// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) // // Generic loop for line search based optimization algorithms. // // This is primarily inpsired by the minFunc packaged written by Mark // Schmidt. // // http://www.di.ens.fr/~mschmidt/Software/minFunc.html // // For details on the theory and implementation see "Numerical // Optimization" by Nocedal & Wright. #include "ceres/line_search_minimizer.h" #include <algorithm> #include <cstdlib> #include <cmath> #include <string> #include <vector> #include "Eigen/Dense" #include "ceres/array_utils.h" #include "ceres/evaluator.h" #include "ceres/internal/eigen.h" #include "ceres/internal/port.h" #include "ceres/internal/scoped_ptr.h" #include "ceres/line_search.h" #include "ceres/line_search_direction.h" #include "ceres/stringprintf.h" #include "ceres/types.h" #include "ceres/wall_time.h" #include "glog/logging.h" namespace ceres { namespace internal { namespace { // TODO(sameeragarwal): I think there is a small bug here, in that if // the evaluation fails, then the state can contain garbage. Look at // this more carefully. bool Evaluate(Evaluator* evaluator, const Vector& x, LineSearchMinimizer::State* state, string* message) { if (!evaluator->Evaluate(x.data(), &(state->cost), NULL, state->gradient.data(), NULL)) { *message = "Gradient evaluation failed."; return false; } Vector negative_gradient = -state->gradient; Vector projected_gradient_step(x.size()); if (!evaluator->Plus(x.data(), negative_gradient.data(), projected_gradient_step.data())) { *message = "projected_gradient_step = Plus(x, -gradient) failed."; return false; } state->gradient_squared_norm = (x - projected_gradient_step).squaredNorm(); state->gradient_max_norm = (x - projected_gradient_step).lpNorm<Eigen::Infinity>(); return true; } } // namespace void LineSearchMinimizer::Minimize(const Minimizer::Options& options, double* parameters, Solver::Summary* summary) { const bool is_not_silent = !options.is_silent; double start_time = WallTimeInSeconds(); double iteration_start_time = start_time; Evaluator* evaluator = CHECK_NOTNULL(options.evaluator); const int num_parameters = evaluator->NumParameters(); const int num_effective_parameters = evaluator->NumEffectiveParameters(); summary->termination_type = NO_CONVERGENCE; summary->num_successful_steps = 0; summary->num_unsuccessful_steps = 0; VectorRef x(parameters, num_parameters); State current_state(num_parameters, num_effective_parameters); State previous_state(num_parameters, num_effective_parameters); Vector delta(num_effective_parameters); Vector x_plus_delta(num_parameters); IterationSummary iteration_summary; iteration_summary.iteration = 0; iteration_summary.step_is_valid = false; iteration_summary.step_is_successful = false; iteration_summary.cost_change = 0.0; iteration_summary.gradient_max_norm = 0.0; iteration_summary.gradient_norm = 0.0; iteration_summary.step_norm = 0.0; iteration_summary.linear_solver_iterations = 0; iteration_summary.step_solver_time_in_seconds = 0; // Do initial cost and Jacobian evaluation. if (!Evaluate(evaluator, x, ¤t_state, &summary->message)) { summary->termination_type = FAILURE; summary->message = "Initial cost and jacobian evaluation failed. " "More details: " + summary->message; LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; return; } summary->initial_cost = current_state.cost + summary->fixed_cost; iteration_summary.cost = current_state.cost + summary->fixed_cost; iteration_summary.gradient_max_norm = current_state.gradient_max_norm; iteration_summary.gradient_norm = sqrt(current_state.gradient_squared_norm); if (iteration_summary.gradient_max_norm <= options.gradient_tolerance) { summary->message = StringPrintf("Gradient tolerance reached. " "Gradient max norm: %e <= %e", iteration_summary.gradient_max_norm, options.gradient_tolerance); summary->termination_type = CONVERGENCE; VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message; return; } iteration_summary.iteration_time_in_seconds = WallTimeInSeconds() - iteration_start_time; iteration_summary.cumulative_time_in_seconds = WallTimeInSeconds() - start_time + summary->preprocessor_time_in_seconds; summary->iterations.push_back(iteration_summary); LineSearchDirection::Options line_search_direction_options; line_search_direction_options.num_parameters = num_effective_parameters; line_search_direction_options.type = options.line_search_direction_type; line_search_direction_options.nonlinear_conjugate_gradient_type = options.nonlinear_conjugate_gradient_type; line_search_direction_options.max_lbfgs_rank = options.max_lbfgs_rank; line_search_direction_options.use_approximate_eigenvalue_bfgs_scaling = options.use_approximate_eigenvalue_bfgs_scaling; scoped_ptr<LineSearchDirection> line_search_direction( LineSearchDirection::Create(line_search_direction_options)); LineSearchFunction line_search_function(evaluator); LineSearch::Options line_search_options; line_search_options.interpolation_type = options.line_search_interpolation_type; line_search_options.min_step_size = options.min_line_search_step_size; line_search_options.sufficient_decrease = options.line_search_sufficient_function_decrease; line_search_options.max_step_contraction = options.max_line_search_step_contraction; line_search_options.min_step_contraction = options.min_line_search_step_contraction; line_search_options.max_num_iterations = options.max_num_line_search_step_size_iterations; line_search_options.sufficient_curvature_decrease = options.line_search_sufficient_curvature_decrease; line_search_options.max_step_expansion = options.max_line_search_step_expansion; line_search_options.function = &line_search_function; scoped_ptr<LineSearch> line_search(LineSearch::Create(options.line_search_type, line_search_options, &summary->message)); if (line_search.get() == NULL) { summary->termination_type = FAILURE; LOG_IF(ERROR, is_not_silent) << "Terminating: " << summary->message; return; } LineSearch::Summary line_search_summary; int num_line_search_direction_restarts = 0; while (true) { if (!RunCallbacks(options, iteration_summary, summary)) { break; } iteration_start_time = WallTimeInSeconds(); if (iteration_summary.iteration >= options.max_num_iterations) { summary->message = "Maximum number of iterations reached."; summary->termination_type = NO_CONVERGENCE; VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message; break; } const double total_solver_time = iteration_start_time - start_time + summary->preprocessor_time_in_seconds; if (total_solver_time >= options.max_solver_time_in_seconds) { summary->message = "Maximum solver time reached."; summary->termination_type = NO_CONVERGENCE; VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message; break; } iteration_summary = IterationSummary(); iteration_summary.iteration = summary->iterations.back().iteration + 1; iteration_summary.step_is_valid = false; iteration_summary.step_is_successful = false; bool line_search_status = true; if (iteration_summary.iteration == 1) { current_state.search_direction = -current_state.gradient; } else { line_search_status = line_search_direction->NextDirection( previous_state, current_state, ¤t_state.search_direction); } if (!line_search_status && num_line_search_direction_restarts >= options.max_num_line_search_direction_restarts) { // Line search direction failed to generate a new direction, and we // have already reached our specified maximum number of restarts, // terminate optimization. summary->message = StringPrintf("Line search direction failure: specified " "max_num_line_search_direction_restarts: %d reached.", options.max_num_line_search_direction_restarts); summary->termination_type = FAILURE; LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; break; } else if (!line_search_status) { // Restart line search direction with gradient descent on first iteration // as we have not yet reached our maximum number of restarts. CHECK_LT(num_line_search_direction_restarts, options.max_num_line_search_direction_restarts); ++num_line_search_direction_restarts; LOG_IF(WARNING, is_not_silent) << "Line search direction algorithm: " << LineSearchDirectionTypeToString( options.line_search_direction_type) << ", failed to produce a valid new direction at " << "iteration: " << iteration_summary.iteration << ". Restarting, number of restarts: " << num_line_search_direction_restarts << " / " << options.max_num_line_search_direction_restarts << " [max]."; line_search_direction.reset( LineSearchDirection::Create(line_search_direction_options)); current_state.search_direction = -current_state.gradient; } line_search_function.Init(x, current_state.search_direction); current_state.directional_derivative = current_state.gradient.dot(current_state.search_direction); // TODO(sameeragarwal): Refactor this into its own object and add // explanations for the various choices. // // Note that we use !line_search_status