// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2013 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/covariance.h" #include <algorithm> #include <cmath> #include "ceres/compressed_row_sparse_matrix.h" #include "ceres/cost_function.h" #include "ceres/covariance_impl.h" #include "ceres/local_parameterization.h" #include "ceres/map_util.h" #include "ceres/problem_impl.h" #include "gtest/gtest.h" namespace ceres { namespace internal { TEST(CovarianceImpl, ComputeCovarianceSparsity) { double parameters[10]; double* block1 = parameters; double* block2 = block1 + 1; double* block3 = block2 + 2; double* block4 = block3 + 3; ProblemImpl problem; // Add in random order problem.AddParameterBlock(block1, 1); problem.AddParameterBlock(block4, 4); problem.AddParameterBlock(block3, 3); problem.AddParameterBlock(block2, 2); // Sparsity pattern // // x 0 0 0 0 0 x x x x // 0 x x x x x 0 0 0 0 // 0 x x x x x 0 0 0 0 // 0 0 0 x x x 0 0 0 0 // 0 0 0 x x x 0 0 0 0 // 0 0 0 x x x 0 0 0 0 // 0 0 0 0 0 0 x x x x // 0 0 0 0 0 0 x x x x // 0 0 0 0 0 0 x x x x // 0 0 0 0 0 0 x x x x int expected_rows[] = {0, 5, 10, 15, 18, 21, 24, 28, 32, 36, 40}; int expected_cols[] = {0, 6, 7, 8, 9, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5, 3, 4, 5, 6, 7, 8, 9, 6, 7, 8, 9, 6, 7, 8, 9, 6, 7, 8, 9}; vector<pair<const double*, const double*> > covariance_blocks; covariance_blocks.push_back(make_pair(block1, block1)); covariance_blocks.push_back(make_pair(block4, block4)); covariance_blocks.push_back(make_pair(block2, block2)); covariance_blocks.push_back(make_pair(block3, block3)); covariance_blocks.push_back(make_pair(block2, block3)); covariance_blocks.push_back(make_pair(block4, block1)); // reversed Covariance::Options options; CovarianceImpl covariance_impl(options); EXPECT_TRUE(covariance_impl .ComputeCovarianceSparsity(covariance_blocks, &problem)); const CompressedRowSparseMatrix* crsm = covariance_impl.covariance_matrix(); EXPECT_EQ(crsm->num_rows(), 10); EXPECT_EQ(crsm->num_cols(), 10); EXPECT_EQ(crsm->num_nonzeros(), 40); const int* rows = crsm->rows(); for (int r = 0; r < crsm->num_rows() + 1; ++r) { EXPECT_EQ(rows[r], expected_rows[r]) << r << " " << rows[r] << " " << expected_rows[r]; } const int* cols = crsm->cols(); for (int c = 0; c < crsm->num_nonzeros(); ++c) { EXPECT_EQ(cols[c], expected_cols[c]) << c << " " << cols[c] << " " << expected_cols[c]; } } class UnaryCostFunction: public CostFunction { public: UnaryCostFunction(const int num_residuals, const int32 parameter_block_size, const double* jacobian) : jacobian_(jacobian, jacobian + num_residuals * parameter_block_size) { set_num_residuals(num_residuals); mutable_parameter_block_sizes()->push_back(parameter_block_size); } virtual bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const { for (int i = 0; i < num_residuals(); ++i) { residuals[i] = 1; } if (jacobians == NULL) { return true; } if (jacobians[0] != NULL) { copy(jacobian_.begin(), jacobian_.end(), jacobians[0]); } return true; } private: vector<double> jacobian_; }; class BinaryCostFunction: public CostFunction { public: BinaryCostFunction(const int num_residuals, const int32 parameter_block1_size, const int32 parameter_block2_size, const