// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include <cmath> #include "ceres/fpclassify.h" #include "ceres/internal/autodiff.h" #include "ceres/internal/eigen.h" #include "ceres/local_parameterization.h" #include "ceres/rotation.h" #include "gtest/gtest.h" namespace ceres { namespace internal { TEST(IdentityParameterization, EverythingTest) { IdentityParameterization parameterization(3); EXPECT_EQ(parameterization.GlobalSize(), 3); EXPECT_EQ(parameterization.LocalSize(), 3); double x[3] = {1.0, 2.0, 3.0}; double delta[3] = {0.0, 1.0, 2.0}; double x_plus_delta[3] = {0.0, 0.0, 0.0}; parameterization.Plus(x, delta, x_plus_delta); EXPECT_EQ(x_plus_delta[0], 1.0); EXPECT_EQ(x_plus_delta[1], 3.0); EXPECT_EQ(x_plus_delta[2], 5.0); double jacobian[9]; parameterization.ComputeJacobian(x, jacobian); int k = 0; for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j, ++k) { EXPECT_EQ(jacobian[k], (i == j) ? 1.0 : 0.0); } } } TEST(SubsetParameterization, DeathTests) { vector<int> constant_parameters; EXPECT_DEATH_IF_SUPPORTED( SubsetParameterization parameterization(1, constant_parameters), "at least"); constant_parameters.push_back(0); EXPECT_DEATH_IF_SUPPORTED( SubsetParameterization parameterization(1, constant_parameters), "Number of parameters"); constant_parameters.push_back(1); EXPECT_DEATH_IF_SUPPORTED( SubsetParameterization parameterization(2, constant_parameters), "Number of parameters"); constant_parameters.push_back(1); EXPECT_DEATH_IF_SUPPORTED( SubsetParameterization parameterization(2, constant_parameters), "duplicates"); } TEST(SubsetParameterization, NormalFunctionTest) { double x[4] = {1.0, 2.0, 3.0, 4.0}; for (int i = 0; i < 4; ++i) { vector<int> constant_parameters; constant_parameters.push_back(i); SubsetParameterization parameterization(4, constant_parameters); double delta[3] = {1.0, 2.0, 3.0}; double x_plus_delta[4] = {0.0, 0.0, 0.0}; parameterization.Plus(x, delta, x_plus_delta); int k = 0; for (int j = 0; j < 4; ++j) { if (j == i) { EXPECT_EQ(x_plus_delta[j], x[j]); } else { EXPECT_EQ(x_plus_delta[j], x[j] + delta[k++]); } } double jacobian[4 * 3]; parameterization.ComputeJacobian(x, jacobian); int delta_cursor = 0; int jacobian_cursor = 0; for (int j = 0; j < 4; ++j) { if (j != i) { for (int k = 0; k < 3; ++k, jacobian_cursor++) { EXPECT_EQ(jacobian[jacobian_cursor], delta_cursor == k ? 1.0 : 0.0); } ++delta_cursor; } else { for (int k = 0; k < 3; ++k, jacobian_cursor++) { EXPECT_EQ(jacobian[jacobian_cursor], 0.0); } } } }; } // Functor needed to implement automatically differentiated Plus for // quaternions. struct QuaternionPlus { template<typename T> bool operator()(const T* x, const T* delta, T* x_plus_delta) const { const T squared_norm_delta = delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]; T q_delta[4]; if (squared_norm_delta > T(0.0)) { T norm_delta = sqrt(squared_norm_delta); const T sin_delta_by_delta = sin(norm_delta) / norm_delta; q_delta[0] = cos(norm_delta); q_delta[1] = sin_delta_by_delta * delta[0]; q_delta[2] = sin_delta_by_delta * delta[1]; q_delta[3] = sin_delta_by_delta * delta[2]; } else { // We do not just use q_delta = [1,0,0,0] here because that is a // constant and when used for automatic differentiation will // lead to a zero derivative. Instead we take a first order // approximation and evaluate it at zero. q_delta[0] = T(1.0); q_delta[1] = delta[0]; q_delta[2] = delta[1]; q_delta[3] = delta[2]; } QuaternionProduct(q_delta, x, x_plus_delta); return true; } }; void QuaternionParameterizationTestHelper(const double* x, const double* delta, const double* q_delta) { const double kTolerance = 1e-14; double x_plus_delta_ref[4] = {0.0, 0.0, 0.0, 0.0}; QuaternionProduct(q_delta, x, x_plus_delta_ref); double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0}; QuaternionParameterization param; param.Plus(x, delta, x_plus_delta); for (int i = 0; i < 4; ++i) { EXPECT_NEAR(x_plus_delta[i], x_plus_delta_ref[i], kTolerance); } const double x_plus_delta_norm = sqrt(x_plus_delta[0] * x_plus_delta[0] + x_plus_delta[1] * x_plus_delta[1] + x_plus_delta[2] * x_plus_delta[2] + x_plus_delta[3] * x_plus_delta[3]); EXPECT_NEAR(x_plus_delta_norm, 1.0, kTolerance); double jacobian_ref[12]; double zero_delta[3] = {0.0, 0.0, 0.0}; const double* parameters[2] = {x, zero_delta}; double* jacobian_array[2] = { NULL, jacobian_ref }; // Autodiff jacobian at delta_x = 0. internal::AutoDiff<QuaternionPlus, double, 4, 3>::Differentiate( QuaternionPlus(), parameters, 4, x_plus_delta, jacobian_array); double jacobian[12]; param.ComputeJacobian(x, jacobian); for (int i = 0; i < 12; ++i) { EXPECT_TRUE(IsFinite(jacobian[i])); EXPECT_NEAR(jacobian[i], jacobian_ref[i], kTolerance) << "Jacobian mismatch: i = " << i << "\n Expected \n" << ConstMatrixRef(jacobian_ref, 4, 3) << "\n Actual \n" << ConstMatrixRef(jacobian, 4, 3); } } TEST(QuaternionParameterization, ZeroTest) { double x[4] = {0.5, 0.5, 0.5, 0.5}; double delta[3] = {0.0, 0.0, 0.0}; double q_delta[4] = {1.0, 0.0, 0.0, 0.0}; QuaternionParameterizationTestHelper(x, delta, q_delta); } TEST(QuaternionParameterization, NearZeroTest) { double x[4] = {0.52, 0.25, 0.15, 0.45}; double norm_x = sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2] + x[3] * x[3]); for (int i = 0; i < 4; ++i) { x[i] = x[i] / norm_x; } double delta[3] = {0.24, 0.15, 0.10}; for (int i = 0; i < 3; ++i) { delta[i] = delta[i] * 1e-14; } double q_delta[4]; q_delta[0] = 1.0; q_delta[1] = delta[0]; q_delta[2] = delta[1]; q_delta[3] = delta[2]; QuaternionParameterizationTestHelper(x, delta, q_delta); } TEST(QuaternionParameterization, AwayFromZeroTest) { double x[4] = {0.52, 0.25, 0.15, 0.45}; double norm_x = sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2] + x[3] * x[3]); for (int i = 0; i < 4; ++i) { x[i] = x[i] / norm_x; } double delta[3] = {0.24, 0.15, 0.10}; const double delta_norm = sqrt(delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]); double q_delta[4]; q_delta[0] = cos(delta_norm); q_delta[1] = sin(delta_norm) / delta_norm * delta[0]; q_delta[2] = sin(delta_norm) / delta_norm * delta[1]; q_delta[3] = sin(delta_norm) / delta_norm * delta[2]; QuaternionParameterizationTestHelper(x, delta, q_delta); } } // namespace internal } // namespace ceres