// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: keir@google.com (Keir Mierle) #include "ceres/residual_block.h" #include "gtest/gtest.h" #include "ceres/parameter_block.h" #include "ceres/sized_cost_function.h" #include "ceres/internal/eigen.h" #include "ceres/local_parameterization.h" namespace ceres { namespace internal { // Trivial cost function that accepts three arguments. class TernaryCostFunction: public CostFunction { public: TernaryCostFunction(int num_residuals, int32 parameter_block1_size, int32 parameter_block2_size, int32 parameter_block3_size) { set_num_residuals(num_residuals); mutable_parameter_block_sizes()->push_back(parameter_block1_size); mutable_parameter_block_sizes()->push_back(parameter_block2_size); mutable_parameter_block_sizes()->push_back(parameter_block3_size); } virtual bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const { for (int i = 0; i < num_residuals(); ++i) { residuals[i] = i; } if (jacobians) { for (int k = 0; k < 3; ++k) { if (jacobians[k] != NULL) { MatrixRef jacobian(jacobians[k], num_residuals(), parameter_block_sizes()[k]); jacobian.setConstant(k); } } } return true; } }; TEST(ResidualBlock, EvaluteWithNoLossFunctionOrLocalParameterizations) { double scratch[64]; // Prepare the parameter blocks. double values_x[2]; ParameterBlock x(values_x, 2, -1); double values_y[3]; ParameterBlock y(values_y, 3, -1); double values_z[4]; ParameterBlock z(values_z, 4, -1); vector<ParameterBlock*> parameters; parameters.push_back(&x); parameters.push_back(&y); parameters.push_back(&z); TernaryCostFunction cost_function(3, 2, 3, 4); // Create the object under tests. ResidualBlock residual_block(&cost_function, NULL, parameters, -1); // Verify getters. EXPECT_EQ(&cost_function, residual_block.cost_function()); EXPECT_EQ(NULL, residual_block.loss_function()); EXPECT_EQ(parameters[0], residual_block.parameter_blocks()[0]); EXPECT_EQ(parameters[1], residual_block.parameter_blocks()[1]); EXPECT_EQ(parameters[2], residual_block.parameter_blocks()[2]); EXPECT_EQ(3, residual_block.NumScratchDoublesForEvaluate()); // Verify cost-only evaluation. double cost; residual_block.Evaluate(true, &cost, NULL, NULL, scratch); EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost); // Verify cost and residual evaluation. double residuals[3]; residual_block.Evaluate(true, &cost, residuals, NULL, scratch); EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost); EXPECT_EQ(0.0, residuals[0]); EXPECT_EQ(1.0, residuals[1]); EXPECT_EQ(2.0, residuals[2]); // Verify cost, residual, and jacobian evaluation. cost = 0.0; VectorRef(residuals, 3).setConstant(0.0); Matrix jacobian_rx(3, 2); Matrix jacobian_ry(3, 3); Matrix jacobian_rz(3, 4); jacobian_rx.setConstant(-1.0); jacobian_ry.setConstant(-1.0); jacobian_rz.setConstant(-1.0); double *jacobian_ptrs[3] = { jacobian_rx.data(), jacobian_ry.data(), jacobian_rz.data() }; residual_block.Evaluate(true, &cost, residuals, jacobian_ptrs, scratch); EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost); EXPECT_EQ(0.0, residuals[0]); EXPECT_EQ(1.0, residuals[1]); EXPECT_EQ(2.0, residuals[2]); EXPECT_TRUE((jacobian_rx.array() == 0.0).all()) << "\n" << jacobian_rx; EXPECT_TRUE((jacobian_ry.array() == 1.0).all()) << "\n" << jacobian_ry; EXPECT_TRUE((jacobian_rz.array() == 2.0).all()) << "\n" << jacobian_rz; // Verify cost, residual, and partial jacobian evaluation. cost = 0.0; VectorRef(residuals, 3).setConstant(0.0); jacobian_rx.setConstant(-1.0); jacobian_ry.setConstant(-1.0); jacobian_rz.setConstant(-1.0); jacobian_ptrs[1] = NULL; // Don't compute the jacobian for y. residual_block.Evaluate(true, &cost, residuals, jacobian_ptrs, scratch); EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost); EXPECT_EQ(0.0, residuals[0]); EXPECT_EQ(1.0, residuals[1]); EXPECT_EQ(2.0, residuals[2]); EXPECT_TRUE((jacobian_rx.array() == 0.0).all()) << "\n" << jacobian_rx; EXPECT_TRUE((jacobian_ry.array() == -1.0).all()) << "\n" << jacobian_ry; EXPECT_TRUE((jacobian_rz.array() == 2.0).all()) << "\n" << jacobian_rz; } // Trivial cost function that accepts three arguments. class LocallyParameterizedCostFunction: public SizedCostFunction<3, 2, 3, 4> { public: virtual bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const { for (int i = 0; i < num_residuals(); ++i) { residuals[i] = i; } if (jacobians) { for (int k = 0; k < 3; ++k) { // The jacobians here are