// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include <cmath> #include <limits> #include <string> #include "ceres/internal/eigen.h" #include "ceres/internal/port.h" #include "ceres/jet.h" #include "ceres/rotation.h" #include "ceres/stringprintf.h" #include "ceres/test_util.h" #include "glog/logging.h" #include "gmock/gmock.h" #include "gtest/gtest.h" namespace ceres { namespace internal { const double kPi = 3.14159265358979323846; const double kHalfSqrt2 = 0.707106781186547524401; double RandDouble() { double r = rand(); return r / RAND_MAX; } // A tolerance value for floating-point comparisons. static double const kTolerance = numeric_limits<double>::epsilon() * 10; // Looser tolerance used for numerically unstable conversions. static double const kLooseTolerance = 1e-9; // Use as: // double quaternion[4]; // EXPECT_THAT(quaternion, IsNormalizedQuaternion()); MATCHER(IsNormalizedQuaternion, "") { if (arg == NULL) { *result_listener << "Null quaternion"; return false; } double norm2 = arg[0] * arg[0] + arg[1] * arg[1] + arg[2] * arg[2] + arg[3] * arg[3]; if (fabs(norm2 - 1.0) > kTolerance) { *result_listener << "squared norm is " << norm2; return false; } return true; } // Use as: // double expected_quaternion[4]; // double actual_quaternion[4]; // EXPECT_THAT(actual_quaternion, IsNearQuaternion(expected_quaternion)); MATCHER_P(IsNearQuaternion, expected, "") { if (arg == NULL) { *result_listener << "Null quaternion"; return false; } // Quaternions are equivalent upto a sign change. So we will compare // both signs before declaring failure. bool near = true; for (int i = 0; i < 4; i++) { if (fabs(arg[i] - expected[i]) > kTolerance) { near = false; break; } } if (near) { return true; } near = true; for (int i = 0; i < 4; i++) { if (fabs(arg[i] + expected[i]) > kTolerance) { near = false; break; } } if (near) { return true; } *result_listener << "expected : " << expected[0] << " " << expected[1] << " " << expected[2] << " " << expected[3] << " " << "actual : " << arg[0] << " " << arg[1] << " " << arg[2] << " " << arg[3]; return false; } // Use as: // double expected_axis_angle[4]; // double actual_axis_angle[4]; // EXPECT_THAT(actual_axis_angle, IsNearAngleAxis(expected_axis_angle)); MATCHER_P(IsNearAngleAxis, expected, "") { if (arg == NULL) { *result_listener << "Null axis/angle"; return false; } for (int i = 0; i < 3; i++) { if (fabs(arg[i] - expected[i]) > kTolerance) { *result_listener << "component " << i << " should be " << expected[i]; return false; } } return true; } // Use as: // double matrix[9]; // EXPECT_THAT(matrix, IsOrthonormal()); MATCHER(IsOrthonormal, "") { if (arg == NULL) { *result_listener << "Null matrix"; return false; } for (int c1 = 0; c1 < 3; c1++) { for (int c2 = 0; c2 < 3; c2++) { double v = 0; for (int i = 0; i < 3; i++) { v += arg[i + 3 * c1] * arg[i + 3 * c2]; } double expected = (c1 == c2) ? 1 : 0; if (fabs(expected - v) > kTolerance) { *result_listener << "Columns " << c1 << " and " << c2 << " should have dot product " << expected << " but have " << v; return false; } } } return true; } // Use as: // double matrix1[9]; // double matrix2[9]; // EXPECT_THAT(matrix1, IsNear3x3Matrix(matrix2)); MATCHER_P(IsNear3x3Matrix, expected, "") { if (arg == NULL) { *result_listener << "Null matrix"; return false; } for (int i = 0; i < 9; i++) { if (fabs(arg[i] - expected[i]) > kTolerance) { *result_listener << "component " << i << " should be " << expected[i]; return false; } } return true; } // Transforms a zero axis/angle to a quaternion. TEST(Rotation, ZeroAngleAxisToQuaternion) { double