double* jacobian1, const double* jacobian2) : jacobian1_(jacobian1, jacobian1 + num_residuals * parameter_block1_size), jacobian2_(jacobian2, jacobian2 + num_residuals * parameter_block2_size) { set_num_residuals(num_residuals); mutable_parameter_block_sizes()->push_back(parameter_block1_size); mutable_parameter_block_sizes()->push_back(parameter_block2_size); } virtual bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const { for (int i = 0; i < num_residuals(); ++i) { residuals[i] = 2; } if (jacobians == NULL) { return true; } if (jacobians[0] != NULL) { copy(jacobian1_.begin(), jacobian1_.end(), jacobians[0]); } if (jacobians[1] != NULL) { copy(jacobian2_.begin(), jacobian2_.end(), jacobians[1]); } return true; } private: vector<double> jacobian1_; vector<double> jacobian2_; }; // x_plus_delta = delta * x; class PolynomialParameterization : public LocalParameterization { public: virtual ~PolynomialParameterization() {} virtual bool Plus(const double* x, const double* delta, double* x_plus_delta) const { x_plus_delta[0] = delta[0] * x[0]; x_plus_delta[1] = delta[0] * x[1]; return true; } virtual bool ComputeJacobian(const double* x, double* jacobian) const { jacobian[0] = x[0]; jacobian[1] = x[1]; return true; } virtual int GlobalSize() const { return 2; } virtual int LocalSize() const { return 1; } }; class CovarianceTest : public ::testing::Test { protected: virtual void SetUp() { double* x = parameters_; double* y = x + 2; double* z = y + 3; x[0] = 1; x[1] = 1; y[0] = 2; y[1] = 2; y[2] = 2; z[0] = 3; { double jacobian[] = { 1.0, 0.0, 0.0, 1.0}; problem_.AddResidualBlock(new UnaryCostFunction(2, 2, jacobian), NULL, x); } { double jacobian[] = { 2.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 2.0 }; problem_.AddResidualBlock(new UnaryCostFunction(3, 3, jacobian), NULL, y); } { double jacobian = 5.0; problem_.AddResidualBlock(new UnaryCostFunction(1, 1, &jacobian), NULL, z); } { double jacobian1[] = { 1.0, 2.0, 3.0 }; double jacobian2[] = { -5.0, -6.0 }; problem_.AddResidualBlock( new BinaryCostFunction(1, 3, 2, jacobian1, jacobian2), NULL, y, x); } { double jacobian1[] = {2.0 }; double jacobian2[] = { 3.0, -2.0 }; problem_.AddResidualBlock( new BinaryCostFunction(1, 1, 2, jacobian1, jacobian2), NULL, z, x); } all_covariance_blocks_.push_back(make_pair(x, x)); all_covariance_blocks_.push_back(make_pair(y, y)); all_covariance_blocks_.push_back(make_pair(z, z)); all_covariance_blocks_.push_back(make_pair(x, y)); all_covariance_blocks_.push_back(make_pair(x, z)); all_covariance_blocks_.push_back(make_pair(y, z)); column_bounds_[x] = make_pair(0, 2); column_bounds_[y] = make_pair(2, 5); column_bounds_[z] = make_pair(5, 6); } void ComputeAndCompareCovarianceBlocks(const Covariance::Options& options, const double* expected_covariance) { // Generate all possible combination of block pairs and check if the // covariance computation is correct. for (int i = 1; i <= 64; ++i) { vector<pair<const double*, const double*> > covariance_blocks; if (i & 1) { covariance_blocks.push_back(all_covariance_blocks_[0]); } if (i & 2) { covariance_blocks.push_back(all_covariance_blocks_[1]); } if (i & 4) { covariance_blocks.push_back(all_covariance_blocks_[2]); } if (i & 