to ensure that we treat cases when // we restarted the line search direction equivalently to the first // iteration. const double initial_step_size = (iteration_summary.iteration == 1 || !line_search_status) ? min(1.0, 1.0 / current_state.gradient_max_norm) : min(1.0, 2.0 * (current_state.cost - previous_state.cost) / current_state.directional_derivative); // By definition, we should only ever go forwards along the specified search // direction in a line search, most likely cause for this being violated // would be a numerical failure in the line search direction calculation. if (initial_step_size < 0.0) { summary->message = StringPrintf("Numerical failure in line search, initial_step_size is " "negative: %.5e, directional_derivative: %.5e, " "(current_cost - previous_cost): %.5e", initial_step_size, current_state.directional_derivative, (current_state.cost - previous_state.cost)); summary->termination_type = FAILURE; LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; break; } line_search->Search(initial_step_size, current_state.cost, current_state.directional_derivative, &line_search_summary); if (!line_search_summary.success) { summary->message = StringPrintf("Numerical failure in line search, failed to find " "a valid step size, (did not run out of iterations) " "using initial_step_size: %.5e, initial_cost: %.5e, " "initial_gradient: %.5e.", initial_step_size, current_state.cost, current_state.directional_derivative); LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; summary->termination_type = FAILURE; break; } current_state.step_size = line_search_summary.optimal_step_size; delta = current_state.step_size * current_state.search_direction; previous_state = current_state; iteration_summary.step_solver_time_in_seconds = WallTimeInSeconds() - iteration_start_time; if (!evaluator->Plus(x.data(), delta.data(), x_plus_delta.data())) { summary->termination_type = FAILURE; summary->message = "x_plus_delta = Plus(x, delta) failed. This should not happen " "as the step was valid when it was selected by the line search."; LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; break; } else if (!Evaluate(evaluator, x_plus_delta, ¤t_state, &summary->message)) { summary->termination_type = FAILURE; summary->message = "Step failed to evaluate. This should not happen as the step was " "valid when it was selected by the line search. More details: " + summary->message; LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; break; } else { x = x_plus_delta; } iteration_summary.gradient_max_norm = current_state.gradient_max_norm; iteration_summary.gradient_norm = sqrt(current_state.gradient_squared_norm); iteration_summary.cost_change = previous_state.cost - current_state.cost; iteration_summary.cost = current_state.cost + summary->fixed_cost; iteration_summary.step_norm = delta.norm(); iteration_summary.step_is_valid = true; iteration_summary.step_is_successful = true; iteration_summary.step_norm = delta.norm(); iteration_summary.step_size = current_state.step_size; iteration_summary.line_search_function_evaluations = line_search_summary.num_function_evaluations; iteration_summary.line_search_gradient_evaluations = line_search_summary.num_gradient_evaluations; iteration_summary.line_search_iterations = line_search_summary.num_iterations; iteration_summary.iteration_time_in_seconds = WallTimeInSeconds() - iteration_start_time; iteration_summary.cumulative_time_in_seconds = WallTimeInSeconds() - start_time + summary->preprocessor_time_in_seconds; summary->iterations.push_back(iteration_summary); ++summary->num_successful_steps; if (iteration_summary.gradient_max_norm <= options.gradient_tolerance) { summary->message = StringPrintf("Gradient tolerance reached. " "Gradient max norm: %e <= %e", iteration_summary.gradient_max_norm, options.gradient_tolerance); summary->termination_type = CONVERGENCE; VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message; break; } const double absolute_function_tolerance = options.function_tolerance * previous_state.cost; if (fabs(iteration_summary.cost_change) < absolute_function_tolerance) { summary->message = StringPrintf("Function tolerance reached. " "|cost_change|/cost: %e <= %e", fabs(iteration_summary.cost_change) / previous_state.cost, options.function_tolerance); summary->termination_type = CONVERGENCE; VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message; break; } } } } // namespace internal } // namespace ceres