axis_angle[3] = { 0, 0, 0 }; double quaternion[4]; double expected[4] = { 1, 0, 0, 0 }; AngleAxisToQuaternion(axis_angle, quaternion); EXPECT_THAT(quaternion, IsNormalizedQuaternion()); EXPECT_THAT(quaternion, IsNearQuaternion(expected)); } // Test that exact conversion works for small angles. TEST(Rotation, SmallAngleAxisToQuaternion) { // Small, finite value to test. double theta = 1.0e-2; double axis_angle[3] = { theta, 0, 0 }; double quaternion[4]; double expected[4] = { cos(theta/2), sin(theta/2.0), 0, 0 }; AngleAxisToQuaternion(axis_angle, quaternion); EXPECT_THAT(quaternion, IsNormalizedQuaternion()); EXPECT_THAT(quaternion, IsNearQuaternion(expected)); } // Test that approximate conversion works for very small angles. TEST(Rotation, TinyAngleAxisToQuaternion) { // Very small value that could potentially cause underflow. double theta = pow(numeric_limits<double>::min(), 0.75); double axis_angle[3] = { theta, 0, 0 }; double quaternion[4]; double expected[4] = { cos(theta/2), sin(theta/2.0), 0, 0 }; AngleAxisToQuaternion(axis_angle, quaternion); EXPECT_THAT(quaternion, IsNormalizedQuaternion()); EXPECT_THAT(quaternion, IsNearQuaternion(expected)); } // Transforms a rotation by pi/2 around X to a quaternion. TEST(Rotation, XRotationToQuaternion) { double axis_angle[3] = { kPi / 2, 0, 0 }; double quaternion[4]; double expected[4] = { kHalfSqrt2, kHalfSqrt2, 0, 0 }; AngleAxisToQuaternion(axis_angle, quaternion); EXPECT_THAT(quaternion, IsNormalizedQuaternion()); EXPECT_THAT(quaternion, IsNearQuaternion(expected)); } // Transforms a unit quaternion to an axis angle. TEST(Rotation, UnitQuaternionToAngleAxis) { double quaternion[4] = { 1, 0, 0, 0 }; double axis_angle[3]; double expected[3] = { 0, 0, 0 }; QuaternionToAngleAxis(quaternion, axis_angle); EXPECT_THAT(axis_angle, IsNearAngleAxis(expected)); } // Transforms a quaternion that rotates by pi about the Y axis to an axis angle. TEST(Rotation, YRotationQuaternionToAngleAxis) { double quaternion[4] = { 0, 0, 1, 0 }; double axis_angle[3]; double expected[3] = { 0, kPi, 0 }; QuaternionToAngleAxis(quaternion, axis_angle); EXPECT_THAT(axis_angle, IsNearAngleAxis(expected)); } // Transforms a quaternion that rotates by pi/3 about the Z axis to an axis // angle. TEST(Rotation, ZRotationQuaternionToAngleAxis) { double quaternion[4] = { sqrt(3) / 2, 0, 0, 0.5 }; double axis_angle[3]; double expected[3] = { 0, 0, kPi / 3 }; QuaternionToAngleAxis(quaternion, axis_angle); EXPECT_THAT(axis_angle, IsNearAngleAxis(expected)); } // Test that exact conversion works for small angles. TEST(Rotation, SmallQuaternionToAngleAxis) { // Small, finite value to test. double theta = 1.0e-2; double quaternion[4] = { cos(theta/2), sin(theta/2.0), 0, 0 }; double axis_angle[3]; double expected[3] = { theta, 0, 0 }; QuaternionToAngleAxis(quaternion, axis_angle); EXPECT_THAT(axis_angle, IsNearAngleAxis(expected)); } // Test that approximate conversion works for very small angles. TEST(Rotation, TinyQuaternionToAngleAxis) { // Very small value that could potentially cause underflow. double theta = pow(numeric_limits<double>::min(), 0.75); double quaternion[4] = { cos(theta/2), sin(theta/2.0), 0, 0 }; double axis_angle[3]; double expected[3] = { theta, 0, 0 }; QuaternionToAngleAxis(quaternion, axis_angle); EXPECT_THAT(axis_angle, IsNearAngleAxis(expected)); } TEST(Rotation, QuaternionToAngleAxisAngleIsLessThanPi) { double quaternion[4]; double angle_axis[3]; const double half_theta = 0.75 * kPi; quaternion[0] = cos(half_theta); quaternion[1] = 1.0 * sin(half_theta); quaternion[2] = 