8) { covariance_blocks.push_back(all_covariance_blocks_[3]); } if (i & 16) { covariance_blocks.push_back(all_covariance_blocks_[4]); } if (i & 32) { covariance_blocks.push_back(all_covariance_blocks_[5]); } Covariance covariance(options); EXPECT_TRUE(covariance.Compute(covariance_blocks, &problem_)); for (int i = 0; i < covariance_blocks.size(); ++i) { const double* block1 = covariance_blocks[i].first; const double* block2 = covariance_blocks[i].second; // block1, block2 GetCovarianceBlockAndCompare(block1, block2, covariance, expected_covariance); // block2, block1 GetCovarianceBlockAndCompare(block2, block1, covariance, expected_covariance); } } } void GetCovarianceBlockAndCompare(const double* block1, const double* block2, const Covariance& covariance, const double* expected_covariance) { const int row_begin = FindOrDie(column_bounds_, block1).first; const int row_end = FindOrDie(column_bounds_, block1).second; const int col_begin = FindOrDie(column_bounds_, block2).first; const int col_end = FindOrDie(column_bounds_, block2).second; Matrix actual(row_end - row_begin, col_end - col_begin); EXPECT_TRUE(covariance.GetCovarianceBlock(block1, block2, actual.data())); ConstMatrixRef expected(expected_covariance, 6, 6); double diff_norm = (expected.block(row_begin, col_begin, row_end - row_begin, col_end - col_begin) - actual).norm(); diff_norm /= (row_end - row_begin) * (col_end - col_begin); const double kTolerance = 1e-5; EXPECT_NEAR(diff_norm, 0.0, kTolerance) << "rows: " << row_begin << " " << row_end << " " << "cols: " << col_begin << " " << col_end << " " << "\n\n expected: \n " << expected.block(row_begin, col_begin, row_end - row_begin, col_end - col_begin) << "\n\n actual: \n " << actual << "\n\n full expected: \n" << expected; } double parameters_[10]; Problem problem_; vector<pair<const double*, const double*> > all_covariance_blocks_; map<const double*, pair<int, int> > column_bounds_; }; TEST_F(CovarianceTest, NormalBehavior) { // J // // 1 0 0 0 0 0 // 0 1 0 0 0 0 // 0 0 2 0 0 0 // 0 0 0 2 0 0 // 0 0 0 0 2 0 // 0 0 0 0 0 5 // -5 -6 1 2 3 0 // 3 -2 0 0 0 2 // J'J // // 35 24 -5 -10 -15 6 // 24 41 -6 -12 -18 -4 // -5 -6 5 2 3 0 // -10 -12 2 8 6 0 // -15 -18 3 6 13 0 // 6 -4 0 0 0 29 // inv(J'J) computed using octave. double expected_covariance[] = { 7.0747e-02, -8.4923e-03, 1.6821e-02, 3.3643e-02, 5.0464e-02, -1.5809e-02, // NOLINT -8.4923e-03, 8.1352e-02, 2.4758e-02, 4.9517e-02, 7.4275e-02, 1.2978e-02, // NOLINT 1.6821e-02, 2.4758e-02, 2.4904e-01, -1.9271e-03, -2.8906e-03, -6.5325e-05, // NOLINT 3.3643e-02, 4.9517e-02, -1.9271e-03, 2.4615e-01, -5.7813e-03, -1.3065e-04, // NOLINT 5.0464e-02, 7.4275e-02, -2.8906e-03, -5.7813e-03, 2.4133e-01, -1.9598e-04, // NOLINT -1.5809e-02, 1.2978e-02, -6.5325e-05, -1.3065e-04, -1.9598e-04, 3.9544e-02, // NOLINT }; Covariance::Options options; #ifndef CERES_NO_SUITESPARSE options.algorithm_type = SUITE_SPARSE_QR; ComputeAndCompareCovarianceBlocks(options, expected_covariance); #endif options.algorithm_type = DENSE_SVD; ComputeAndCompareCovarianceBlocks(options, expected_covariance); options.algorithm_type = EIGEN_SPARSE_QR; ComputeAndCompareCovarianceBlocks(options, expected_covariance); } #ifdef CERES_USE_OPENMP