full sized, but they are transformed in the // evaluator into the "local" jacobian. In the tests, the "subset // constant" parameterization is used, which should pick out columns // from these jacobians. Put values in the jacobian that make this // obvious; in particular, make the jacobians like this: // // 0 1 2 3 4 ... // 0 1 2 3 4 ... // 0 1 2 3 4 ... // if (jacobians[k] != NULL) { MatrixRef jacobian(jacobians[k], num_residuals(), parameter_block_sizes()[k]); for (int j = 0; j < k + 2; ++j) { jacobian.col(j).setConstant(j); } } } } return true; } }; TEST(ResidualBlock, EvaluteWithLocalParameterizations) { double scratch[64]; // Prepare the parameter blocks. double values_x[2]; ParameterBlock x(values_x, 2, -1); double values_y[3]; ParameterBlock y(values_y, 3, -1); double values_z[4]; ParameterBlock z(values_z, 4, -1); vector<ParameterBlock*> parameters; parameters.push_back(&x); parameters.push_back(&y); parameters.push_back(&z); // Make x have the first component fixed. vector<int> x_fixed; x_fixed.push_back(0); SubsetParameterization x_parameterization(2, x_fixed); x.SetParameterization(&x_parameterization); // Make z have the last and last component fixed. vector<int> z_fixed; z_fixed.push_back(2); SubsetParameterization z_parameterization(4, z_fixed); z.SetParameterization(&z_parameterization); LocallyParameterizedCostFunction cost_function; // Create the object under tests. ResidualBlock residual_block(&cost_function, NULL, parameters, -1); // Verify getters. EXPECT_EQ(&cost_function, residual_block.cost_function()); EXPECT_EQ(NULL, residual_block.loss_function()); EXPECT_EQ(parameters[0], residual_block.parameter_blocks()[0]); EXPECT_EQ(parameters[1], residual_block.parameter_blocks()[1]); EXPECT_EQ(parameters[2], residual_block.parameter_blocks()[2]); EXPECT_EQ(3*(2 + 4) + 3, residual_block.NumScratchDoublesForEvaluate()); // Verify cost-only evaluation. double cost; residual_block.Evaluate(true, &cost, NULL, NULL, scratch); EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost); // Verify cost and residual evaluation. double residuals[3]; residual_block.Evaluate(true, &cost, residuals, NULL, scratch); EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost); EXPECT_EQ(0.0, residuals[0]); EXPECT_EQ(1.0, residuals[1]); EXPECT_EQ(2.0, residuals[2]); // Verify cost, residual, and jacobian evaluation. cost = 0.0; VectorRef(residuals, 3).setConstant(0.0); Matrix jacobian_rx(3, 1); // Since the first element is fixed. Matrix jacobian_ry(3, 3); Matrix jacobian_rz(3, 3); // Since the third element is fixed. jacobian_rx.setConstant(-1.0); jacobian_ry.setConstant(-1.0); jacobian_rz.setConstant(-1.0); double *jacobian_ptrs[3] = { jacobian_rx.data(), jacobian_ry.data(), jacobian_rz.data() }; residual_block.Evaluate(true, &cost, residuals, jacobian_ptrs, scratch); EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost); EXPECT_EQ(0.0, residuals[0]); EXPECT_EQ(1.0, residuals[1]); EXPECT_EQ(2.0, residuals[2]); Matrix expected_jacobian_rx(3, 1); expected_jacobian_rx << 1.0, 1.0, 1.0; Matrix expected_jacobian_ry(3, 3); expected_jacobian_ry << 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0; Matrix expected_jacobian_rz(3, 3); expected_jacobian_rz << 0.0, 1.0, /* 2.0, */ 3.0, // 3rd parameter constant. 0.0, 1.0, /* 2.0, */ 3.0, 0.0, 1.0, /* 2.0, */ 3.0; EXPECT_EQ(expected_jacobian_rx, jacobian_rx) << "\nExpected:\n" << expected_jacobian_rx << "\nActual:\n" << jacobian_rx; EXPECT_EQ(expected_jacobian_ry, jacobian_ry) << "\nExpected:\n" << expected_jacobian_ry << "\nActual:\n" << jacobian_ry; EXPECT_EQ(expected_jacobian_rz, jacobian_rz) << "\nExpected:\n " << expected_jacobian_rz << "\nActual:\n" << jacobian_rz; // Verify cost, residual, and partial jacobian evaluation. cost = 0.0; VectorRef(residuals, 3).setConstant(0.0); jacobian_rx.setConstant(-1.0); jacobian_ry.setConstant(-1.0); jacobian_rz.setConstant(-1.0); jacobian_ptrs[1] = NULL; // Don't compute the jacobian for y. residual_block.Evaluate(true, &cost, residuals, jacobian_ptrs, scratch); EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost); EXPECT_EQ(0.0, residuals[0]); EXPECT_EQ(1.0, residuals[1]); EXPECT_EQ(2.0, residuals[2]); EXPECT_EQ(expected_jacobian_rx, jacobian_rx); EXPECT_TRUE((jacobian_ry.array() == -1.0).all()) << "\n" << jacobian_ry; EXPECT_EQ(expected_jacobian_rz, jacobian_rz); } } // namespace internal } // namespace ceres