0.0; quaternion[3] = 0.0; QuaternionToAngleAxis(quaternion, angle_axis); const double angle = sqrt(angle_axis[0] * angle_axis[0] + angle_axis[1] * angle_axis[1] + angle_axis[2] * angle_axis[2]); EXPECT_LE(angle, kPi); } static const int kNumTrials = 10000; // Takes a bunch of random axis/angle values, converts them to quaternions, // and back again. TEST(Rotation, AngleAxisToQuaterionAndBack) { srand(5); for (int i = 0; i < kNumTrials; i++) { double axis_angle[3]; // Make an axis by choosing three random numbers in [-1, 1) and // normalizing. double norm = 0; for (int i = 0; i < 3; i++) { axis_angle[i] = RandDouble() * 2 - 1; norm += axis_angle[i] * axis_angle[i]; } norm = sqrt(norm); // Angle in [-pi, pi). double theta = kPi * 2 * RandDouble() - kPi; for (int i = 0; i < 3; i++) { axis_angle[i] = axis_angle[i] * theta / norm; } double quaternion[4]; double round_trip[3]; // We use ASSERTs here because if there's one failure, there are // probably many and spewing a million failures doesn't make anyone's // day. AngleAxisToQuaternion(axis_angle, quaternion); ASSERT_THAT(quaternion, IsNormalizedQuaternion()); QuaternionToAngleAxis(quaternion, round_trip); ASSERT_THAT(round_trip, IsNearAngleAxis(axis_angle)); } } // Takes a bunch of random quaternions, converts them to axis/angle, // and back again. TEST(Rotation, QuaterionToAngleAxisAndBack) { srand(5); for (int i = 0; i < kNumTrials; i++) { double quaternion[4]; // Choose four random numbers in [-1, 1) and normalize. double norm = 0; for (int i = 0; i < 4; i++) { quaternion[i] = RandDouble() * 2 - 1; norm += quaternion[i] * quaternion[i]; } norm = sqrt(norm); for (int i = 0; i < 4; i++) { quaternion[i] = quaternion[i] / norm; } double axis_angle[3]; double round_trip[4]; QuaternionToAngleAxis(quaternion, axis_angle); AngleAxisToQuaternion(axis_angle, round_trip); ASSERT_THAT(round_trip, IsNormalizedQuaternion()); ASSERT_THAT(round_trip, IsNearQuaternion(quaternion)); } } // Transforms a zero axis/angle to a rotation matrix. TEST(Rotation, ZeroAngleAxisToRotationMatrix) { double axis_angle[3] = { 0, 0, 0 }; double matrix[9]; double expected[9] = { 1, 0, 0, 0, 1, 0, 0, 0, 1 }; AngleAxisToRotationMatrix(axis_angle, matrix); EXPECT_THAT(matrix, IsOrthonormal()); EXPECT_THAT(matrix, IsNear3x3Matrix(expected)); } TEST(Rotation, NearZeroAngleAxisToRotationMatrix) { double axis_angle[3] = { 1e-24, 2e-24, 3e-24 }; double matrix[9]; double expected[9] = { 1, 0, 0, 0, 1, 0, 0, 0, 1 }; AngleAxisToRotationMatrix(axis_angle, matrix); EXPECT_THAT(matrix, IsOrthonormal()); EXPECT_THAT(matrix, IsNear3x3Matrix(expected)); } // Transforms a rotation by pi/2 around X to a rotation matrix and back. TEST(Rotation, XRotationToRotationMatrix) { double axis_angle[3] = { kPi / 2, 0, 0 }; double matrix[9]; // The rotation matrices are stored column-major. double expected[9] = { 1, 0, 0, 0, 0, 1, 0, -1, 0 }; AngleAxisToRotationMatrix(axis_angle, matrix); EXPECT_THAT(matrix, IsOrthonormal()); EXPECT_THAT(matrix, IsNear3x3Matrix(expected)); double round_trip[3]; RotationMatrixToAngleAxis(matrix, round_trip); EXPECT_THAT(round_trip, IsNearAngleAxis(axis_angle)); } // Transforms an axis angle that rotates by pi about the Y axis to a // rotation matrix and back. TEST(Rotation, YRotationToRotationMatrix) { double axis_angle[3] = { 0, kPi, 0 }; double matrix[9]; double expected[9] = { -1, 0, 0, 0, 1, 0, 0, 0, -1 }; AngleAxisToRotationMatrix(axis_angle, matrix); EXPECT_THAT(matrix, IsOrthonormal()); EXPECT_THAT(matrix, IsNear3x3Matrix(expected)); double