TEST_F(CovarianceTest, ThreadedNormalBehavior) { // J // // 1 0 0 0 0 0 // 0 1 0 0 0 0 // 0 0 2 0 0 0 // 0 0 0 2 0 0 // 0 0 0 0 2 0 // 0 0 0 0 0 5 // -5 -6 1 2 3 0 // 3 -2 0 0 0 2 // J'J // // 35 24 -5 -10 -15 6 // 24 41 -6 -12 -18 -4 // -5 -6 5 2 3 0 // -10 -12 2 8 6 0 // -15 -18 3 6 13 0 // 6 -4 0 0 0 29 // inv(J'J) computed using octave. double expected_covariance[] = { 7.0747e-02, -8.4923e-03, 1.6821e-02, 3.3643e-02, 5.0464e-02, -1.5809e-02, // NOLINT -8.4923e-03, 8.1352e-02, 2.4758e-02, 4.9517e-02, 7.4275e-02, 1.2978e-02, // NOLINT 1.6821e-02, 2.4758e-02, 2.4904e-01, -1.9271e-03, -2.8906e-03, -6.5325e-05, // NOLINT 3.3643e-02, 4.9517e-02, -1.9271e-03, 2.4615e-01, -5.7813e-03, -1.3065e-04, // NOLINT 5.0464e-02, 7.4275e-02, -2.8906e-03, -5.7813e-03, 2.4133e-01, -1.9598e-04, // NOLINT -1.5809e-02, 1.2978e-02, -6.5325e-05, -1.3065e-04, -1.9598e-04, 3.9544e-02, // NOLINT }; Covariance::Options options; options.num_threads = 4; #ifndef CERES_NO_SUITESPARSE options.algorithm_type = SUITE_SPARSE_QR; ComputeAndCompareCovarianceBlocks(options, expected_covariance); #endif options.algorithm_type = DENSE_SVD; ComputeAndCompareCovarianceBlocks(options, expected_covariance); options.algorithm_type = EIGEN_SPARSE_QR; ComputeAndCompareCovarianceBlocks(options, expected_covariance); } #endif // CERES_USE_OPENMP TEST_F(CovarianceTest, ConstantParameterBlock) { problem_.SetParameterBlockConstant(parameters_); // J // // 0 0 0 0 0 0 // 0 0 0 0 0 0 // 0 0 2 0 0 0 // 0 0 0 2 0 0 // 0 0 0 0 2 0 // 0 0 0 0 0 5 // 0 0 1 2 3 0 // 0 0 0 0 0 2 // J'J // // 0 0 0 0 0 0 // 0 0 0 0 0 0 // 0 0 5 2 3 0 // 0 0 2 8 6 0 // 0 0 3 6 13 0 // 0 0 0 0 0 29 // pinv(J'J) computed using octave. double expected_covariance[] = { 0, 0, 0, 0, 0, 0, // NOLINT 0, 0, 0, 0, 0, 0, // NOLINT 0, 0, 0.23611, -0.02778, -0.04167, -0.00000, // NOLINT 0, 0, -0.02778, 0.19444, -0.08333, -0.00000, // NOLINT 0, 0, -0.04167, -0.08333, 0.12500, -0.00000, // NOLINT 0, 0, -0.00000, -0.00000, -0.00000, 0.03448 // NOLINT }; Covariance::Options options; #ifndef CERES_NO_SUITESPARSE options.algorithm_type = SUITE_SPARSE_QR; ComputeAndCompareCovarianceBlocks(options, expected_covariance); #endif options.algorithm_type = DENSE_SVD; ComputeAndCompareCovarianceBlocks(options, expected_covariance); options.algorithm_type = EIGEN_SPARSE_QR; ComputeAndCompareCovarianceBlocks(options, expected_covariance); } TEST_F(CovarianceTest, LocalParameterization) { double* x = parameters_; double* y = x + 2; problem_.SetParameterization(x, new PolynomialParameterization); vector<int> subset; subset.push_back(2); problem_.SetParameterization(y, new SubsetParameterization(3, subset)); // Raw Jacobian: J // // 1 0 0 0 0 0 // 0 1 0 0 0 0 // 0 0 2 0 0 0 // 0 0 0 2 0 0 // 0 0 0 0 0 0 // 0 0 0 0 0 5 // -5 -6 1 2 0 0 // 3 -2 0 0 0 2 // Global to local jacobian: A // // // 1 0 0 0 0 // 1 0 0 0 0 // 0 1 0 0 0 // 0 0 1 0 0 // 0 0 0 1 0 // 0 0 0 0 1 // A * pinv((J*A)'*(J*A)) * A' // Computed using octave. double expected_covariance[] = { 0.01766, 0.01766, 0.02158, 0.04316, 0.00000, -0.00122, 0.01766, 0.01766, 0.02158, 0.04316, 0.00000, -0.00122, 0.02158, 0.02158, 0.24860, -0.00281, 0.00000, -0.00149, 0.04316, 0.04316, -0.00281, 0.24439, 