# Ceres Solver - A fast non-linear least squares minimizer # Copyright 2013 Google Inc. All rights reserved. # http://code.google.com/p/ceres-solver/ # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of Google Inc. nor the names of its contributors may be # used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # Author: sameeragarwal@google.com (Sameer Agarwal) # # Script for explicitly generating template specialization of the # PartitionedMatrixView class. Explicitly generating these # instantiations in separate .cc files breaks the compilation into # separate compilation unit rather than one large cc file. # # This script creates two sets of files. # # 1. partitioned_matrix_view_x_x_x.cc # where the x indicates the template parameters and # # 2. partitioned_matrix_view.cc # # that contains a factory function for instantiating these classes # based on runtime parameters. # # The list of tuples, specializations indicates the set of # specializations that is generated. # Set of template specializations to generate SPECIALIZATIONS = [(2, 2, 2), (2, 2, 3), (2, 2, 4), (2, 2, "Eigen::Dynamic"), (2, 3, 3), (2, 3, 4), (2, 3, 9), (2, 3, "Eigen::Dynamic"), (2, 4, 3), (2, 4, 4), (2, 4, 8), (2, 4, 9), (2, 4, "Eigen::Dynamic"), (2, "Eigen::Dynamic", "Eigen::Dynamic"), (4, 4, 2), (4, 4, 3), (4, 4, 4), (4, 4, "Eigen::Dynamic"), ("Eigen::Dynamic", "Eigen::Dynamic", "Eigen::Dynamic")] HEADER = """// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2013 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) // // Template specialization of PartitionedMatrixView. // // ======================================== // THIS FILE IS AUTOGENERATED. DO NOT EDIT. // THIS FILE IS AUTOGENERATED. DO NOT EDIT. // THIS FILE IS AUTOGENERATED. DO NOT EDIT. // THIS FILE IS AUTOGENERATED. DO NOT EDIT. //========================================= // // This file is generated using generate_partitioned_matrix_view_specializations.py. // Editing it manually is not recommended. """ DYNAMIC_FILE = """ #include "ceres/partitioned_matrix_view_impl.h" #include "ceres/internal/eigen.h" namespace ceres { namespace internal { template class PartitionedMatrixView<%s, %s, %s>; } // namespace internal } // namespace ceres """ SPECIALIZATION_FILE = """ // This include must come before any #ifndef check on Ceres compile options. #include "ceres/internal/port.h" #ifndef CERES_RESTRICT_SCHUR_SPECIALIZATION #include "ceres/partitioned_matrix_view_impl.h" #include "ceres/internal/eigen.h" namespace ceres { namespace internal { template class PartitionedMatrixView<%s, %s, %s>; } // namespace internal } // namespace ceres #endif // CERES_RESTRICT_SCHUR_SPECIALIZATION """ FACTORY_FILE_HEADER = """ #include "ceres/linear_solver.h" #include "ceres/partitioned_matrix_view.h" #include "ceres/internal/eigen.h" namespace ceres { namespace internal { PartitionedMatrixViewBase* PartitionedMatrixViewBase::Create(const LinearSolver::Options& options, const BlockSparseMatrix& matrix) { #ifndef CERES_RESTRICT_SCHUR_SPECIALIZATION """ FACTORY_CONDITIONAL = """ if ((options.row_block_size == %s) && (options.e_block_size == %s) && (options.f_block_size == %s)) { return new PartitionedMatrixView<%s, %s, %s>( matrix, options.elimination_groups[0]); } """ FACTORY_FOOTER = """ #endif VLOG(1) << "Template specializations not found for <" << options.row_block_size << "," << options.e_block_size << "," << options.f_block_size << ">"; return new PartitionedMatrixView<Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic>( matrix, options.elimination_groups[0]); }; } // namespace internal } // namespace ceres """ def SuffixForSize(size): if size == "Eigen::Dynamic": return "d" return str(size) def SpecializationFilename(prefix, row_block_size, e_block_size, f_block_size): return "_".join([prefix] + map(SuffixForSize, (row_block_size, e_block_size, f_block_size))) def Specialize(): """ Generate specialization code and the conditionals to instantiate it. """ f = open("partitioned_matrix_view.cc", "w") f.write(HEADER) f.write(FACTORY_FILE_HEADER) for row_block_size, e_block_size, f_block_size in SPECIALIZATIONS: output = SpecializationFilename("generated/partitioned_matrix_view", row_block_size, e_block_size, f_block_size) + ".cc" fptr = open(output, "w") fptr.write(HEADER) template = SPECIALIZATION_FILE if (row_block_size == "Eigen::Dynamic" and e_block_size == "Eigen::Dynamic" and f_block_size == "Eigen::Dynamic"): template = DYNAMIC_FILE fptr.write(template % (row_block_size, e_block_size, f_block_size)) fptr.close() f.write(FACTORY_CONDITIONAL % (row_block_size, e_block_size, f_block_size, row_block_size, e_block_size, f_block_size)) f.write(FACTORY_FOOTER) f.close() if __name__ == "__main__": Specialize()