round_trip[3]; RotationMatrixToAngleAxis(matrix, round_trip); EXPECT_THAT(round_trip, IsNearAngleAxis(axis_angle)); } TEST(Rotation, NearPiAngleAxisRoundTrip) { double in_axis_angle[3]; double matrix[9]; double out_axis_angle[3]; srand(5); for (int i = 0; i < kNumTrials; i++) { // Make an axis by choosing three random numbers in [-1, 1) and // normalizing. double norm = 0; for (int i = 0; i < 3; i++) { in_axis_angle[i] = RandDouble() * 2 - 1; norm += in_axis_angle[i] * in_axis_angle[i]; } norm = sqrt(norm); // Angle in [pi - kMaxSmallAngle, pi). const double kMaxSmallAngle = 1e-2; double theta = kPi - kMaxSmallAngle * RandDouble(); for (int i = 0; i < 3; i++) { in_axis_angle[i] *= (theta / norm); } AngleAxisToRotationMatrix(in_axis_angle, matrix); RotationMatrixToAngleAxis(matrix, out_axis_angle); for (int i = 0; i < 3; ++i) { EXPECT_NEAR(out_axis_angle[i], in_axis_angle[i], kLooseTolerance); } } } TEST(Rotation, AtPiAngleAxisRoundTrip) { // A rotation of kPi about the X axis; static const double kMatrix[3][3] = { {1.0, 0.0, 0.0}, {0.0, -1.0, 0.0}, {0.0, 0.0, -1.0} }; double in_matrix[9]; // Fill it from kMatrix in col-major order. for (int j = 0, k = 0; j < 3; ++j) { for (int i = 0; i < 3; ++i, ++k) { in_matrix[k] = kMatrix[i][j]; } } const double expected_axis_angle[3] = { kPi, 0, 0 }; double out_matrix[9]; double axis_angle[3]; RotationMatrixToAngleAxis(in_matrix, axis_angle); AngleAxisToRotationMatrix(axis_angle, out_matrix); LOG(INFO) << "AngleAxis = " << axis_angle[0] << " " << axis_angle[1] << " " << axis_angle[2]; LOG(INFO) << "Expected AngleAxis = " << kPi << " 0 0"; double out_rowmajor[3][3]; for (int j = 0, k = 0; j < 3; ++j) { for (int i = 0; i < 3; ++i, ++k) { out_rowmajor[i][j] = out_matrix[k]; } } LOG(INFO) << "Rotation:"; LOG(INFO) << "EXPECTED | ACTUAL"; for (int i = 0; i < 3; ++i) { string line; for (int j = 0; j < 3; ++j) { StringAppendF(&line, "%g ", kMatrix[i][j]); } line += " | "; for (int j = 0; j < 3; ++j) { StringAppendF(&line, "%g ", out_rowmajor[i][j]); } LOG(INFO) << line; } EXPECT_THAT(axis_angle, IsNearAngleAxis(expected_axis_angle)); EXPECT_THAT(out_matrix, IsNear3x3Matrix(in_matrix)); } // Transforms an axis angle that rotates by pi/3 about the Z axis to a // rotation matrix. TEST(Rotation, ZRotationToRotationMatrix) { double axis_angle[3] = { 0, 0, kPi / 3 }; double matrix[9]; // This is laid-out row-major on the screen but is actually stored // column-major. double expected[9] = { 0.5, sqrt(3) / 2, 0, // Column 1 -sqrt(3) / 2, 0.5, 0, // Column 2 0, 0, 1 }; // Column 3 AngleAxisToRotationMatrix(axis_angle, matrix); EXPECT_THAT(matrix, IsOrthonormal()); EXPECT_THAT(matrix, IsNear3x3Matrix(expected)); double round_trip[3]; RotationMatrixToAngleAxis(matrix, round_trip); EXPECT_THAT(round_trip, IsNearAngleAxis(axis_angle)); } // Takes a bunch of random axis/angle values, converts them to rotation // matrices, and back again. TEST(Rotation, AngleAxisToRotationMatrixAndBack) { srand(5); for (int i = 0; i < kNumTrials; i++) { double axis_angle[3]; // Make an axis by choosing three random numbers in [-1, 1) and // normalizing. double norm = 0; for (int i = 0; i < 3; i++) { axis_angle[i] = RandDouble() * 2 - 1; norm += axis_angle[i] * axis_angle[i]; } norm = sqrt(norm); // Angle in [-pi, pi). double theta = kPi * 2 * RandDouble() - kPi; for (int i = 0; i < 3; i++) { axis_angle[i] = axis_angle[i] * theta / norm; } double matrix[9]; double round_trip[3]; AngleAxisToRotationMatrix(axis_angle, matrix); ASSERT_THAT(matrix, IsOrthonormal()); RotationMatrixToAngleAxis(matrix, round_trip); for (int i = 0; i < 