0.00000, -0.00298, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, -0.00122, -0.00122, -0.00149, -0.00298, 0.00000, 0.03457 }; Covariance::Options options; #ifndef CERES_NO_SUITESPARSE options.algorithm_type = SUITE_SPARSE_QR; ComputeAndCompareCovarianceBlocks(options, expected_covariance); #endif options.algorithm_type = DENSE_SVD; ComputeAndCompareCovarianceBlocks(options, expected_covariance); options.algorithm_type = EIGEN_SPARSE_QR; ComputeAndCompareCovarianceBlocks(options, expected_covariance); } TEST_F(CovarianceTest, TruncatedRank) { // J // // 1 0 0 0 0 0 // 0 1 0 0 0 0 // 0 0 2 0 0 0 // 0 0 0 2 0 0 // 0 0 0 0 2 0 // 0 0 0 0 0 5 // -5 -6 1 2 3 0 // 3 -2 0 0 0 2 // J'J // // 35 24 -5 -10 -15 6 // 24 41 -6 -12 -18 -4 // -5 -6 5 2 3 0 // -10 -12 2 8 6 0 // -15 -18 3 6 13 0 // 6 -4 0 0 0 29 // 3.4142 is the smallest eigen value of J'J. The following matrix // was obtained by dropping the eigenvector corresponding to this // eigenvalue. double expected_covariance[] = { 5.4135e-02, -3.5121e-02, 1.7257e-04, 3.4514e-04, 5.1771e-04, -1.6076e-02, -3.5121e-02, 3.8667e-02, -1.9288e-03, -3.8576e-03, -5.7864e-03, 1.2549e-02, 1.7257e-04, -1.9288e-03, 2.3235e-01, -3.5297e-02, -5.2946e-02, -3.3329e-04, 3.4514e-04, -3.8576e-03, -3.5297e-02, 1.7941e-01, -1.0589e-01, -6.6659e-04, 5.1771e-04, -5.7864e-03, -5.2946e-02, -1.0589e-01, 9.1162e-02, -9.9988e-04, -1.6076e-02, 1.2549e-02, -3.3329e-04, -6.6659e-04, -9.9988e-04, 3.9539e-02 }; { Covariance::Options options; options.algorithm_type = DENSE_SVD; // Force dropping of the smallest eigenvector. options.null_space_rank = 1; ComputeAndCompareCovarianceBlocks(options, expected_covariance); } { Covariance::Options options; options.algorithm_type = DENSE_SVD; // Force dropping of the smallest eigenvector via the ratio but // automatic truncation. options.min_reciprocal_condition_number = 0.044494; options.null_space_rank = -1; ComputeAndCompareCovarianceBlocks(options, expected_covariance); } } class RankDeficientCovarianceTest : public CovarianceTest { protected: virtual void SetUp() { double* x = parameters_; double* y = x + 2; double* z = y + 3; { double jacobian[] = { 1.0, 0.0, 0.0, 1.0}; problem_.AddResidualBlock(new UnaryCostFunction(2, 2, jacobian), NULL, x); } { double jacobian[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; problem_.AddResidualBlock(new UnaryCostFunction(3, 3, jacobian), NULL, y); } { double jacobian = 5.0; problem_.AddResidualBlock(new UnaryCostFunction(1, 1, &jacobian), NULL, z); } { double jacobian1[] = { 0.0, 0.0, 0.0 }; double jacobian2[] = { -5.0, -6.0 }; problem_.AddResidualBlock( new BinaryCostFunction(1, 3, 2, jacobian1, jacobian2), NULL, y, x); } { double jacobian1[] = {2.0 }; double jacobian2[] = { 3.0, -2.0 }; problem_.AddResidualBlock( new BinaryCostFunction(1, 1, 2, jacobian1, jacobian2), NULL, z, x); } all_covariance_blocks_.push_back(make_pair(x, x)); all_covariance_blocks_.push_back(make_pair(y, y)); all_covariance_blocks_.push_back(make_pair(z, z)); all_covariance_blocks_.push_back(make_pair(x, y)); all_covariance_blocks_.push_back(make_pair(x, z)); all_covariance_blocks_.push_back(make_pair(y, z)); column_bounds_[x] = make_pair(0, 2); column_bounds_[y] = make_pair(2, 