MayBeBase) { if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl()) return this; // Lookup doesn't work for destructors, so handle them separately. if (isa<CXXDestructorDecl>(this)) { CXXMethodDecl *MD = RD->getDestructor(); if (MD) { if (recursivelyOverrides(MD, this)) return MD; if (MayBeBase && recursivelyOverrides(this, MD)) return MD; } return nullptr; } for (auto *ND : RD->lookup(getDeclName())) { CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND); if (!MD) continue; if (recursivelyOverrides(MD, this)) return MD; if (MayBeBase && recursivelyOverrides(this, MD)) return MD; } for (const auto &I : RD->bases()) { const RecordType *RT = I.getType()->getAs<RecordType>(); if (!RT) continue; const CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl()); CXXMethodDecl *T = this->getCorrespondingMethodInClass(Base); if (T) return T; } return nullptr; } CXXMethodDecl * CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInline, bool isConstexpr, SourceLocation EndLocation) { return new (C, RD) CXXMethodDecl(CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC, isInline, isConstexpr, EndLocation); } CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) CXXMethodDecl(CXXMethod, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, SC_None, false, false, SourceLocation()); } bool CXXMethodDecl::isUsualDeallocationFunction() const { if (getOverloadedOperator() != OO_Delete && getOverloadedOperator() != OO_Array_Delete) return false; // C++ [basic.stc.dynamic.deallocation]p2: // A template instance is never a usual deallocation function, // regardless of its signature. if (getPrimaryTemplate()) return false; // C++ [basic.stc.dynamic.deallocation]p2: // If a class T has a member deallocation function named operator delete // with exactly one parameter, then that function is a usual (non-placement) // deallocation function. [...] if (getNumParams() == 1) return true; // C++ [basic.stc.dynamic.deallocation]p2: // [...] If class T does not declare such an operator delete but does // declare a member deallocation function named operator delete with // exactly two parameters, the second of which has type std::size_t (18.1), // then this function is a usual deallocation function. ASTContext &Context = getASTContext(); if (getNumParams() != 2 || !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(), Context.getSizeType())) return false; // This function is a usual deallocation function if there are no // single-parameter deallocation functions of the same kind. DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName()); for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end(); I != E; ++I) { if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) if (FD->getNumParams() == 1) return false; } return true; } bool CXXMethodDecl::isCopyAssignmentOperator() const { // C++0x [class.copy]p17: // A user-declared copy assignment operator X::operator= is a non-static // non-template member function of class X with exactly one parameter of // type X, X&, const X&, volatile X& or const volatile X&. if (/*operator=*/getOverloadedOperator() != OO_Equal || /*non-static*/ isStatic() || /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() || getNumParams() != 1) return false; QualType ParamType = getParamDecl(0)->getType(); if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>()) ParamType = Ref->getPointeeType(); ASTContext &Context = getASTContext(); QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(getParent())); return Context.hasSameUnqualifiedType(ClassType, ParamType); } bool CXXMethodDecl::isMoveAssignmentOperator() const { // C++0x [class.copy]p19: // A user-declared move assignment operator X::operator= is a non-static // non-template member function of class X with exactly one parameter of type // X&&, const X&&, volatile X&&, or const volatile X&&. if (getOverloadedOperator() != OO_Equal || isStatic() || getPrimaryTemplate() || getDescribedFunctionTemplate() || getNumParams() != 1) return false; QualType ParamType = getParamDecl(0)->getType(); if (!isa<RValueReferenceType>(ParamType)) return false; ParamType = ParamType->getPointeeType(); ASTContext &Context = getASTContext(); QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(getParent())); return Context.hasSameUnqualifiedType(ClassType, ParamType); } void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) { assert(MD->isCanonicalDecl() && "Method is not canonical!"); assert(!MD->getParent()->isDependentContext() && "Can't add an overridden method to a class template!"); assert(MD->isVirtual() && "Method is not virtual!"); getASTContext().addOverriddenMethod(this, MD); } CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const { if (isa<CXXConstructorDecl>(this)) return nullptr; return getASTContext().overridden_methods_begin(this); } CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const { if (isa<CXXConstructorDecl>(this)) return nullptr; return getASTContext().overridden_methods_end(this); } unsigned CXXMethodDecl::size_overridden_methods() const { if (isa<CXXConstructorDecl>(this)) return 0; return getASTContext().overridden_methods_size(this); } QualType CXXMethodDecl::getThisType(ASTContext &C) const { // C++ 9.3.2p1: The type of this in a member function of a class X is X*. // If the member function is declared const, the type of this is const X*, // if the member function is declared volatile, the type of this is // volatile X*, and if the member function is declared const volatile, // the type of this is const volatile X*. assert(isInstance() && "No 'this' for static methods!"); QualType ClassTy = C.getTypeDeclType(getParent()); ClassTy = C.getQualifiedType(ClassTy, Qualifiers::fromCVRMask(getTypeQualifiers())); return C.getPointerType(ClassTy); } bool CXXMethodDecl::hasInlineBody() const { // If this function is a template instantiation, look at the template from // which it was instantiated. const FunctionDecl *CheckFn = getTemplateInstantiationPattern(); if (!CheckFn) CheckFn = this; const FunctionDecl *fn; return CheckFn->hasBody(fn) && !fn->isOutOfLine(); } bool CXXMethodDecl::isLambdaStaticInvoker() const { const CXXRecordDecl *P = getParent(); if (P->isLambda()) { if (const CXXMethodDecl *StaticInvoker = P->getLambdaStaticInvoker()) { if (StaticInvoker == this) return true; if (P->isGenericLambda() && this->isFunctionTemplateSpecialization()) return StaticInvoker == this->getPrimaryTemplate()->getTemplatedDecl(); } } return false; } CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual, SourceLocation L, Expr *Init, SourceLocation R, SourceLocation EllipsisLoc) : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init), LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual), IsWritten(false), SourceOrderOrNumArrayIndices(0) { } CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, FieldDecl *Member, SourceLocation MemberLoc, SourceLocation L, Expr *Init, SourceLocation R) : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), IsWritten(false), SourceOrderOrNumArrayIndices(0) { } CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member, SourceLocation MemberLoc, SourceLocation L, Expr *Init, SourceLocation R) : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), IsWritten(false), SourceOrderOrNumArrayIndices(0) { } CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, SourceLocation L, Expr *Init, SourceLocation R) : Initializee(TInfo), MemberOrEllipsisLocation(), Init(Init), LParenLoc(L), RParenLoc(R), IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrderOrNumArrayIndices(0) { } CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, FieldDecl *Member, SourceLocation MemberLoc, SourceLocation L, Expr *Init, SourceLocation R, VarDecl **Indices, unsigned NumIndices) : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices) { VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1); memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *)); } CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context, FieldDecl *Member, SourceLocation MemberLoc, SourceLocation L, Expr *Init, SourceLocation R, VarDecl **Indices, unsigned NumIndices) { void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) + sizeof(VarDecl *) * NumIndices, llvm::alignOf<CXXCtorInitializer>()); return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R, Indices, NumIndices); } TypeLoc CXXCtorInitializer::getBaseClassLoc() const { if (isBaseInitializer()) return Initializee.get<TypeSourceInfo*>()->getTypeLoc(); else return TypeLoc(); } const Type *CXXCtorInitializer::getBaseClass() const { if (isBaseInitializer()) return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr(); else return nullptr; } SourceLocation CXXCtorInitializer::getSourceLocation() const { if (isInClassMemberInitializer()) return getAnyMember()->getLocation(); if (isAnyMemberInitializer()) return getMemberLocation(); if (TypeSourceInfo *TSInfo = Initializee.get<TypeSourceInfo*>()) return TSInfo->getTypeLoc().getLocalSourceRange().getBegin(); return SourceLocation(); } SourceRange CXXCtorInitializer::getSourceRange() const { if (isInClassMemberInitializer()) { FieldDecl *D = getAnyMember(); if (Expr *I = D->getInClassInitializer()) return I->getSourceRange(); return SourceRange(); } return SourceRange(getSourceLocation(), getRParenLoc()); } void