3; ++i) { EXPECT_NEAR(round_trip[i], axis_angle[i], kLooseTolerance); } } } // Takes a bunch of random axis/angle values near zero, converts them // to rotation matrices, and back again. TEST(Rotation, AngleAxisToRotationMatrixAndBackNearZero) { srand(5); for (int i = 0; i < kNumTrials; i++) { double axis_angle[3]; // Make an axis by choosing three random numbers in [-1, 1) and // normalizing. double norm = 0; for (int i = 0; i < 3; i++) { axis_angle[i] = RandDouble() * 2 - 1; norm += axis_angle[i] * axis_angle[i]; } norm = sqrt(norm); // Tiny theta. double theta = 1e-16 * (kPi * 2 * RandDouble() - kPi); for (int i = 0; i < 3; i++) { axis_angle[i] = axis_angle[i] * theta / norm; } double matrix[9]; double round_trip[3]; AngleAxisToRotationMatrix(axis_angle, matrix); ASSERT_THAT(matrix, IsOrthonormal()); RotationMatrixToAngleAxis(matrix, round_trip); for (int i = 0; i < 3; ++i) { EXPECT_NEAR(round_trip[i], axis_angle[i], std::numeric_limits<double>::epsilon()); } } } // Transposes a 3x3 matrix. static void Transpose3x3(double m[9]) { std::swap(m[1], m[3]); std::swap(m[2], m[6]); std::swap(m[5], m[7]); } // Convert Euler angles from radians to degrees. static void ToDegrees(double ea[3]) { for (int i = 0; i < 3; ++i) ea[i] *= 180.0 / kPi; } // Compare the 3x3 rotation matrices produced by the axis-angle // rotation 'aa' and the Euler angle rotation 'ea' (in radians). static void CompareEulerToAngleAxis(double aa[3], double ea[3]) { double aa_matrix[9]; AngleAxisToRotationMatrix(aa, aa_matrix); Transpose3x3(aa_matrix); // Column to row major order. double ea_matrix[9]; ToDegrees(ea); // Radians to degrees. const int kRowStride = 3; EulerAnglesToRotationMatrix(ea, kRowStride, ea_matrix); EXPECT_THAT(aa_matrix, IsOrthonormal()); EXPECT_THAT(ea_matrix, IsOrthonormal()); EXPECT_THAT(ea_matrix, IsNear3x3Matrix(aa_matrix)); } // Test with rotation axis along the x/y/z axes. // Also test zero rotation. TEST(EulerAnglesToRotationMatrix, OnAxis) { int n_tests = 0; for (double x = -1.0; x <= 1.0; x += 1.0) { for (double y = -1.0; y <= 1.0; y += 1.0) { for (double z = -1.0; z <= 1.0; z += 1.0) { if ((x != 0) + (y != 0) + (z != 0) > 1) continue; double axis_angle[3] = {x, y, z}; double euler_angles[3] = {x, y, z}; CompareEulerToAngleAxis(axis_angle, euler_angles); ++n_tests; } } } CHECK_EQ(7, n_tests); } // Test that a random rotation produces an orthonormal rotation // matrix. TEST(EulerAnglesToRotationMatrix, IsOrthonormal) { srand(5); for (int trial = 0; trial < kNumTrials; ++trial) { double ea[3]; for (int i = 0; i < 3; ++i) ea[i] = 360.0 * (RandDouble() * 2.0 - 1.0); double ea_matrix[9]; ToDegrees(ea); // Radians to degrees. EulerAnglesToRotationMatrix(ea, 3, ea_matrix); EXPECT_THAT(ea_matrix, IsOrthonormal()); } } // Tests using Jets for specific behavior involving auto differentiation // near singularity points. typedef Jet<double, 3> J3; typedef Jet<double, 4> J4; J3 MakeJ3(double a, double v0, double v1, double v2) { J3 j; j.a = a; j.v[0] = v0; j.v[1] = v1; j.v[2] = v2; return j; } J4 MakeJ4(double a, double v0, double v1, double v2, double v3) { J4 j; j.a = a; j.v[0] = v0; j.v[1] = v1; j.v[2] = v2; j.v[3] = v3; return j; } bool IsClose(double x, double y) { EXPECT_FALSE(IsNaN(x)); EXPECT_FALSE(IsNaN(y)); double absdiff = fabs(x - y); if (x == 0 || y == 0) { return absdiff <= kTolerance; } double reldiff = absdiff / max(fabs(x), fabs(y)); return reldiff <= kTolerance; } template <int N> bool IsClose(const Jet<double, N> &x, const Jet<double, N> &y) { if (IsClose(x.a, y.a)) { for (int i = 0; i < N; i++) { if (!IsClose(x.v[i], y.v[i])) { return false; } } } return true; } template <int M, int N> void ExpectJetArraysClose(const Jet<double, N> *x, const Jet<double, N> *y) { for (int i = 0; i < M; i++) { if (!IsClose(x[i], y[i])) { LOG(ERROR) << "Jet " << i << "/" << M << " not equal"; LOG(ERROR) << "x[" << i << "]: " << x[i]; LOG(ERROR) << "y[" << i << "]: " << y[i]; Jet<double, N> d, zero; d.a = y[i].a - x[i].a; for (int j = 0; j < N; j++) { d.v[j] = y[i].v[j] - x[i].v[j]; } LOG(ERROR) << "diff: " << d; EXPECT_TRUE(IsClose(x[i], y[i])); } } } // Log-10 of a value well below machine precision. static const int kSmallTinyCutoff = static_cast<int>(2 * log(numeric_limits<double>::epsilon())/log(10.0)); // Log-10 of a value just below values representable by double. static const int kTinyZeroLimit = static_cast<int>(1 + log(numeric_limits<double>::min())/log(10.0)); // Test that exact conversion works for small angles when jets are used. TEST(Rotation, SmallAngleAxisToQuaternionForJets) { // Examine small x rotations that are still large enough // to be well within the range represented by doubles. for (int i = -2; i >= kSmallTinyCutoff; i--) { double theta = pow(10.0, i); J3 axis_angle[3] = { J3(theta, 0), J3(0, 1), J3(0, 2) }; J3 quaternion[4]; J3 expected[4] = { MakeJ3(cos(theta/2), -sin(theta/2)/2, 0, 0), MakeJ3(sin(theta/2), cos(theta/2)/2, 0, 0), MakeJ3(0, 0, sin(theta/2)/theta, 0), MakeJ3(0, 0, 0, sin(theta/2)/theta), }; AngleAxisToQuaternion(axis_angle, quaternion); ExpectJetArraysClose<4, 3>(quaternion, expected); } } // Test that conversion works for very small angles when jets are used. TEST(Rotation, TinyAngleAxisToQuaternionForJets) { // Examine tiny x rotations that extend all the way to where // underflow occurs. for (int i = kSmallTinyCutoff; i >= kTinyZeroLimit; i--) { double theta = pow(10.0, i); J3 axis_angle[3] = { J3(theta, 0), J3(0, 1), J3(0, 2) }; J3 quaternion[4]; // To avoid loss of precision in the test itself, // a finite expansion is used here, which will // be exact up to machine precision for the test values used. J3 expected[4] = { MakeJ3(1.0, 0, 0, 0), MakeJ3(0, 0.5, 0, 0), MakeJ3(0, 0, 0.5, 0), MakeJ3(0, 0, 0, 0.5), }; AngleAxisToQuaternion(axis_angle, quaternion); ExpectJetArraysClose<4, 3>(quaternion, expected); } } // Test that derivatives are correct for zero rotation. TEST(Rotation, ZeroAngleAxisToQuaternionForJets) { J3 axis_angle[3] = { J3(0, 0), J3(0, 1), J3(0, 2) }; J3 quaternion[4]; J3 expected[4] = { MakeJ3(1.0, 0, 0, 0), MakeJ3(0, 0.5, 0, 0), MakeJ3(0, 0, 0.5, 0), MakeJ3(0, 0, 0, 0.5), }; AngleAxisToQuaternion(axis_angle, quaternion); ExpectJetArraysClose<4, 3>(quaternion, expected); } // Test that exact conversion works for small angles. TEST(Rotation, SmallQuaternionToAngleAxisForJets) { // Examine small x rotations that are still large enough // to be well within the range represented by doubles. for (int i = -2; i >= kSmallTinyCutoff; i--) { double theta = pow(10.0, i); double s = sin(theta); double c = cos(theta); J4 quaternion[4] = { J4(c, 0), J4(s, 1), J4(0, 2), J4(0, 3) }; J4 axis_angle[3]; J4 expected[3] = { MakeJ4(s, -2*theta, 2*theta*c, 0, 0), MakeJ4(0, 0, 0, 2*theta/s, 0), MakeJ4(0, 0, 0, 0, 2*theta/s), }; QuaternionToAngleAxis(quaternion, axis_angle); ExpectJetArraysClose<3, 4>(axis_angle, expected); } } // Test that conversion works for very small angles. TEST(Rotation, TinyQuaternionToAngleAxisForJets) { // Examine tiny x rotations that extend all the way to where // underflow occurs. for (int i = kSmallTinyCutoff; i >= kTinyZeroLimit; i--) { double theta = pow(10.0, i); double s = sin(theta); double c = cos(theta); J4 quaternion[4] = { J4(c, 0), J4(s, 1), J4(0, 2), J4(0, 3) }; J4 axis_angle[3]; // To avoid loss of precision in the test itself, // a finite expansion is used here, which will // be exact up to machine precision for the test values used. J4 expected[3] = { MakeJ4(theta, -2*theta, 2.0, 0, 0), MakeJ4(0, 0, 0, 2.0, 0), MakeJ4(0, 0, 0, 0, 2.0), }; QuaternionToAngleAxis(quaternion, axis_angle); ExpectJetArraysClose<3, 4>(axis_angle, expected); } } // Test that conversion works for no rotation. TEST(Rotation, ZeroQuaternionToAngleAxisForJets) { J4 quaternion[4] = { J4(1, 0), J4(0, 1), J4(0, 2), J4(0, 3) }; J4 axis_angle[3]; J4 expected[3] = { MakeJ4(0, 0, 2.0, 0, 0), MakeJ4(0, 0, 0, 2.0, 0), MakeJ4(0, 0, 0, 0, 2.0), }; QuaternionToAngleAxis(quaternion, axis_angle); ExpectJetArraysClose<3, 4>(axis_angle, expected); } TEST(Quaternion, RotatePointGivesSameAnswerAsRotationByMatrixCanned) { // Canned data generated in octave. double const q[4] = { +0.1956830471754074, -0.0150618562474847, +0.7634572982788086, -0.3019454777240753, }; double const Q[3][3] = { // Scaled rotation matrix. { -0.6355194033477252, 0.0951730541682254, 0.3078870197911186 }, { -0.1411693904792992, 0.5297609702153905, -0.4551502574482019 }, { -0.2896955822708862, -0.4669396571547050, -0.4536309793389248 }, }; double const R[3][3] = { // With unit rows and columns. { -0.8918859164053080, 0.1335655625725649, 0.4320876677394745 }, { -0.1981166751680096, 0.7434648665444399, -0.6387564287225856 }, { -0.4065578619806013, -0.6553016349046693, -0.6366242786393164 }, }; // Compute R from q and compare to known answer. double Rq[3][3]; QuaternionToScaledRotation<double>(q, Rq[0]); ExpectArraysClose(9, Q[0], Rq[0], kTolerance); // Now do the same but compute R with normalization. QuaternionToRotation<double>(q, Rq[0]); ExpectArraysClose(9, R[0], Rq[0], kTolerance); } TEST(Quaternion, RotatePointGivesSameAnswerAsRotationByMatrix) { // Rotation defined by a unit quaternion. double const q[4] = { 0.2318160216097109, -0.0178430356832060, 0.9044300776717159, -0.3576998641394597, }; double const p[3] = { +0.11, -13.15, 1.17, }; double R[3 * 3]; QuaternionToRotation(q, R); double result1[3]; UnitQuaternionRotatePoint(q, p, result1); double result2[3]; VectorRef(result2, 3) = ConstMatrixRef(R, 3, 3)* ConstVectorRef(p, 3); ExpectArraysClose(3, result1, result2, kTolerance); } // Verify that (a * b) * c == a * (b * c). TEST(Quaternion, MultiplicationIsAssociative) { double a[4]; double b[4]; double c[4]; for (int i = 0; i < 4; ++i) { a[i] = 2 * RandDouble() - 1; b[i] = 2 * RandDouble() - 1; c[i] = 2 * RandDouble() - 1; } double ab[4]; double ab_c[4]; QuaternionProduct(a, b, ab); QuaternionProduct(ab, c, ab_c); double bc[4]; double a_bc[4]; QuaternionProduct(b, c, bc); QuaternionProduct(a, bc, a_bc); ASSERT_NEAR(ab_c[0], a_bc[0], kTolerance); ASSERT_NEAR(ab_c[1], a_bc[1], kTolerance); ASSERT_NEAR(ab_c[2], a_bc[2], kTolerance); ASSERT_NEAR(ab_c[3], a_bc[3], kTolerance); } TEST(AngleAxis, RotatePointGivesSameAnswerAsRotationMatrix) { double angle_axis[3]; double R[9]; double p[3]; double angle_axis_rotated_p[3]; double rotation_matrix_rotated_p[3]; for (int i = 0; i < 10000; ++i) { double theta = (2.0 * i * 0.0011 - 1.0) * kPi; for (int j = 0; j < 50; ++j) { double norm2 = 0.0; for (int k = 0; k < 3; ++k) { angle_axis[k] = 2.0 * RandDouble() - 1.0; p[k] = 2.0 * RandDouble() - 1.0; norm2 = angle_axis[k] * angle_axis[k]; } const double inv_norm = theta / sqrt(norm2); for (int k = 0; k < 