// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: keir@google.com (Keir Mierle) #ifndef CERES_INTERNAL_GRADIENT_CHECKING_COST_FUNCTION_H_ #define CERES_INTERNAL_GRADIENT_CHECKING_COST_FUNCTION_H_ #include <string> #include "ceres/cost_function.h" namespace ceres { namespace internal { class ProblemImpl; // Creates a CostFunction that checks the jacobians that cost_function computes // with finite differences. Bad results are logged; required precision is // controlled by relative_precision and the numeric differentiation step size is // controlled with relative_step_size. See solver.h for a better explanation of // relative_step_size. Caller owns result. // // The condition enforced is that // // (J_actual(i, j) - J_numeric(i, j)) // ------------------------------------ < relative_precision // max(J_actual(i, j), J_numeric(i, j)) // // where J_actual(i, j) is the jacobian as computed by the supplied cost // function (by the user) and J_numeric is the jacobian as computed by finite // differences. // // Note: This is quite inefficient and is intended only for debugging. CostFunction* CreateGradientCheckingCostFunction( const CostFunction* cost_function, double relative_step_size, double relative_precision, const string& extra_info); // Create a new ProblemImpl object from the input problem_impl, where // each CostFunctions in problem_impl are wrapped inside a // GradientCheckingCostFunctions. This gives us a ProblemImpl object // which checks its derivatives against estimates from numeric // differentiation everytime a ResidualBlock is evaluated. // // relative_step_size and relative_precision are parameters to control // the numeric differentiation and the relative tolerance between the // jacobian computed by the CostFunctions in problem_impl and // jacobians obtained by numerically differentiating them. For more // details see the documentation for // CreateGradientCheckingCostFunction above. ProblemImpl* CreateGradientCheckingProblemImpl(ProblemImpl* problem_impl, double relative_step_size, double relative_precision); } // namespace internal } // namespace ceres #endif // CERES_INTERNAL_GRADIENT_CHECKING_COST_FUNCTION_H_