CXXConstructorDecl::anchor() { } CXXConstructorDecl * CXXConstructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) CXXConstructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, false, false, false, false); } CXXConstructorDecl * CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isExplicit, bool isInline, bool isImplicitlyDeclared, bool isConstexpr) { assert(NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName && "Name must refer to a constructor"); return new (C, RD) CXXConstructorDecl(C, RD, StartLoc, NameInfo, T, TInfo, isExplicit, isInline, isImplicitlyDeclared, isConstexpr); } CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const { return CtorInitializers.get(getASTContext().getExternalSource()); } CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const { assert(isDelegatingConstructor() && "Not a delegating constructor!"); Expr *E = (*init_begin())->getInit()->IgnoreImplicit(); if (CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(E)) return Construct->getConstructor(); return nullptr; } bool CXXConstructorDecl::isDefaultConstructor() const { // C++ [class.ctor]p5: // A default constructor for a class X is a constructor of class // X that can be called without an argument. return (getNumParams() == 0) || (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg()); } bool CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const { return isCopyOrMoveConstructor(TypeQuals) && getParamDecl(0)->getType()->isLValueReferenceType(); } bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const { return isCopyOrMoveConstructor(TypeQuals) && getParamDecl(0)->getType()->isRValueReferenceType(); } /// \brief Determine whether this is a copy or move constructor. bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const { // C++ [class.copy]p2: // A non-template constructor for class X is a copy constructor // if its first parameter is of type X&, const X&, volatile X& or // const volatile X&, and either there are no other parameters // or else all other parameters have default arguments (8.3.6). // C++0x [class.copy]p3: // A non-template constructor for class X is a move constructor if its // first parameter is of type X&&, const X&&, volatile X&&, or // const volatile X&&, and either there are no other parameters or else // all other parameters have default arguments. if ((getNumParams() < 1) || (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) || (getPrimaryTemplate() != nullptr) || (getDescribedFunctionTemplate() != nullptr)) return false; const ParmVarDecl *Param = getParamDecl(0); // Do we have a reference type? const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>(); if (!ParamRefType) return false; // Is it a reference to our class type? ASTContext &Context = getASTContext(); CanQualType PointeeType = Context.getCanonicalType(ParamRefType->getPointeeType()); CanQualType ClassTy = Context.getCanonicalType(Context.getTagDeclType(getParent())); if (PointeeType.getUnqualifiedType() != ClassTy) return false; // FIXME: other qualifiers? // We have a copy or move constructor. TypeQuals = PointeeType.getCVRQualifiers(); return true; } bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const { // C++ [class.conv.ctor]p1: // A constructor declared without the function-specifier explicit // that can be called with a single parameter specifies a // conversion from the type of its first parameter to the type of // its class. Such a constructor is called a converting // constructor. if (isExplicit() && !AllowExplicit) return false; return (getNumParams() == 0 && getType()->getAs<FunctionProtoType>()->isVariadic()) || (getNumParams() == 1) || (getNumParams() > 1 && (getParamDecl(1)->hasDefaultArg() || getParamDecl(1)->isParameterPack())); } bool CXXConstructorDecl::isSpecializationCopyingObject() const { if ((getNumParams() < 1) || (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) || (getDescribedFunctionTemplate() != nullptr)) return false; const ParmVarDecl *Param = getParamDecl(0); ASTContext &Context = getASTContext(); CanQualType ParamType = Context.getCanonicalType(Param->getType()); // Is it the same as our our class type? CanQualType ClassTy = Context.getCanonicalType(Context.getTagDeclType(getParent())); if (ParamType.getUnqualifiedType() != ClassTy) return false; return true; } const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const { // Hack: we store the inherited constructor in the overridden method table method_iterator It = getASTContext().overridden_methods_begin(this); if (It == getASTContext().overridden_methods_end(this)) return nullptr; return cast<CXXConstructorDecl>(*It); } void CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){ // Hack: we store the inherited constructor in the overridden method table assert(getASTContext().overridden_methods_size(this) == 0 && "Base ctor already set."); getASTContext().addOverriddenMethod(this, BaseCtor); } void CXXDestructorDecl::anchor() { } CXXDestructorDecl * CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) CXXDestructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, false, false); } CXXDestructorDecl * CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isInline, bool isImplicitlyDeclared) { assert(NameInfo.getName().getNameKind() == DeclarationName::CXXDestructorName && "Name must refer to a destructor"); return new (C, RD) CXXDestructorDecl(C, RD, StartLoc, NameInfo, T, TInfo, isInline, isImplicitlyDeclared); } void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD) { auto *First = cast<CXXDestructorDecl>(getFirstDecl()); if (OD && !First->OperatorDelete) { First->OperatorDelete = OD; if (auto *L = getASTMutationListener()) L->ResolvedOperatorDelete(First, OD); } } void CXXConversionDecl::anchor() { } CXXConversionDecl * CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) CXXConversionDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, false, false, false, SourceLocation()); } CXXConversionDecl * CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isInline, bool isExplicit, bool isConstexpr, SourceLocation EndLocation) { assert(NameInfo.getName().getNameKind() == DeclarationName::CXXConversionFunctionName && "Name must refer to a conversion function"); return new (C, RD) CXXConversionDecl(C, RD, StartLoc, NameInfo, T, TInfo, isInline, isExplicit, isConstexpr, EndLocation); } bool CXXConversionDecl::isLambdaToBlockPointerConversion() const { return isImplicit() && getParent()->isLambda() && getConversionType()->isBlockPointerType(); } void LinkageSpecDecl::anchor() { } LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation ExternLoc, SourceLocation LangLoc, LanguageIDs Lang, bool HasBraces) { return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces); } LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(), SourceLocation(), lang_c, false); } void UsingDirectiveDecl::anchor() { } UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, SourceLocation NamespaceLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation IdentLoc, NamedDecl *Used, DeclContext *CommonAncestor) { if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used)) Used = NS->getOriginalNamespace(); return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc, IdentLoc, Used, CommonAncestor); } UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(), SourceLocation(), nullptr, nullptr); } NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() { if (NamespaceAliasDecl *NA = dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace)) return NA->getNamespace(); return cast_or_null<NamespaceDecl>(NominatedNamespace); } NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, NamespaceDecl *PrevDecl) : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace), redeclarable_base(C), LocStart(StartLoc), RBraceLoc(), AnonOrFirstNamespaceAndInline(nullptr, Inline) { setPreviousDecl(PrevDecl); if (PrevDecl) AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace()); } NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC, bool Inline, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, NamespaceDecl *PrevDecl) { return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id, PrevDecl); } NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(), SourceLocation(), nullptr, nullptr); } NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() { return getNextRedeclaration(); } NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() { return getPreviousDecl(); } NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() { return getMostRecentDecl(); } void NamespaceAliasDecl::anchor() { } NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() { return getNextRedeclaration(); } NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() { return getPreviousDecl(); } NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() { return getMostRecentDecl(); } NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc, SourceLocation AliasLoc, IdentifierInfo *Alias, NestedNameSpecifierLoc QualifierLoc, SourceLocation IdentLoc, NamedDecl *Namespace) { // FIXME: Preserve the aliased namespace as written. if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace)) Namespace = NS->getOriginalNamespace(); return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias, QualifierLoc, IdentLoc, Namespace); } NamespaceAliasDecl * NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(), SourceLocation(), nullptr, NestedNameSpecifierLoc(), SourceLocation(), nullptr); } void UsingShadowDecl::anchor() { } UsingShadowDecl * UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) UsingShadowDecl(C, nullptr, SourceLocation(), nullptr, nullptr); } UsingDecl *UsingShadowDecl::getUsingDecl() const { const UsingShadowDecl *Shadow = this; while (const UsingShadowDecl *NextShadow = dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow)) Shadow = NextShadow; return cast<UsingDecl>(Shadow->UsingOrNextShadow); } void UsingDecl::anchor() { } void UsingDecl::addShadowDecl(UsingShadowDecl *S) { assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() && "declaration already in set"); assert(S->getUsingDecl() == this); if (FirstUsingShadow.getPointer()) S->UsingOrNextShadow = FirstUsingShadow.getPointer(); FirstUsingShadow.setPointer(S); } void UsingDecl::removeShadowDecl(UsingShadowDecl *S) { assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() && "declaration not in set"); assert(S->getUsingDecl() == this); // Remove S from the shadow decl chain. This is O(n) but hopefully rare. if (FirstUsingShadow.getPointer() == S) { FirstUsingShadow.setPointer( dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow)); S->UsingOrNextShadow = this; return; } UsingShadowDecl *Prev = FirstUsingShadow.getPointer(); while (Prev->UsingOrNextShadow != S) Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow); Prev->UsingOrNextShadow = S->UsingOrNextShadow; S->UsingOrNextShadow = this; } UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL, NestedNameSpecifierLoc QualifierLoc, const DeclarationNameInfo &NameInfo, bool HasTypename) { return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename); } UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) UsingDecl(nullptr, SourceLocation(), NestedNameSpecifierLoc(), DeclarationNameInfo(), false); } SourceRange UsingDecl::getSourceRange() const { SourceLocation Begin = isAccessDeclaration() ? getQualifierLoc().getBeginLoc() : UsingLocation; return SourceRange(Begin, getNameInfo().getEndLoc()); } void UnresolvedUsingValueDecl::anchor() { } UnresolvedUsingValueDecl * UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc, NestedNameSpecifierLoc QualifierLoc, const DeclarationNameInfo &NameInfo) { return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc, QualifierLoc, NameInfo); } UnresolvedUsingValueDecl * UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(), SourceLocation(), NestedNameSpecifierLoc(), DeclarationNameInfo()); } SourceRange UnresolvedUsingValueDecl::getSourceRange() const { SourceLocation Begin = isAccessDeclaration() ? getQualifierLoc().getBeginLoc() : UsingLocation; return SourceRange(Begin, getNameInfo().getEndLoc()); } void UnresolvedUsingTypenameDecl::anchor() { } UnresolvedUsingTypenameDecl * UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc, SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TargetNameLoc, DeclarationName TargetName) { return new (C, DC) UnresolvedUsingTypenameDecl( DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc, TargetName.getAsIdentifierInfo()); } UnresolvedUsingTypenameDecl * UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) UnresolvedUsingTypenameDecl( nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(), SourceLocation(), nullptr); } void StaticAssertDecl::anchor() { } StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StaticAssertLoc, Expr *AssertExpr, StringLiteral *Message, SourceLocation RParenLoc, bool Failed) { return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message, RParenLoc, Failed); } StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr, nullptr, SourceLocation(), false); } MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, DeclarationName N, QualType T, TypeSourceInfo *TInfo, SourceLocation StartL, IdentifierInfo *Getter, IdentifierInfo *Setter) { return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter); } MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(), DeclarationName(), QualType(), nullptr, SourceLocation(), nullptr, nullptr); } static const char *getAccessName(AccessSpecifier AS) { switch (AS) { case AS_none: llvm_unreachable("Invalid access specifier!"); case AS_public: return "public"; case AS_private: return "private"; case AS_protected: return "protected"; } llvm_unreachable("Invalid access specifier!"); } const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB, AccessSpecifier AS) { return DB << getAccessName(AS); } const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB, AccessSpecifier AS) { return DB << getAccessName(AS); }