3; ++k) { angle_axis[k] *= inv_norm; } AngleAxisToRotationMatrix(angle_axis, R); rotation_matrix_rotated_p[0] = R[0] * p[0] + R[3] * p[1] + R[6] * p[2]; rotation_matrix_rotated_p[1] = R[1] * p[0] + R[4] * p[1] + R[7] * p[2]; rotation_matrix_rotated_p[2] = R[2] * p[0] + R[5] * p[1] + R[8] * p[2]; AngleAxisRotatePoint(angle_axis, p, angle_axis_rotated_p); for (int k = 0; k < 3; ++k) { EXPECT_NEAR(rotation_matrix_rotated_p[k], angle_axis_rotated_p[k], kTolerance) << "p: " << p[0] << " " << p[1] << " " << p[2] << " angle_axis: " << angle_axis[0] << " " << angle_axis[1] << " " << angle_axis[2]; } } } } TEST(AngleAxis, NearZeroRotatePointGivesSameAnswerAsRotationMatrix) { double angle_axis[3]; double R[9]; double p[3]; double angle_axis_rotated_p[3]; double rotation_matrix_rotated_p[3]; for (int i = 0; i < 10000; ++i) { double norm2 = 0.0; for (int k = 0; k < 3; ++k) { angle_axis[k] = 2.0 * RandDouble() - 1.0; p[k] = 2.0 * RandDouble() - 1.0; norm2 = angle_axis[k] * angle_axis[k]; } double theta = (2.0 * i * 0.0001 - 1.0) * 1e-16; const double inv_norm = theta / sqrt(norm2); for (int k = 0; k < 3; ++k) { angle_axis[k] *= inv_norm; } AngleAxisToRotationMatrix(angle_axis, R); rotation_matrix_rotated_p[0] = R[0] * p[0] + R[3] * p[1] + R[6] * p[2]; rotation_matrix_rotated_p[1] = R[1] * p[0] + R[4] * p[1] + R[7] * p[2]; rotation_matrix_rotated_p[2] = R[2] * p[0] + R[5] * p[1] + R[8] * p[2]; AngleAxisRotatePoint(angle_axis, p, angle_axis_rotated_p); for (int k = 0; k < 3; ++k) { EXPECT_NEAR(rotation_matrix_rotated_p[k], angle_axis_rotated_p[k], kTolerance) << "p: " << p[0] << " " << p[1] << " " << p[2] << " angle_axis: " << angle_axis[0] << " " << angle_axis[1] << " " << angle_axis[2]; } } } TEST(MatrixAdapter, RowMajor3x3ReturnTypeAndAccessIsCorrect) { double array[9] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 }; const float const_array[9] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f }; MatrixAdapter<double, 3, 1> A = RowMajorAdapter3x3(array); MatrixAdapter<const float, 3, 1> B = RowMajorAdapter3x3(const_array); for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { // The values are integers from 1 to 9, so equality tests are appropriate // even for float and double values. EXPECT_EQ(A(i, j), array[3*i+j]); EXPECT_EQ(B(i, j), const_array[3*i+j]); } } } TEST(MatrixAdapter, ColumnMajor3x3ReturnTypeAndAccessIsCorrect) { double array[9] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 }; const float const_array[9] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f }; MatrixAdapter<double, 1, 3> A = ColumnMajorAdapter3x3(array); MatrixAdapter<const float, 1, 3> B = ColumnMajorAdapter3x3(const_array); for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { // The values are integers from 1 to 9, so equality tests are // appropriate even for float and double values. EXPECT_EQ(A(i, j), array[3*j+i]); EXPECT_EQ(B(i, j), const_array[3*j+i]); } } } TEST(MatrixAdapter, RowMajor2x4IsCorrect) { const int expected[8] = { 1, 2, 3, 4, 5, 6, 7, 8 }; int array[8]; MatrixAdapter<int, 4, 1> M(array); M(0, 0) = 1; M(0, 1) = 2; M(0, 2) = 3; M(0, 3) = 4; M(1, 0) = 5; M(1, 1) = 6; M(1, 2) = 7; M(1, 3) = 8; for (int k = 0; k < 8; ++k) { EXPECT_EQ(array[k], expected[k]); } } TEST(MatrixAdapter, ColumnMajor2x4IsCorrect) { const int expected[8] = { 1, 5, 2, 6, 3, 7, 4, 8 }; int array[8]; MatrixAdapter<int, 1, 2> M(array); M(0, 0) = 1; M(0, 1) = 2; M(0, 2) = 3; M(0, 3) = 4; M(1, 0) = 5; M(1, 1) = 6; M(1, 2) = 7; M(1, 3) = 8; for (int k = 0; k < 8; ++k) { EXPECT_EQ(array[k], expected[k]); } } } // namespace internal } // namespace ceres