5); column_bounds_[z] = make_pair(5, 6); } }; TEST_F(RankDeficientCovarianceTest, AutomaticTruncation) { // J // // 1 0 0 0 0 0 // 0 1 0 0 0 0 // 0 0 0 0 0 0 // 0 0 0 0 0 0 // 0 0 0 0 0 0 // 0 0 0 0 0 5 // -5 -6 0 0 0 0 // 3 -2 0 0 0 2 // J'J // // 35 24 0 0 0 6 // 24 41 0 0 0 -4 // 0 0 0 0 0 0 // 0 0 0 0 0 0 // 0 0 0 0 0 0 // 6 -4 0 0 0 29 // pinv(J'J) computed using octave. double expected_covariance[] = { 0.053998, -0.033145, 0.000000, 0.000000, 0.000000, -0.015744, -0.033145, 0.045067, 0.000000, 0.000000, 0.000000, 0.013074, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, -0.015744, 0.013074, 0.000000, 0.000000, 0.000000, 0.039543 }; Covariance::Options options; options.algorithm_type = DENSE_SVD; options.null_space_rank = -1; ComputeAndCompareCovarianceBlocks(options, expected_covariance); } class LargeScaleCovarianceTest : public ::testing::Test { protected: virtual void SetUp() { num_parameter_blocks_ = 2000; parameter_block_size_ = 5; parameters_.reset(new double[parameter_block_size_ * num_parameter_blocks_]); Matrix jacobian(parameter_block_size_, parameter_block_size_); for (int i = 0; i < num_parameter_blocks_; ++i) { jacobian.setIdentity(); jacobian *= (i + 1); double* block_i = parameters_.get() + i * parameter_block_size_; problem_.AddResidualBlock(new UnaryCostFunction(parameter_block_size_, parameter_block_size_, jacobian.data()), NULL, block_i); for (int j = i; j < num_parameter_blocks_; ++j) { double* block_j = parameters_.get() + j * parameter_block_size_; all_covariance_blocks_.push_back(make_pair(block_i, block_j)); } } } void ComputeAndCompare(CovarianceAlgorithmType algorithm_type, int num_threads) { Covariance::Options options; options.algorithm_type = algorithm_type; options.num_threads = num_threads; Covariance covariance(options); EXPECT_TRUE(covariance.Compute(all_covariance_blocks_, &problem_)); Matrix expected(parameter_block_size_, parameter_block_size_); Matrix actual(parameter_block_size_, parameter_block_size_); const double kTolerance = 1e-16; for (int i = 0; i < num_parameter_blocks_; ++i) { expected.setIdentity(); expected /= (i + 1.0) * (i + 1.0); double* block_i = parameters_.get() + i * parameter_block_size_; covariance.GetCovarianceBlock(block_i, block_i, actual.data()); EXPECT_NEAR((expected - actual).norm(), 0.0, kTolerance) << "block: " << i << ", " << i << "\n" << "expected: \n" << expected << "\n" << "actual: \n" << actual; expected.setZero(); for (int j = i + 1; j < num_parameter_blocks_; ++j) { double* block_j = parameters_.get() + j * parameter_block_size_; covariance.GetCovarianceBlock(block_i, block_j, actual.data()); EXPECT_NEAR((expected - actual).norm(), 0.0, kTolerance) << "block: " << i << ", " << j << "\n" << "expected: \n" << expected << "\n" << "actual: \n" << actual; } } } scoped_array<double> parameters_; int parameter_block_size_; int num_parameter_blocks_; Problem problem_; vector<pair<const double*, const double*> > all_covariance_blocks_; }; #if !defined(CERES_NO_SUITESPARSE) && defined(CERES_USE_OPENMP) TEST_F(LargeScaleCovarianceTest, Parallel) { ComputeAndCompare(SUITE_SPARSE_QR, 4); } #endif // !defined(CERES_NO_SUITESPARSE) && defined(CERES_USE_OPENMP) } // namespace internal } // namespace ceres